A001710
Order of alternating group A_n, or number of even permutations of n letters.
Original entry on oeis.org
1, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, 60822550204416000, 1216451004088320000, 25545471085854720000, 562000363888803840000
Offset: 0
G.f. = 1 + x + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 360*x^6 + 2520*x^7 + ...
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 87-8, 20. (a), c_n^e(t=1).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..100
- Somaya Barati, Beáta Bényi, Abbas Jafarzadeh, and Daniel Yaqubi, Mixed restricted Stirling numbers, arXiv:1812.02955 [math.CO], 2018.
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
- Olivier Bodini, Antoine Genitrini, and Mehdi Naima, Ranked Schröder Trees, arXiv:1808.08376 [cs.DS], 2018.
- Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), Article 00.1.5.
- Camille Combe and Samuele Giraudo, Cliff operads: a hierarchy of operads on words, arXiv:2106.14552 [math.CO], 2021.
- Mareike Fischer, Extremal Values of the Sackin Tree Balance Index, Ann. Comb. (2021) Vol. 25, 515-541, Remark 7.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 36.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 262.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Shirali Kadyrov and Farukh Mashurov, Generalized continued fraction expansions for Pi and E, arXiv:1912.03214 [math.NT], 2019.
- Chanchal Kumar and Amit Roy, Integer Sequences and Monomial Ideals, arXiv:2003.10098 [math.CO], 2020.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- Xah Lee, Combinatorics: Loop in n points.
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- S-Z Song, S-G Hwang, S-H Rim, and G-S Cheon, Extremes of permanents of (0,1)-matrices, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373 (2003), 197-210.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- B. E. Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.
- Eric Weisstein's World of Mathematics, Alternating Group.
- Eric Weisstein's World of Mathematics, Bruhat Graph.
- Eric Weisstein's World of Mathematics, Circular Permutation.
- Eric Weisstein's World of Mathematics, Clique Covering Number.
- Eric Weisstein's World of Mathematics, Even Permutation.
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle.
- Eric Weisstein's World of Mathematics, Independence Number.
- Eric Weisstein's World of Mathematics, Odd Permutation.
- Eric Weisstein's World of Mathematics, Transposition Graph.
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 7.
- Index entries for sequences related to factorial base representation.
- Index entries for sequences related to factorial numbers.
- Index entries for sequences related to groups.
- Index to divisibility sequences.
Cf.
A000142,
A000153,
A000255,
A001147,
A001286,
A001720,
A002135,
A002260,
A007623,
A007717,
A049444,
A049459,
A093468,
A094587,
A094638,
A138533,
A153880,
A173333,
A213936,
A215771,
A319225,
A319226,
A320655.
a(n+1)=
A046089(n, 1), n >= 1 (first column of triangle),
A161739 (q(n) sequence).
-
[1] cat [Order(AlternatingGroup(n)): n in [1..20]]; // Arkadiusz Wesolowski, May 17 2014
-
seq(mul(k, k=3..n), n=0..20); # Zerinvary Lajos, Sep 14 2007
-
a[n_]:= If[n > 2, n!/2, 1]; Array[a, 21, 0]
a[n_]:= If[n<3, 1, n*a[n-1]]; Array[a, 21, 0]; (* Robert G. Wilson v, Apr 16 2011 *)
a[ n_]:= If[n<0, 0, n! SeriesCoefficient[(2-x^2)/(2-2x), {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Sinh[-Log[1-x]], {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
Numerator[Range[0, 20]!/2] (* Eric W. Weisstein, May 21 2017 *)
Table[GroupOrder[AlternatingGroup[n]], {n, 0, 20}] (* Eric W. Weisstein, May 21 2017 *)
-
{a(n) = if( n<2, n>=0, n!/2)};
-
a(n)=polcoeff(1+x*sum(m=0,n,m^m*x^m/(1+m*x+x*O(x^n))^m),n) \\ Paul D. Hanna
-
A001710=n->n!\2+(n<2) \\ M. F. Hasler, Dec 01 2013
-
from math import factorial
def A001710(n): return factorial(n)>>1 if n > 1 else 1 # Chai Wah Wu, Feb 14 2023
-
def A001710(n): return (factorial(n) +int(n<2))//2
[A001710(n) for n in range(31)] # G. C. Greubel, Sep 28 2024
-
;; Using memoization-macro definec for which an implementation can be found in http://oeis.org/wiki/Memoization
(definec (A001710 n) (cond ((<= n 2) 1) (else (* n (A001710 (- n 1))))))
;; Antti Karttunen, Dec 19 2015
More terms from Larry Reeves (larryr(AT)acm.org), Aug 20 2001
A001563
a(n) = n*n! = (n+1)! - n!.
Original entry on oeis.org
0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 0
E_1(x) + gamma + log(x) = x/1 - x^2/4 + x^3/18 - x^4/96 + ..., x > 0. - _Michael Somos_, Dec 11 2002
G.f. = x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 4320*x^6 + 35280*x^7 + 322560*x^8 + ...
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 218.
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 336.
- F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 37, equation 37:6:1 at page 354.
- T. D. Noe, Table of n, a(n) for n = 0..100
- J. D. H. Dickson, Discussion of two double series arising from the number of terms in determinants of certain forms, Proc. London Math. Soc., 10 (1879), 120-122. [Annotated scanned copy]
- Loïc Foissy, The antipode of of [sic] a Com-PreLie Hopf algebra, arXiv:2406.01120 [math.CO], 2024. See p. 9.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 30.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- L. B. W. Jolley, Summation of Series, Dover, 1961.
- I. Kortchemski, Asymptotic behavior of permutation records, arXiv: 0804.0446v2 [math.CO], 18 May 2008.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages).
- Rezsö L. Lovas and István Mezö, On an exotic topology of the integers, arXiv:1008.0713 [math.GN], 2010. See p. 4.
- Daniel J. Mundfrom, A problem in permutations: the game of `Mousetrap', European J. Combin. 15 (1994), no. 6, 555-560.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages).
- A. van Heemert, Cyclic permutations with sequences and related problems, J. Reine Angew. Math., 198 (1957), 56-72.
- Dennis P. Walsh, The number of permutations with no k-cycles.
- Eric Weisstein's World of Mathematics, Distinguishing Number.
- Eric Weisstein's World of Mathematics, Exponential Integral.
Cf. sequences with formula (n + k)*n! listed in
A282466.
-
List([0..20], n-> n*Factorial(n) ); # G. C. Greubel, Dec 30 2019
-
a001563 n = a001563_list !! n
a001563_list = zipWith (-) (tail a000142_list) a000142_list
-- Reinhard Zumkeller, Aug 05 2013
-
[Factorial(n+1)-Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 08 2014
-
A001563 := n->n*n!;
-
Table[n!n,{n,0,25}] (* Harvey P. Dale, Oct 03 2011 *)
-
{a(n) = if( n<0, 0, n * n!)} /* Michael Somos, Dec 11 2002 */
-
[n*factorial(n) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A006252
Expansion of e.g.f. 1/(1 - log(1+x)).
Original entry on oeis.org
1, 1, 1, 2, 4, 14, 38, 216, 600, 6240, 9552, 319296, -519312, 28108560, -176474352, 3998454144, -43985078784, 837126163584, -12437000028288, 237195036797184, -4235955315745536, 85886259443020800, -1746536474655406080, 38320721602434017280, -864056965711935974400
Offset: 0
- G. Pólya, Induction and Analogy in Mathematics. Princeton Univ. Press, 1954, p. 9.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Beáta Bényi and Daniel Yaqubi, Mixed coloured permutations, arXiv:1903.07450 [math.CO], 2019.
- Takao Komatsu and Amalia Pizarro-Madariaga, Harmonic numbers associated with inversion numbers in terms of determinants, Turkish Journal of Mathematics (2019) Vol. 43, 340-354.
- E. J. Weniger, Summation of divergent power series by means of factorial series arXiv:1005.0466v1 [math.NA], 2010.
-
a006252 0 = 1
a006252 n = sum $ a048594_row n -- Reinhard Zumkeller, Mar 02 2014
-
With[{nn=30},CoefficientList[Series[1/(1-Log[1+x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2016 *)
-
a(n)=if(n<0,0,n!*polcoeff(1/(1-log(1+x+x*O(x^n))),n))
-
{a(n)=local(CF=1+x*O(x^n)); for(k=0, n-1, CF=1/((n-k+1)-(n-k)*x+(n-k+1)^2*x*CF)); n!*polcoeff(1+x/(1-x+x*CF), n, x)} /* Paul D. Hanna, Dec 31 2011 */
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v; \\ Seiichi Manyama, May 22 2022
-
def A006252_list(len):
f, R, C = 1, [1], [1]+[0]*len
for n in (1..len):
f *= n
for k in range(n, 0, -1):
C[k] = -C[k-1]*((k-1)/(k) if k>1 else 1)
C[0] = -sum(C[k] for k in (1..n))
R.append(C[0]*f)
return R
print(A006252_list(24)) # Peter Luschny, Feb 21 2016
A001048
a(n) = n! + (n-1)!.
Original entry on oeis.org
2, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
Offset: 1
For n=3, a(3) counts the 8 permutations of [4] with 1,2, and 3 all in the same cycle, namely, (1 2 3)(4), (1 3 2)(4), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 2 4 3), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
- L. B. W. Jolley, Summation of Series, Dover, 1961.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..100
- Barry Balof and Helen Jenne, Tilings, Continued Fractions, Derangements, Scramblings, and e, Journal of Integer Sequences, Vol. 17 (2014), #14.2.7.
- E. Biondi, L. Divieti, and G. Guardabassi, Counting paths, circuits, chains and cycles in graphs: A unified approach, Canad. J. Math., Vol. 22, No. 1 (1970), pp. 22-35.
- Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 97.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 641.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 101.
- Helen K. Jenne, Proofs you can count on, Honors Thesis, Math. Dept., Whitman College, 2013.
- B. D. Josephson and J. M. Boardman, Problems Drive 1961, Eureka, The Journal of the Archimedeans, Vol. 24 (1961), p. 20; entire volume.
- T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
- Eric Weisstein's World of Mathematics, Uniform Sum Distribution.
- Index entries for sequences related to factorial base representation
- Index entries for sequences related to factorial numbers
Apart from initial terms, same as
A059171.
From a(2)=3 onward the second topmost row of arrays
A276588 and
A276955.
-
[Factorial(n)+Factorial(n+1): n in [0..30]]; // Vincenzo Librandi, Aug 08 2014
-
seq(n!+(n-1)!,n=1..25);
-
Table[n! + (n + 1)!, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Apr 14 2011 *)
Total/@Partition[Range[0, 20]!, 2, 1] (* Harvey P. Dale, Nov 29 2013 *)
-
a(n)=denominator(polcoeff((x-1)*exp(x+x*O(x^(n+1))),n+1)); \\ Gerry Martens, Aug 12 2015
-
vector(30, n, (n+1)*(n-1)!) \\ Michel Marcus, Aug 12 2015
A010027
Triangle read by rows: T(n,k) is the number of permutations of [n] having k consecutive ascending pairs (0 <= k <= n-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 9, 11, 1, 4, 18, 44, 53, 1, 5, 30, 110, 265, 309, 1, 6, 45, 220, 795, 1854, 2119, 1, 7, 63, 385, 1855, 6489, 14833, 16687, 1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329, 1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457, 1
Offset: 1
Triangle starts:
1;
1, 1;
1, 2, 3;
1, 3, 9, 11;
1, 4, 18, 44, 53;
1, 5, 30, 110, 265, 309;
1, 6, 45, 220, 795, 1854, 2119;
1, 7, 63, 385, 1855, 6489, 14833, 16687;
1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329;
1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457;
...
For n=3, the permutations 123, 132, 213, 231, 312, 321 have respectively 2,0,0,1,1,0 consecutive ascending pairs, so row 3 of the triangle is 3,2,1. - _N. J. A. Sloane_, Apr 12 2014
In the alternative definition, T(4,2)=3 because we have 234.1, 4.123, and 34.12 (the blocks are separated by dots). - _Emeric Deutsch_, May 16 2010
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
A289632 is the analogous triangle with the additional restriction that all consecutive pairs must be isolated, i.e., must not be back-to-back to form longer consecutive sequences.
-
U := proc (n, k) options operator, arrow: factorial(k+1)*binomial(n, k)*(sum((-1)^i/factorial(i), i = 0 .. k+1))/n end proc: for n to 10 do seq(U(n, k), k = 1 .. n) end do; # yields sequence in triangular form; # Emeric Deutsch, May 15 2010
-
t[n_, k_] := Binomial[n, k]*Subfactorial[k+1]/n; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Emeric Deutsch *)
T[0,0]:=0; T[1,1]:=1; T[n_,n_]:=T[n,n]=(n-1)T[n-1,n-1]+(n-2)T[n-2,n-2]; T[n_,k_]:=T[n,k]=T[n-1,k] (n-1)/(n-k); Flatten@Table[T[n,k],{n,1,10},{k,1,n}] (* Oliver Seipel, Dec 01 2024 *)
Original definition from David, Kendall and Barton restored by
N. J. A. Sloane, Apr 12 2014
A000153
a(n) = n*a(n-1) + (n-2)*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 7, 32, 181, 1214, 9403, 82508, 808393, 8743994, 103459471, 1328953592, 18414450877, 273749755382, 4345634192131, 73362643649444, 1312349454922513, 24796092486996338, 493435697986613143, 10315043624498196944
Offset: 0
Necklaces and 2 cords problem. For n=4 one considers the following weak 2 part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively sf(4)*1,binomial(4,3)*sf(3)*c2(1), (binomial(4,2)*sf(2))*c2(2), and 1*c2(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there) and the c2(n):=(n+1)! numbers for the pure 2 cord problem (see the above given remark on the e.g.f. for the k cords problem; here for k=2: 1/(1-x)^2). This adds up as 9 + 4*2*2 + (6*1)*6 + 120 = 181 = b(4) = A000153(5). - _Wolfdieter Lang_, Jun 02 2010
G.f. = x + 2*x^2 + 7*x^3 + 32*x^4 + 181*x^5 + 1214*x^6 + 9403*x^7 + 82508*x^8 + ...
- Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..250
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- Anders Claesson, Giulio Cerbai, Dana C. Ernst, and Hannah Golab, Pattern-avoiding Cayley permutations via combinatorial species, arXiv:2407.19583 [math.CO], 2024.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 41.
- Simon Plouffe, Exact formulas for integer sequences.
- Ed Sandifer, Divergent Series, How Euler Did It, MAA Online, June 2006. - From _Johannes W. Meijer_, Oct 16 2009
- Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373 (2003), 197-210.
-
a000153 n = a000153_list !! n
a000153_list = 0 : 1 : zipWith (+)
(zipWith (*) [0..] a000153_list) (zipWith (*) [2..] $ tail a000153_list)
-- Reinhard Zumkeller, Mar 05 2012
-
f:= n-> floor(((n+1)!+1)/e): g:=n-> (n*f(n+1)-(n+1)*f(n))/(2*n*(n-1)*(n+1)):seq( g(n), n=2..20); # Gary Detlefs, Nov 06 2010
a := n -> `if`(n=0,0,hypergeom([3,-n+1],[],1))*(-1)^(n+1); seq(simplify(a(n)), n=0..20); # Peter Luschny, Sep 20 2014
0, seq(simplify(KummerU(-n + 1, -n - 1, -1)), n = 1..20); # Peter Luschny, May 10 2022
-
nn = 20; Prepend[Range[0, nn]!CoefficientList[Series[Exp[-x]/(1 - x)^3, {x, 0, nn}], x], 0] (* Geoffrey Critzer, Oct 28 2012 *)
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n a[n-1]+(n-2)a[n-2]},a,{n,20}] (* Harvey P. Dale, May 08 2013 *)
a[ n_] := If[ n < 1, 0, (n - 1)! SeriesCoefficient[ Exp[ -x] / (1 - x)^3, {x, 0, n - 1}]]; (* Michael Somos, Jun 01 2013 *)
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1, 3}, {}, x / (x + 1)] x / (x + 1), {x, 0, n}]; (* Michael Somos, Jun 01 2013 *)
-
x='x+O('x^66); concat([0],Vec(x*serlaplace(exp(-x)/(1-x)^3))) \\ Joerg Arndt, May 08 2013
-
it = sloane.A000153.gen(0,1,2); [next(it) for i in range(21)] # Zerinvary Lajos, May 15 2009
A023052
Perfect Digital Invariants: numbers that are the sum of some fixed power of their digits.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, 54748, 92727, 93084, 194979, 548834, 1741725, 4210818, 9800817, 9926315, 14459929, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153
Offset: 1
153 = 1^3 + 5^3 + 3^3, 4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7.
- Jerome Raulin, Table of n, a(n) for n = 1..345 (terms 1..255 from Joseph Myers)
- Encyclopaedia Britannica, Perfect digital invariant, article "Number patterns and curiosities" online since July 26, 1999, revised Aug 25, 2000.
- Hans Havermann, Extended table of values for A023052 and A046074
- Donald E. Knuth, The Art of Computer Programming, Volume 4, Pre-Fascicle 9B A Potpourri of Puzzles
- J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383.
- J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Narcissistic Number
- Index entries for sequences related to powerful numbers
Cf.
A001694 (powerful numbers: p|n => p^2|n),
A005934 (highly powerful numbers).
Cf.
A005188 (here the power must be equal to the number of digits).
-
Select[Range[0, 10^5], Function[m, AnyTrue[Function[k, Total@ Map[Power[#, k] &, IntegerDigits@ m]] /@ Range@ 10, # == m &]]] (* Michael De Vlieger, Feb 08 2016, Version 10 *)
-
is(n)=if(n<10, return(1)); my(d=digits(n),m=vecmax(d)); if(m<2, return(0)); for(k=3,logint(n,m), if(sum(i=1,#d,d[i]^k)==n, return(1))); 0 \\ Charles R Greathouse IV, Feb 06 2017
-
select( is_A023052(n,b=10)={nn|| return(t==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019
Computed to 10^50 by G. N. Gusev (GGN(AT)rm.yaroslavl.ru)
Computed to 10^74 by Xiaoqing Tang
A001909
a(n) = n*a(n-1) + (n-4)*a(n-2), a(2) = 0, a(3) = 1.
Original entry on oeis.org
0, 1, 4, 21, 134, 1001, 8544, 81901, 870274, 10146321, 128718044, 1764651461, 25992300894, 409295679481, 6860638482424, 121951698034461, 2291179503374234, 45361686034627361, 943892592746534964, 20592893110265899381, 470033715095287415734
Offset: 2
Necklaces and four cords problem. For n=4 one considers the following weak 2 part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively sf(4)*1, binomial(4,3)*sf(3)*c4(1), (binomial(4,2)*sf(2))*c4(2), and 1*c4(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there) and the c4(n):=A001715(n+3) = (n+3)!/3! numbers for the pure 4 cord problem (see the remark on the e.g.f. for the k cords problem in A000153; here for k=4: 1/(1-x)^4). This adds up as 9 + 4*2*4 + (6*1)*20 + 840 = 1001 = b(4) = A001909(7). - _Wolfdieter Lang_, Jun 02 2010
x^3 + 4*x^4 + 21*x^5 + 134*x^6 + 1001*x^7 + 8544*x^8 + 81901*x^9 + 870274*x^10 + ...
- Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 2..100
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373 (2003), pp. 197-210.
-
a := n -> `if`(n<4,n-2,hypergeom([5,-n+3],[],1))*(-1)^(n+1);
seq(round(evalf(a(n), 100)), n=2..22); # Peter Luschny, Sep 20 2014
-
t = {0, 1}; Do[AppendTo[t, n*t[[-1]] + (n-4)*t[[-2]]], {n, 4, 20}]; t (* T. D. Noe, Aug 17 2012 *)
nxt[{n_,a_,b_}]:={n+1,b,b(n+1)+a(n-3)}; NestList[nxt,{3,0,1},20][[All,2]] (* Harvey P. Dale, Jul 17 2018 *)
-
{a(n) = if( n<2, 0, -contfracpnqn( matrix(2, n, i, j, j - 4*(i==1))) [1, 1])} /* Michael Somos, Feb 19 2003 */
A047920
Triangular array formed from successive differences of factorial numbers.
Original entry on oeis.org
1, 1, 0, 2, 1, 1, 6, 4, 3, 2, 24, 18, 14, 11, 9, 120, 96, 78, 64, 53, 44, 720, 600, 504, 426, 362, 309, 265, 5040, 4320, 3720, 3216, 2790, 2428, 2119, 1854, 40320, 35280, 30960, 27240, 24024, 21234, 18806, 16687, 14833, 362880, 322560
Offset: 0
Triangle begins:
1;
1, 0;
2, 1, 1;
6, 4, 3, 2;
24, 18, 14, 11, 9;
120, 96, 78, 64, 53, 44;
...
The left-hand column is the factorial numbers (A000142). The other numbers in the row are calculated by subtracting the numbers in the previous row. For example, row 4 is 6, 4, 3, 2, so row 5 is 4! = 24, 24 - 6 = 18, 18 - 4 = 14, 14 - 3 = 11, 11 - 2 = 9. - _Michael B. Porter_, Aug 05 2016
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 176, Table 5.3. [From Emeric Deutsch, Apr 21 2009]
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
- E. Deutsch and S. Elizalde, The largest and the smallest fixed points of permutations, arXiv:0904.2792 [math.CO], 2009.
- J. D. H. Dickson, Discussion of two double series arising from the number of terms in determinants of certain forms, Proc. London Math. Soc., 10 (1879), 120-122. [Annotated scanned copy]
- J. D. H. Dickson, Discussion of two double series arising from the number of terms in determinants of certain forms, Proc. London Math. Soc., 10 (1879), 120-122.
- Ira M. Gessel, Symmetric inclusion-exclusion, Séminaire Lotharingien de Combinatoire, B54b (2005).
- Peter Kagey, Ranking and Unranking Restricted Permutations, arXiv:2210.17021 [math.CO], 2022.
- Index entries for sequences related to factorial numbers
See
A068106 for another version of this triangle.
-
a047920 n k = a047920_tabl !! n !! k
a047920_row n = a047920_tabl !! n
a047920_tabl = map fst $ iterate e ([1], 1) where
e (row, n) = (scanl (-) (n * head row) row, n + 1)
-- Reinhard Zumkeller, Mar 05 2012
-
d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k <= n then sum(binomial(n-k, j)*d[n-j], j = 0 .. n-k) else 0 end if end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jul 17 2009
# second Maple program:
T:= proc(n, k) option remember;
`if`(k=0, n!, T(n, k-1)-T(n-1, k-1))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Sep 01 2021
-
t[n_, k_] = Sum[(-1)^j*Binomial[k, j]*(n-j)!, {j, 0, n}]; Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, May 17 2011, after Philippe Deléham *)
T[n_, k_] := n! Hypergeometric1F1[-k, -n, -1];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Peter Luschny, Jul 28 2024 *)
-
row(n) = vector(n+1, k, k--; sum(j=0, n, (-1)^j * binomial(k, j)*(n-j)!)); \\ Michel Marcus, Sep 04 2021
A055790
a(n) = n*a(n-1) + (n-2)*a(n-2), a(0) = 0, a(1) = 2.
Original entry on oeis.org
0, 2, 4, 14, 64, 362, 2428, 18806, 165016, 1616786, 17487988, 206918942, 2657907184, 36828901754, 547499510764, 8691268384262, 146725287298888, 2624698909845026, 49592184973992676, 986871395973226286, 20630087248996393888, 451982388752415571082
Offset: 0
G.f. = 2*x + 4*x^2 + 14*x^3 + 64*x^4 + 362*x^5 + 2428*x^6 + ...
a(3) = 3*a(2)+(3-2)*a(1) = 12+2 = 14.
for n=1, the 2 permutations of [2] matches:
12, 21
for n=2, the 4 permutations of [3] without 2 as a fixed point are
132, 213, 231, 312.
for n=3, the 14 permutations of [4] without fixed point at 2 or 3 are
1324 1342 1423 2143 2314 2341 2413
3124 3142 3412 3421 4123 4312 4321
- Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..250
- T. Mansour and M. Shattuck, Counting permutations by the number of successors within cycles, Discr. Math., 339 (2016), 1368-1376.
- Enrique Navarrete, Generalized K-Shift Forbidden Substrings in Permutations, arXiv:1610.06217 [math.CO], 2016.
- Enrique Navarrete, Forbidden Substrings in Circular K-Successions, arXiv:1702.02637 [math.CO], 2017.
- Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373 (2003), pp. 197-210.
Cf.
A000166 (Derangements, permutations without fixed points ).
Cf.
A000255 (permutations with p(i)!=i+1, same type of recurrence).
-
a055790 n = a055790_list !! n
a055790_list = 0 : 2 : zipWith (+)
(zipWith (*) [0..] a055790_list) (zipWith (*) [2..] $ tail a055790_list)
-- Reinhard Zumkeller, Mar 05 2012
-
f := proc(n) option remember; if n <= 1 then 2*n else n*f(n-1)+(n-2)*f(n-2); fi; end;
-
a[0] = 0; a[1] = 2; a[n_] := a[n] = a[n] = n*a[n - 1] + (n - 2)*a[n - 2];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 14 2017 *)
RecurrenceTable[{a[0]==0,a[1]==2,a[n]==n*a[n-1]+(n-2)a[n-2]},a,{n,30}] (* Harvey P. Dale, May 07 2018 *)
-
a(n) = if(n==0, 0, round((n+3+1/n)*n!/exp(1))) \\ Felix Fröhlich, Jul 29 2016
Comments corrected, new interpretation and examples by
Olivier Gérard, Jul 29 2016
Comments