cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 119 results. Next

A001710 Order of alternating group A_n, or number of even permutations of n letters.

Original entry on oeis.org

1, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, 60822550204416000, 1216451004088320000, 25545471085854720000, 562000363888803840000
Offset: 0

Views

Author

Keywords

Comments

For n >= 3, a(n-1) is also the number of ways that a 3-cycle in the symmetric group S_n can be written as a product of 2 long cycles (of length n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 14 2001
a(n) is the number of Hamiltonian circuit masks for an n X n adjacency matrix of an undirected graph. - Chad Brewbaker, Jan 31 2003
a(n-1) is the number of necklaces one can make with n distinct beads: n! bead permutations, divide by two to represent flipping the necklace over, divide by n to represent rotating the necklace. Related to Stirling numbers of the first kind, Stirling cycles. - Chad Brewbaker, Jan 31 2003
Number of increasing runs in all permutations of [n-1] (n>=2). Example: a(4)=12 because we have 12 increasing runs in all the permutations of [3] (shown in parentheses): (123), (13)(2), (3)(12), (2)(13), (23)(1), (3)(2)(1). - Emeric Deutsch, Aug 28 2004
Minimum permanent over all n X n (0,1)-matrices with exactly n/2 zeros. - Simone Severini, Oct 15 2004
The number of permutations of 1..n that have 2 following 1 for n >= 1 is 0, 1, 3, 12, 60, 360, 2520, 20160, ... . - Jon Perry, Sep 20 2008
Starting (1, 3, 12, 60, ...) = binomial transform of A000153: (1, 2, 7, 32, 181, ...). - Gary W. Adamson, Dec 25 2008
First column of A092582. - Mats Granvik, Feb 08 2009
The asymptotic expansion of the higher order exponential integral E(x,m=1,n=3) ~ exp(-x)/x*(1 - 3/x + 12/x^2 - 60/x^3 + 360/x^4 - 2520/x^5 + 20160/x^6 - 81440/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
For n>1: a(n) = A173333(n,2). - Reinhard Zumkeller, Feb 19 2010
Starting (1, 3, 12, 60, ...) = eigensequence of triangle A002260, (a triangle with k terms of (1,2,3,...) in each row given k=1,2,3,...). Example: a(6) = 360, generated from (1, 2, 3, 4, 5) dot (1, 1, 3, 12, 60) = (1 + 2 + 9 + 48 + 300). - Gary W. Adamson, Aug 02 2010
For n>=2: a(n) is the number of connected 2-regular labeled graphs on (n+1) nodes (Cf. A001205). - Geoffrey Critzer, Feb 16 2011.
The Fi1 and Fi2 triangle sums of A094638 are given by the terms of this sequence (n>=1). For the definition of these triangle sums see A180662. - Johannes W. Meijer, Apr 20 2011
Also [1, 1] together with the row sums of triangle A162608. - Omar E. Pol, Mar 09 2012
a(n-1) is, for n>=2, also the number of necklaces with n beads (only C_n symmetry, no turnover) with n-1 distinct colors and signature c[.]^2 c[.]^(n-2). This means that two beads have the same color, and for n=2 the second factor is omitted. Say, cyclic(c[1]c[1]c[2]c[3]..c[n-1]), in short 1123...(n-1), taken cyclically. E.g., n=2: 11, n=3: 112, n=4: 1123, 1132, 1213, n=5: 11234, 11243, 11324, 11342, 11423, 11432, 12134, 12143, 13124, 13142, 14123, 14132. See the next-to-last entry in line n>=2 of the representative necklace partition array A212359. - Wolfdieter Lang, Jun 26 2012
For m >= 3, a(m-1) is the number of distinct Hamiltonian circuits in a complete simple graph with m vertices. See also A001286. - Stanislav Sykora, May 10 2014
In factorial base (A007623) these numbers have a simple pattern: 1, 1, 1, 11, 200, 2200, 30000, 330000, 4000000, 44000000, 500000000, 5500000000, 60000000000, 660000000000, 7000000000000, 77000000000000, 800000000000000, 8800000000000000, 90000000000000000, 990000000000000000, etc. See also the formula based on this observation, given below. - Antti Karttunen, Dec 19 2015
Also (by definition) the independence number of the n-transposition graph. - Eric W. Weisstein, May 21 2017
Number of permutations of n letters containing an even number of even cycles. - Michael Somos, Jul 11 2018
Equivalent to Brewbaker's and Sykora's comments, a(n - 1) is the number of undirected cycles covering n labeled vertices, hence the logarithmic transform of A002135. - Gus Wiseman, Oct 20 2018
For n >= 2 and a set of n distinct leaf labels, a(n) is the number of binary, rooted, leaf-labeled tree topologies that have a caterpillar shape (column k=1 of A306364). - Noah A Rosenberg, Feb 11 2019
Also the clique covering number of the n-Bruhat graph. - Eric W. Weisstein, Apr 19 2019
a(n) is the number of lattices of the form [s,w] in the weak order on S_n, for a fixed simple reflection s. - Bridget Tenner, Jan 16 2020
For n > 3, a(n) = p_1^e_1*...*p_m^e_m, where p_1 = 2 and e_m = 1. There exists p_1^x where x <= e_1 such that p_1^x*p_m^e_m is a primitive Zumkeller number (A180332) and p_1^e_1*p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 3, a(n) = p_1^e_1*p_m^e_m*r, where r is relatively prime to p_1*p_m, is also a Zumkeller number. - Ivan N. Ianakiev, Mar 11 2020
For n>1, a(n) is the number of permutations of [n] that have 1 and 2 as cycle-mates, that is, 1 and 2 are contained in the same cycle of a cyclic representation of permutations of [n]. For example, a(4) counts the 12 permutations with 1 and 2 as cycle-mates, namely, (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2), (1 2 3) (4), (1 3 2) (4), (1 2 4 )(3), (1 4 2)(3), (1 2)(3 4), and (1 2)(3)(4). Since a(n+2)=row sums of A162608, our result readily follows. - Dennis P. Walsh, May 28 2020

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 360*x^6 + 2520*x^7 + ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 87-8, 20. (a), c_n^e(t=1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n+1)= A046089(n, 1), n >= 1 (first column of triangle), A161739 (q(n) sequence).
Bisections are A002674 and A085990 (essentially).
Row 3 of A265609 (essentially).
Row sums of A307429.

Programs

  • Magma
    [1] cat [Order(AlternatingGroup(n)): n in [1..20]]; // Arkadiusz Wesolowski, May 17 2014
    
  • Maple
    seq(mul(k, k=3..n), n=0..20); # Zerinvary Lajos, Sep 14 2007
  • Mathematica
    a[n_]:= If[n > 2, n!/2, 1]; Array[a, 21, 0]
    a[n_]:= If[n<3, 1, n*a[n-1]]; Array[a, 21, 0]; (* Robert G. Wilson v, Apr 16 2011 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[(2-x^2)/(2-2x), {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Sinh[-Log[1-x]], {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    Numerator[Range[0, 20]!/2] (* Eric W. Weisstein, May 21 2017 *)
    Table[GroupOrder[AlternatingGroup[n]], {n, 0, 20}] (* Eric W. Weisstein, May 21 2017 *)
  • PARI
    {a(n) = if( n<2, n>=0, n!/2)};
    
  • PARI
    a(n)=polcoeff(1+x*sum(m=0,n,m^m*x^m/(1+m*x+x*O(x^n))^m),n) \\ Paul D. Hanna
    
  • PARI
    A001710=n->n!\2+(n<2) \\ M. F. Hasler, Dec 01 2013
    
  • Python
    from math import factorial
    def A001710(n): return factorial(n)>>1 if n > 1 else 1 # Chai Wah Wu, Feb 14 2023
    
  • SageMath
    def A001710(n): return (factorial(n) +int(n<2))//2
    [A001710(n) for n in range(31)] # G. C. Greubel, Sep 28 2024
  • Scheme
    ;; Using memoization-macro definec for which an implementation can be found in http://oeis.org/wiki/Memoization
    (definec (A001710 n) (cond ((<= n 2) 1) (else (* n (A001710 (- n 1))))))
    ;; Antti Karttunen, Dec 19 2015
    

Formula

a(n) = numerator(n!/2) and A141044(n) = denominator(n!/2).
D-finite with recurrence: a(0) = a(1) = a(2) = 1; a(n) = n*a(n-1) for n>2. - Chad Brewbaker, Jan 31 2003 [Corrected by N. J. A. Sloane, Jul 25 2008]
a(0) = 0, a(1) = 1; a(n) = Sum_{k=1..n-1} k*a(k). - Amarnath Murthy, Oct 29 2002
Stirling transform of a(n+1) = [1, 3, 12, 160, ...] is A083410(n) = [1, 4, 22, 154, ...]. - Michael Somos, Mar 04 2004
First Eulerian transform of A000027. See A000142 for definition of FET. - Ross La Haye, Feb 14 2005
From Paul Barry, Apr 18 2005: (Start)
a(n) = 0^n + Sum_{k=0..n} (-1)^(n-k-1)*T(n-1, k)*cos(Pi*(n-k-1)/2)^2.
T(n,k) = abs(A008276(n, k)). (End)
E.g.f.: (2 - x^2)/(2 - 2*x).
E.g.f. of a(n+2), n>=0, is 1/(1-x)^3.
E.g.f.: 1 + sinh(log(1/(1-x))). - Geoffrey Critzer, Dec 12 2010
a(n+1) = (-1)^n * A136656(n,1), n>=1.
a(n) = n!/2 for n>=2 (proof from the e.g.f). - Wolfdieter Lang, Apr 30 2010
a(n) = (n-2)! * t(n-1), n>1, where t(n) is the n-th triangular number (A000217). - Gary Detlefs, May 21 2010
a(n) = ( A000254(n) - 2* A001711(n-3) )/3, n>2. - Gary Detlefs, May 24 2010
O.g.f.: 1 + x*Sum_{n>=0} n^n*x^n/(1 + n*x)^n. - Paul D. Hanna, Sep 13 2011
a(n) = if n < 2 then 1, otherwise Pochhammer(n,n)/binomial(2*n,n). - Peter Luschny, Nov 07 2011
a(n) = Sum_{k=0..floor(n/2)} s(n,n-2*k) where s(n,k) are Stirling number of the first kind, A048994. - Mircea Merca, Apr 07 2012
a(n-1), n>=3, is M_1([2,1^(n-2)])/n = (n-1)!/2, with the M_1 multinomial numbers for the given n-1 part partition of n. See the second to last entry in line n>=3 of A036038, and the above necklace comment by W. Lang. - Wolfdieter Lang, Jun 26 2012
G.f.: A(x) = 1 + x + x^2/(G(0)-2*x) where G(k) = 1 - (k+1)*x/(1 - x*(k+3)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2012.
G.f.: 1 + x + (Q(0)-1)*x^2/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+2)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + (x*Q(x)-x^2)/(2*(sqrt(x)+x)), where Q(x) = Sum_{n>=0} (n+1)!*x^n*sqrt(x)*(sqrt(x) + x*(n+2)). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x/2 + (Q(0)-1)*x/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+1)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: 1+x + x^2*W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
From Antti Karttunen, Dec 19 2015: (Start)
a(0)=a(1)=1; after which, for even n: a(n) = (n/2) * (n-1)!, and for odd n: a(n) = (n-1)/2 * ((n-1)! + (n-2)!). [The formula was empirically found after viewing these numbers in factorial base, A007623, and is easily proved by considering formulas from Lang (Apr 30 2010) and Detlefs (May 21 2010) shown above.]
For n >= 1, a(2*n+1) = a(2*n) + A153880(a(2*n)). [Follows from above.] (End)
Inverse Stirling transform of a(n) is (-1)^(n-1)*A009566(n). - Anton Zakharov, Aug 07 2016
a(n) ~ sqrt(Pi/2)*n^(n+1/2)/exp(n). - Ilya Gutkovskiy, Aug 07 2016
a(n) = A006595(n-1)*n/A000124(n) for n>=2. - Anton Zakharov, Aug 23 2016
a(n) = A001563(n-1) - A001286(n-1) for n>=2. - Anton Zakharov, Sep 23 2016
From Peter Bala, May 24 2017: (Start)
The o.g.f. A(x) satisfies the Riccati equation x^2*A'(x) + (x - 1)*A(x) + 1 - x^2 = 0.
G.f.: A(x) = 1 + x + x^2/(1 - 3*x/(1 - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - ... - (n + 2)*x/(1 - n*x/(1 - ... ))))))))) (apply Stokes, 1982).
A(x) = 1 + x + x^2/(1 - 2*x - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - 5*x/(1 - ... - n*x/(1 - (n+2)*x/(1 - ... ))))))))). (End)
H(x) = (1 - (1 + x)^(-2)) / 2 = x - 3*x^2/2! + 12*x^3/3! - ..., an e.g.f. for the signed sequence here (n!/2!), ignoring the first two terms, is the compositional inverse of G(x) = (1 - 2*x)^(-1/2) - 1 = x + 3*x^2/2! + 15*x^3/3! + ..., an e.g.f. for A001147. Cf. A094638. H(x) is the e.g.f. for the sequence (-1)^m * m!/2 for m = 2,3,4,... . Cf. A001715 for n!/3! and A001720 for n!/4!. Cf. columns of A094587, A173333, and A213936 and rows of A138533. - Tom Copeland, Dec 27 2019
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 2*(e-1).
Sum_{n>=0} (-1)^n/a(n) = 2/e. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Aug 20 2001
Further terms from Simone Severini, Oct 15 2004

A001563 a(n) = n*n! = (n+1)! - n!.

Original entry on oeis.org

0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 0

Views

Author

Keywords

Comments

A similar sequence, with the initial 0 replaced by 1, namely A094258, is defined by the recurrence a(2) = 1, a(n) = a(n-1)*(n-1)^2/(n-2). - Andrey Ryshevich (ryshevich(AT)notes.idlab.net), May 21 2002
Denominators in power series expansion of E_1(x) + gamma + log(x), x > 0. - Michael Somos, Dec 11 2002
If all the permutations of any length k are arranged in lexicographic order, the n-th term in this sequence (n <= k) gives the index of the permutation that rotates the last n elements one position to the right. E.g., there are 24 permutations of 4 items. In lexicographic order they are (0,1,2,3), (0,1,3,2), (0,2,1,3), ... (3,2,0,1), (3,2,1,0). Permutation 0 is (0,1,2,3), which rotates the last 1 element, i.e., it makes no change. Permutation 1 is (0,1,3,2), which rotates the last 2 elements. Permutation 4 is (0,3,1,2), which rotates the last 3 elements. Permutation 18 is (3,0,1,2), which rotates the last 4 elements. The same numbers work for permutations of any length. - Henry H. Rich (glasss(AT)bellsouth.net), Sep 27 2003
Stirling transform of a(n+1)=[4,18,96,600,...] is A083140(n+1)=[4,22,154,...]. - Michael Somos, Mar 04 2004
From Michael Somos, Apr 27 2012: (Start)
Stirling transform of a(n)=[1,4,18,96,...] is A069321(n)=[1,5,31,233,...].
Partial sums of a(n)=[0,1,4,18,...] is A033312(n+1)=[0,1,5,23,...].
Binomial transform of A000166(n+1)=[0,1,2,9,...] is a(n)=[0,1,4,18,...].
Binomial transform of A000255(n+1)=[1,3,11,53,...] is a(n+1)=[1,4,18,96,...].
Binomial transform of a(n)=[0,1,4,18,...] is A093964(n)=[0,1,6,33,...].
Partial sums of A001564(n)=[1,3,4,14,...] is a(n+1)=[1,4,18,96,...].
(End)
Number of small descents in all permutations of [n+1]. A small descent in a permutation (x_1,x_2,...,x_n) is a position i such that x_i - x_(i+1) =1. Example: a(2)=4 because there are 4 small descents in the permutations 123, 13\2, 2\13, 231, 312, 3\2\1 of {1,2,3} (shown by \). a(n)=Sum_{k=0..n-1}k*A123513(n,k). - Emeric Deutsch, Oct 02 2006
Equivalently, in the notation of David, Kendall and Barton, p. 263, this is the total number of consecutive ascending pairs in all permutations on n+1 letters (cf. A010027). - N. J. A. Sloane, Apr 12 2014
a(n-1) is the number of permutations of n in which n is not fixed; equivalently, the number of permutations of the positive integers in which n is the largest element that is not fixed. - Franklin T. Adams-Watters, Nov 29 2006
Number of factors in a determinant when writing down all multiplication permutations. - Mats Granvik, Sep 12 2008
a(n) is also the sum of the positions of the left-to-right maxima in all permutations of [n]. Example: a(3)=18 because the positions of the left-to-right maxima in the permutations 123,132,213,231,312 and 321 of [3] are 123, 12, 13, 12, 1 and 1, respectively and 1+2+3+1+2+1+3+1+2+1+1=18. - Emeric Deutsch, Sep 21 2008
Equals eigensequence of triangle A002024 ("n appears n times"). - Gary W. Adamson, Dec 29 2008
Preface the series with another 1: (1, 1, 4, 18, ...); then the next term = dot product of the latter with "n occurs n times". Example: 96 = (1, 1, 4, 8) dot (4, 4, 4, 4) = (4 + 4 + 16 + 72). - Gary W. Adamson, Apr 17 2009
Row lengths of the triangle in A030298. - Reinhard Zumkeller, Mar 29 2012
a(n) is also the number of minimum (n-)distinguishing labelings of the star graph S_{n+1} on n+1 nodes. - Eric W. Weisstein, Oct 14 2014
When the numbers denote finite permutations (as row numbers of A055089) these are the circular shifts to the right, i.e., a(n) is the permutation with the cycle notation (0 1 ... n-1 n). Compare array A051683 for circular shifts to the right in a broader sense. Compare sequence A007489 for circular shifts to the left. - Tilman Piesk, Apr 29 2017
a(n-1) is the number of permutations on n elements with no cycles of length n. - Dennis P. Walsh, Oct 02 2017
The number of pandigital numbers in base n+1, such that each digit appears exactly once. For example, there are a(9) = 9*9! = 3265920 pandigital numbers in base 10 (A050278). - Amiram Eldar, Apr 13 2020

Examples

			E_1(x) + gamma + log(x) = x/1 - x^2/4 + x^3/18 - x^4/96 + ..., x > 0. - _Michael Somos_, Dec 11 2002
G.f. = x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 4320*x^6 + 35280*x^7 + 322560*x^8 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 218.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 336.
  • F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 37, equation 37:6:1 at page 354.

Crossrefs

Cf. A163931 (E(x,m,n)), A002775 (n^2*n!), A091363 (n^3*n!), A091364 (n^4*n!).
Cf. sequences with formula (n + k)*n! listed in A282466.
Row sums of A185105, A322383, A322384, A094485.

Programs

  • GAP
    List([0..20], n-> n*Factorial(n) ); # G. C. Greubel, Dec 30 2019
  • Haskell
    a001563 n = a001563_list !! n
    a001563_list = zipWith (-) (tail a000142_list) a000142_list
    -- Reinhard Zumkeller, Aug 05 2013
    
  • Magma
    [Factorial(n+1)-Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 08 2014
    
  • Maple
    A001563 := n->n*n!;
  • Mathematica
    Table[n!n,{n,0,25}] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n * n!)} /* Michael Somos, Dec 11 2002 */
    
  • Sage
    [n*factorial(n) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

From Michael Somos, Dec 11 2002: (Start)
E.g.f.: x / (1 - x)^2.
a(n) = -A021009(n, 1), n >= 0. (End)
The coefficient of y^(n-1) in expansion of (y+n!)^n, n >= 1, gives the sequence 1, 4, 18, 96, 600, 4320, 35280, ... - Artur Jasinski, Oct 22 2007
Integral representation as n-th moment of a function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*(x*(x-1)*exp(-x)) dx, for n>=0. This representation may not be unique. - Karol A. Penson, Sep 27 2001
a(0)=0, a(n) = n*a(n-1) + n!. - Benoit Cloitre, Feb 16 2003
a(0) = 0, a(n) = (n - 1) * (1 + Sum_{i=1..n-1} a(i)) for i > 0. - Gerald McGarvey, Jun 11 2004
Arises in the denominators of the following identities: Sum_{n>=1} 1/(n*(n+1)*(n+2)) = 1/4, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)) = 1/18, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)*(n+4)) = 1/96, etc. The general expression is Sum_{n>=k} 1/C(n, k) = k/(k-1). - Dick Boland, Jun 06 2005 [And the general expression implies that Sum_{n>=1} 1/(n*(n+1)*...*(n+k-1)) = (Sum_{n>=k} 1/C(n, k))/k! = 1/((k-1)*(k-1)!) = 1/a(k-1), k >= 2. - Jianing Song, May 07 2023]
a(n) = Sum_{m=2..n+1} |Stirling1(n+1, m)|, n >= 1 and a(0):=0, where Stirling1(n, m) = A048994(n, m), n >= m = 0.
a(n) = 1/(Sum_{k>=0} k!/(n+k+1)!), n > 0. - Vladeta Jovovic, Sep 13 2006
a(n) = Sum_{k=1..n(n+1)/2} k*A143946(n,k). - Emeric Deutsch, Sep 21 2008
The reciprocals of a(n) are the lead coefficients in the factored form of the polynomials obtained by summing the binomial coefficients with a fixed lower term up to n as the upper term, divided by the term index, for n >= 1: Sum_{k = i..n} C(k, i)/k = (1/a(n))*n*(n-1)*..*(n-i+1). The first few such polynomials are Sum_{k = 1..n} C(k, 1)/k = (1/1)*n, Sum_{k = 2..n} C(k, 2)/k = (1/4)*n*(n-1), Sum_{k = 3..n} C(k, 3)/k = (1/18)*n*(n-1)*(n-2), Sum_{k = 4..n} C(k, 4)/k = (1/96)*n*(n-1)*(n-2)*(n-3), etc. - Peter Breznay (breznayp(AT)uwgb.edu), Sep 28 2008
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) then a(n) = (-1)^(n-1)*f(n,1,-2), (n >= 1). - Milan Janjic, Mar 01 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.796599599... [Jolley eq. 289]
G.f.: 2*x*Q(0), where Q(k) = 1 - 1/(k+2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3)-1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: W(0)*(1-sqrt(x)) - 1, where W(k) = 1 + sqrt(x)/( 1 - sqrt(x)*(k+2)/(sqrt(x)*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 18 2013
G.f.: T(0)/x - 1/x, where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013
G.f.: Q(0)*(1-x)/x - 1/x, where Q(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
D-finite with recurrence: a(n) +(-n-2)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, Jan 14 2020
a(n) = (-1)^(n+1)*(n+1)*Sum_{k=1..n} A094485(n,k)*Bernoulli(k). The inverse of the Worpitzky representation of the Bernoulli numbers. - Peter Luschny, May 28 2020
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n>=1} 1/a(n) = Ei(1) - gamma = A229837.
Sum_{n>=1} (-1)^(n+1)/a(n) = gamma - Ei(-1) = A239069. (End)
a(n) = Gamma(n)*A000290(n) for n > 0. - Jacob Szlachetka, Jan 01 2022

A006252 Expansion of e.g.f. 1/(1 - log(1+x)).

Original entry on oeis.org

1, 1, 1, 2, 4, 14, 38, 216, 600, 6240, 9552, 319296, -519312, 28108560, -176474352, 3998454144, -43985078784, 837126163584, -12437000028288, 237195036797184, -4235955315745536, 85886259443020800, -1746536474655406080, 38320721602434017280, -864056965711935974400
Offset: 0

Views

Author

Keywords

Comments

From Michael Somos, Mar 04 2004: (Start)
Stirling transform of a(n+1)=[1,2,4,14,38,...] is A000255(n)=[1,3,11,53,309,...].
Stirling transform of 2*a(n)=[2,2,4,8,28,...] is A052849(n)=[2,4,12,48,240,...].
Stirling transform of a(n)=[1,1,2,4,14,38,216,...] is A000142(n)=[1,2,6,24,120,...].
Stirling transform of a(n-1)=[1,1,1,2,4,14,38,...] is A000522(n-1)=[1,2,5,16,65,...].
Stirling transform of a(n-1)=[0,1,1,2,4,14,38,...] is A007526(n-1)=[0,1,4,15,64,...].
(End)
For n > 0: a(n) = sum of n-th row in triangle A048594. - Reinhard Zumkeller, Mar 02 2014
Coefficients in a factorial series representation of the exponential integral: exp(z)*E_1(z) = Sum_{n >= 0} (-1)^n*a(n)/(z)n, where (z)_n denotes the rising factorial z*(z + 1)*...*(z + n) and E_1(z) = Integrate{t = z..inf} exp(-t)/t dt. See Weninger, equation 6.4. - Peter Bala, Feb 12 2019

References

  • G. Pólya, Induction and Analogy in Mathematics. Princeton Univ. Press, 1954, p. 9.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A320080.
Cf. A007840.

Programs

  • Haskell
    a006252 0 = 1
    a006252 n = sum $ a048594_row n  -- Reinhard Zumkeller, Mar 02 2014
    
  • Mathematica
    With[{nn=30},CoefficientList[Series[1/(1-Log[1+x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2016 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(1/(1-log(1+x+x*O(x^n))),n))
    
  • PARI
    {a(n)=local(CF=1+x*O(x^n)); for(k=0, n-1, CF=1/((n-k+1)-(n-k)*x+(n-k+1)^2*x*CF)); n!*polcoeff(1+x/(1-x+x*CF), n, x)} /* Paul D. Hanna, Dec 31 2011 */
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v; \\ Seiichi Manyama, May 22 2022
    
  • Sage
    def A006252_list(len):
        f, R, C = 1, [1], [1]+[0]*len
        for n in (1..len):
            f *= n
            for k in range(n, 0, -1):
                C[k] = -C[k-1]*((k-1)/(k) if k>1 else 1)
            C[0] = -sum(C[k] for k in (1..n))
            R.append(C[0]*f)
        return R
    print(A006252_list(24)) # Peter Luschny, Feb 21 2016

Formula

a(n) = Sum_{k=0..n} k!*stirling1(n, k). - Vladeta Jovovic, Sep 08 2002
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator exp(-x)*d/dx. Row sums of A048594. Cf. A007840. - Peter Bala, Nov 25 2011
E.g.f.: 1/(1-log(1+x)) = 1 + x/(1-x + x/(2-x + 4*x/(3-2*x + 9*x/(4-3*x + 16*x/(5-4*x + 25*x/(6-5*x +...)))))), a continued fraction. - Paul D. Hanna, Dec 31 2011
a(n)/n! ~ -(-1)^n / (n * (log(n))^2) * (1 - 2*(1 + gamma)/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 01 2018
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, May 22 2022

A001048 a(n) = n! + (n-1)!.

Original entry on oeis.org

2, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
Offset: 1

Views

Author

Keywords

Comments

Number of {12, 12*, 1*2, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.
a(n) is the hook product of the shape (n, 1). - Emeric Deutsch, May 13 2004
From Jaume Oliver Lafont, Dec 01 2009: (Start)
(1+(x-1)*exp(x))/x = Sum_{k >= 1} x^k/a(k).
Setting x = 1 yields Sum_{k >= 1} 1/a(k) = 1. [Jolley eq 302] (End)
With regard to the comment by Jaume Oliver Lafont: P(n) = 1/a(n) is a probability distribution, with all values given as unit fractions. This distribution is connected to the Irwin-Hall distribution: Consider successively drawn random numbers, uniformly distributed in [0,1]. 1/a(n) is the probability for the sum of the random numbers exceeding 1 exactly with the (n+1)-th summand. P(n) has mean e-1 and variance 3e-e^2. From this we get e as the expected number of summands. - Manfred Boergens, May 20 2024
For n >= 2, a(n) is the size of the largest conjugacy class of the symmetric group on n + 1 letters. Equivalently, the maximum entry in each row of A036039. - Geoffrey Critzer, May 19 2013
In factorial base representation (A007623) the terms are written as: 10, 11, 110, 1100, 11000, 110000, ... From a(2) = 3 = "11" onward each term begins always with two 1's, followed by n-2 zeros. - Antti Karttunen, Sep 24 2016
e is approximately a(n)/A000255(n-1) for large n. - Dale Gerdemann, Jul 26 2019
a(n) is the number of permutations of [n+1] in which all the elements of [n] are cycle-mates, that is, 1,..,n are all in the same cycle. This result is readily shown after noting that the elements of [n] can be members of a n-cycle or an (n+1)-cycle. Hence a(n)=(n-1)!+n!. See an example below. - Dennis P. Walsh, May 24 2020

Examples

			For n=3, a(3) counts the 8 permutations of [4] with 1,2, and 3 all in the same cycle, namely, (1 2 3)(4), (1 3 2)(4), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 2 4 3), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial terms, same as A059171.
Equals the square root of the first right hand column of A162990. - Johannes W. Meijer, Jul 21 2009
From a(2)=3 onward the second topmost row of arrays A276588 and A276955.
Cf. sequences with formula (n + k)*n! listed in A282466, A334397.

Programs

Formula

a(n) = (n+1)*(n-1)!.
E.g.f.: x/(1-x) - log(1-x). - Ralf Stephan, Apr 11 2004
The sequence 1, 3, 8, ... has g.f. (1+x-x^2)/(1-x)^2 and a(n) = n!(n + 2 - 0^n) = n!A065475(n) (offset 0). - Paul Barry, May 14 2004
a(n) = (n+1)!/n. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003
Factorial expansion of 1: 1 = sum_{n > 0} 1/a(n) [Jolley eq 302]. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003
a(1) = 2, a(2) = 3, D-finite recurrence a(n) = (n^2 - n - 2)*a(n-2) for n >= 3. - Jaume Oliver Lafont, Dec 01 2009
a(n) = ((n+2)A052649(n) - A052649(n+1))/2. - Gary Detlefs, Dec 16 2009
G.f.: U(0) where U(k) = 1 + (k+1)/(1 - x/(x + 1/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 25 2012
G.f.: 2*(1+x)/x/G(0) - 1/x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
a(n) = (n-1)*a(n-1) + (n-1)!. - Bruno Berselli, Feb 22 2017
a(1)=2, a(2)=3, D-finite recurrence a(n) = (n-1)*a(n-1) + (n-2)*a(n-2). - Dale Gerdemann, Jul 26 2019
a(n) = 2*A000255(n-1) + A096654(n-2). - Dale Gerdemann, Jul 26 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2/e (A334397). - Amiram Eldar, Jan 13 2021

Extensions

More terms from James Sellers, Sep 19 2000

A010027 Triangle read by rows: T(n,k) is the number of permutations of [n] having k consecutive ascending pairs (0 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 9, 11, 1, 4, 18, 44, 53, 1, 5, 30, 110, 265, 309, 1, 6, 45, 220, 795, 1854, 2119, 1, 7, 63, 385, 1855, 6489, 14833, 16687, 1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329, 1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457, 1
Offset: 1

Views

Author

Keywords

Comments

A "consecutive ascending pair" in a permutation p_1, p_2, ..., p_n is a pair p_i, p_{i+1} = p_i + 1.
From Emeric Deutsch, May 15 2010: (Start)
The same triangle, but with rows indexed differently, also arises as follows: U(n,k) = number of permutations of [n] having k blocks (1 <= k <= n), where a block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions. For example, the permutation 5412367 has 4 blocks: 5, 4, 123, and 67.
When seen as coefficients of polynomials with decreasing exponents: evaluations are A001339 (x=2), A081923 (x=3), A081924 (x=4), A087981 (x=-1).
The sum of the entries in row n is n!.
U(n,n) = A000255(n-1) = d(n-1) + d(n), U(n,n-1)=d(n), where d(j)=A000166(j) (derangement numbers). (End)
This is essentially the reversal of the exponential Riordan array [exp(-x)/(1-x)^2,x] (cf. A123513). - Paul Barry, Jun 17 2010
U(n-1, k-2) * n*(n-1)/k = number of permutations of [n] with k elements not fixed by the permutation. - Michael Somos, Aug 19 2018

Examples

			Triangle starts:
  1;
  1, 1;
  1, 2,   3;
  1, 3,   9,  11;
  1, 4,  18,  44,   53;
  1, 5,  30, 110,  265,   309;
  1, 6,  45, 220,  795,  1854,   2119;
  1, 7,  63, 385, 1855,  6489,  14833,  16687;
  1, 8,  84, 616, 3710, 17304,  59332, 133496,  148329;
  1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457;
  ...
For n=3, the permutations 123, 132, 213, 231, 312, 321 have respectively 2,0,0,1,1,0 consecutive ascending pairs, so row 3 of the triangle is 3,2,1. - _N. J. A. Sloane_, Apr 12 2014
In the alternative definition, T(4,2)=3 because we have 234.1, 4.123, and 34.12 (the blocks are separated by dots). - _Emeric Deutsch_, May 16 2010
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

Crossrefs

Diagonals, reading from the right-hand edge: A000255, A000166, A000274, A000313, A001260, A001261. A045943 is another diagonal.
Cf. A123513 (mirror image).
A289632 is the analogous triangle with the additional restriction that all consecutive pairs must be isolated, i.e., must not be back-to-back to form longer consecutive sequences.

Programs

  • Maple
    U := proc (n, k) options operator, arrow: factorial(k+1)*binomial(n, k)*(sum((-1)^i/factorial(i), i = 0 .. k+1))/n end proc: for n to 10 do seq(U(n, k), k = 1 .. n) end do; # yields sequence in triangular form; # Emeric Deutsch, May 15 2010
  • Mathematica
    t[n_, k_] := Binomial[n, k]*Subfactorial[k+1]/n; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Emeric Deutsch *)
    T[0,0]:=0; T[1,1]:=1; T[n_,n_]:=T[n,n]=(n-1)T[n-1,n-1]+(n-2)T[n-2,n-2]; T[n_,k_]:=T[n,k]=T[n-1,k] (n-1)/(n-k); Flatten@Table[T[n,k],{n,1,10},{k,1,n}] (* Oliver Seipel, Dec 01 2024 *)

Formula

E.g.f.: exp(x*(y-1))/(1-x)^2. - Vladeta Jovovic, Jan 03 2003
From Emeric Deutsch, May 15 2010: (Start)
U(n,k) = binomial(n-1,k-1)*(k-1)!*Sum_{j=0..k-1} (-1)^(k-j-1)*(j+1)/(k-j-1)! (1 <= k <= n).
U(n,k) = (k+1)!*binomial(n,k)*(1/n)*Sum_{i=0..k+1} (-1)^i/i!.
U(n,k) = (1/n)*binomial(n,k)*d(k+1), where d(j)=A000166(j) (derangement numbers). (End)

Extensions

More terms from Vladeta Jovovic, Jan 03 2003
Original definition from David, Kendall and Barton restored by N. J. A. Sloane, Apr 12 2014

A000153 a(n) = n*a(n-1) + (n-2)*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 7, 32, 181, 1214, 9403, 82508, 808393, 8743994, 103459471, 1328953592, 18414450877, 273749755382, 4345634192131, 73362643649444, 1312349454922513, 24796092486996338, 493435697986613143, 10315043624498196944
Offset: 0

Views

Author

Keywords

Comments

With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=2 and n zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, pp. 201-202. - Jaap Spies, Dec 12 2003
Starting (1, 2, 7, 32, ...) = inverse binomial transform of A001710 starting (1, 3, 12, 60, 360, 2520, ...). - Gary W. Adamson, Dec 25 2008
This sequence appears in Euler's analysis of the divergent series 1 - 1! + 2! - 3! + 4! ..., see Sandifer. For information about this and related divergent series see A163940. - Johannes W. Meijer, Oct 16 2009
a(n+1)=:b(n), n>=1, enumerates the ways to distribute n beads labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and two indistinguishable, ordered, fixed cords, each allowed to have any number of beads. Beadless necklaces as well as beadless cords contribute each a factor 1 in the counting, e.g., b(0):= 1*1 = 1. See A000255 for the description of a fixed cord with beads.
This produces for b(n) the exponential (aka binomial) convolution of the subfactorial sequence {A000166(n)} and {(n+1)!}={A000042(n+1)}. This follows from the general problem with only k indistinguishable, ordered, fixed cords which has e.g.f. 1/(1-x)^k, and the pure necklace problem (no necklaces with one bead allowed) with e.g.f. for the subfactorials. Therefore also the recurrence b(n) = (n+1)*b(n-1) + (n-1)*b(n-2) with b(-1)=0 and b(0)=1 holds.
This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 02 2010
a(n) is a function of the subfactorials..sf... A000166(n) a(n) = (n*sf(n+1) - (n+1)*sf(n))/(2*n*(n-1)*(n+1)),n>1, with offset 1. - Gary Detlefs, Nov 06 2010
For even k the sequence a(n) (mod k) is purely periodic with exact period a divisor of k, while for odd k the sequence a(n) (mod k) is purely periodic with exact period a divisor of 2*k. See A047974. - Peter Bala, Dec 04 2017

Examples

			Necklaces and 2 cords problem. For n=4 one considers the following weak 2 part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively sf(4)*1,binomial(4,3)*sf(3)*c2(1), (binomial(4,2)*sf(2))*c2(2), and 1*c2(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there) and the c2(n):=(n+1)! numbers for the pure 2 cord problem (see the above given remark on the e.g.f. for the k cords problem; here for k=2: 1/(1-x)^2). This adds up as 9 + 4*2*2 + (6*1)*6 + 120 = 181 = b(4) = A000153(5). - _Wolfdieter Lang_, Jun 02 2010
G.f. = x + 2*x^2 + 7*x^3 + 32*x^4 + 181*x^5 + 1214*x^6 + 9403*x^7 + 82508*x^8 + ...
		

References

  • Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001710. - Gary W. Adamson, Dec 25 2008
a(n) = A086764(n + 1, 2). A000255 (necklaces with one cord). - Wolfdieter Lang, Jun 02 2010

Programs

  • Haskell
    a000153 n = a000153_list !! n
    a000153_list = 0 : 1 : zipWith (+)
       (zipWith (*) [0..] a000153_list) (zipWith (*) [2..] $ tail a000153_list)
    -- Reinhard Zumkeller, Mar 05 2012
    
  • Maple
    f:= n-> floor(((n+1)!+1)/e): g:=n-> (n*f(n+1)-(n+1)*f(n))/(2*n*(n-1)*(n+1)):seq( g(n), n=2..20); # Gary Detlefs, Nov 06 2010
    a := n -> `if`(n=0,0,hypergeom([3,-n+1],[],1))*(-1)^(n+1); seq(simplify(a(n)), n=0..20); # Peter Luschny, Sep 20 2014
    0, seq(simplify(KummerU(-n + 1, -n - 1, -1)), n = 1..20); # Peter Luschny, May 10 2022
  • Mathematica
    nn = 20; Prepend[Range[0, nn]!CoefficientList[Series[Exp[-x]/(1 - x)^3, {x, 0, nn}], x], 0]  (* Geoffrey Critzer, Oct 28 2012 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n a[n-1]+(n-2)a[n-2]},a,{n,20}] (* Harvey P. Dale, May 08 2013 *)
    a[ n_] := If[ n < 1, 0, (n - 1)! SeriesCoefficient[ Exp[ -x] / (1 - x)^3, {x, 0, n - 1}]]; (* Michael Somos, Jun 01 2013 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1, 3}, {}, x / (x + 1)] x / (x + 1), {x, 0, n}]; (* Michael Somos, Jun 01 2013 *)
  • PARI
    x='x+O('x^66); concat([0],Vec(x*serlaplace(exp(-x)/(1-x)^3)))  \\ Joerg Arndt, May 08 2013
  • Sage
    it = sloane.A000153.gen(0,1,2); [next(it) for i in range(21)] # Zerinvary Lajos, May 15 2009
    

Formula

E.g.f.: ( 1 - x )^(-3)*exp(-x), for offset 1.
a(n) = round(1/2*(n^2 + 3*n + 1)*n!/exp(1))/n , n>=1. - Simon Plouffe, Mar 1993
a(n) = (1/2) * A055790(n). - Gary Detlefs, Jul 12 2010
G.f.: hypergeom([1,3],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
G.f.: (1+x)^2/(2*x*Q(0)) - 1/(2*x) - 1, where Q(k) = 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: -1/G(0), where G(k) = 1 + 1/(1 - (1+x)/(1 + x*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 01 2013
G.f.: x/Q(0), where Q(k) = 1 - 2*x*(k+1) - x^2*(k+1)*(k+3)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2013
a(n) = hypergeom([3, -n+1], [], 1)*(-1)^(n+1) for n>=1. - Peter Luschny, Sep 20 2014
a(n) = KummerU(-n + 1, -n - 1, -1) for n >= 1. - Peter Luschny, May 10 2022
a(n) = (n^2 + 3*n + 1)*Gamma(n,-1)/(2*exp(1)) + (1 + n/2)*(-1)^n for n >= 1. - Martin Clever, Apr 06 2023

A023052 Perfect Digital Invariants: numbers that are the sum of some fixed power of their digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, 54748, 92727, 93084, 194979, 548834, 1741725, 4210818, 9800817, 9926315, 14459929, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153
Offset: 1

Views

Author

Keywords

Comments

The old name was "Powerful numbers, definition (3)". Cf. A001694, A007532. - N. J. A. Sloane, Jan 16 2022.
Randle has suggested that these numbers be called "powerful", but this usually refers to a distinct property related to prime factorization, cf. A001694, A036966, A005934.
Numbers m such that m = Sum_{i=1..k} d(i)^s for some s, where d(1..k) are the decimal digits of m.
Superset of A005188 (Plusperfect, narcissistic or Armstrong numbers: s=k), A046197 (s=3), A052455 (s=4), A052464 (s=5), A124068 (s=6, 7), A124069 (s=8). - R. J. Mathar, Jun 15 2009, Jun 22 2009

Examples

			153 = 1^3 + 5^3 + 3^3, 4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7.
		

Crossrefs

Cf. A001694 (powerful numbers: p|n => p^2|n), A005934 (highly powerful numbers).
Cf. A005188 (here the power must be equal to the number of digits).
In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162225 (base 6), A162228 (base 7), A162231 (base 8), A162234 (base 9).

Programs

  • Mathematica
    Select[Range[0, 10^5], Function[m, AnyTrue[Function[k, Total@ Map[Power[#, k] &, IntegerDigits@ m]] /@ Range@ 10, # == m &]]] (* Michael De Vlieger, Feb 08 2016, Version 10 *)
  • PARI
    is(n)=if(n<10, return(1)); my(d=digits(n),m=vecmax(d)); if(m<2, return(0)); for(k=3,logint(n,m), if(sum(i=1,#d,d[i]^k)==n, return(1))); 0 \\ Charles R Greathouse IV, Feb 06 2017
    
  • PARI
    select( is_A023052(n,b=10)={nn|| return(t==n))}, [0..10^5]) \\  M. F. Hasler, Nov 21 2019

Extensions

Computed to 10^50 by G. N. Gusev (GGN(AT)rm.yaroslavl.ru)
Computed to 10^74 by Xiaoqing Tang
A-number typo corrected by R. J. Mathar, Jun 22 2009
Computed to 10^105 by Joseph Myers
Cross-references edited by Joseph Myers, Jun 28 2009
Edited by M. F. Hasler, Nov 21 2019

A001909 a(n) = n*a(n-1) + (n-4)*a(n-2), a(2) = 0, a(3) = 1.

Original entry on oeis.org

0, 1, 4, 21, 134, 1001, 8544, 81901, 870274, 10146321, 128718044, 1764651461, 25992300894, 409295679481, 6860638482424, 121951698034461, 2291179503374234, 45361686034627361, 943892592746534964, 20592893110265899381, 470033715095287415734
Offset: 2

Views

Author

Keywords

Comments

With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=4 and n zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, pp. 201-202. - Jaap Spies, Dec 12 2003
a(n+3)=:b(n), n>=1, enumerates the ways to distribute n beads labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and four indistinguishable, ordered, fixed cords, each allowed to have any number of beads. Beadless necklaces as well as a beadless cords contribute each a factor 1 in the counting, e.g., b(0):= 1*1 =1. See A000255 for the description of a fixed cord with beads.
This produces for b(n) the exponential (aka binomial) convolution of the subfactorial sequence {A000166(n)} and the sequence {A001715 (n+3)}. See the necklaces and cords problem comment in A000153. Therefore also the recurrence b(n) = (n+3)*b(n-1) + (n-1)*b(n-2) with b(-1)=0 and b(0)=1 holds. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 02 2010

Examples

			Necklaces and four cords problem. For n=4 one considers the following weak 2 part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively sf(4)*1, binomial(4,3)*sf(3)*c4(1), (binomial(4,2)*sf(2))*c4(2), and 1*c4(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there) and the c4(n):=A001715(n+3) = (n+3)!/3! numbers for the pure 4 cord problem (see the remark on the e.g.f. for the k cords problem in A000153; here for k=4: 1/(1-x)^4). This adds up as 9 + 4*2*4 + (6*1)*20 + 840 = 1001 = b(4) = A001909(7). - _Wolfdieter Lang_, Jun 02 2010
x^3 + 4*x^4 + 21*x^5 + 134*x^6 + 1001*x^7 + 8544*x^8 + 81901*x^9 + 870274*x^10 + ...
		

References

  • Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000255, A000153, A000261, A001910, A090010, A055790, A090012-A090016, A086764. A000261 (necklaces and three cords).

Programs

  • Maple
    a := n -> `if`(n<4,n-2,hypergeom([5,-n+3],[],1))*(-1)^(n+1);
    seq(round(evalf(a(n), 100)), n=2..22); # Peter Luschny, Sep 20 2014
  • Mathematica
    t = {0, 1}; Do[AppendTo[t, n*t[[-1]] + (n-4)*t[[-2]]], {n, 4, 20}]; t (* T. D. Noe, Aug 17 2012 *)
    nxt[{n_,a_,b_}]:={n+1,b,b(n+1)+a(n-3)}; NestList[nxt,{3,0,1},20][[All,2]] (* Harvey P. Dale, Jul 17 2018 *)
  • PARI
    {a(n) = if( n<2, 0, -contfracpnqn( matrix(2, n, i, j, j - 4*(i==1))) [1, 1])} /* Michael Somos, Feb 19 2003 */

Formula

a(n) = A086764(n+1,4), n>=2.
E.g.f.: exp(-x) / (1 - x)^5 = Sum_{k>=0} a(k+3) * x^k / k!. - Michael Somos, Feb 19 2003
G.f.: x*hypergeom([1,5],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
a(n) = hypergeom([5,-n+3],[],1)*(-1)^(n+1) for n>=3. - Peter Luschny, Sep 20 2014

A047920 Triangular array formed from successive differences of factorial numbers.

Original entry on oeis.org

1, 1, 0, 2, 1, 1, 6, 4, 3, 2, 24, 18, 14, 11, 9, 120, 96, 78, 64, 53, 44, 720, 600, 504, 426, 362, 309, 265, 5040, 4320, 3720, 3216, 2790, 2428, 2119, 1854, 40320, 35280, 30960, 27240, 24024, 21234, 18806, 16687, 14833, 362880, 322560
Offset: 0

Views

Author

Keywords

Comments

Number of permutations of 1,2,...,k,n+1,n+2,...,2n-k that have no agreements with 1,...,n. For example, consider 1234 and 1256, then n=4 and k=2, so T(4,2)=14. Compare A000255 for the case k=1. - Jon Perry, Jan 23 2004
From Emeric Deutsch, Apr 21 2009: (Start)
T(n-1,k-1) is the number of non-derangements of {1,2,...,n} having smallest fixed point equal to k. Example: T(3,1)=4 because we have 4213, 4231, 3214, and 3241 (the permutations of {1,2,3,4} having smallest fixed equal to 2).
Row sums give the number of non-derangement permutations of {1,2,...,n} (A002467).
Mirror image of A068106.
Closely related to A134830, where each row has an extra term (see the Charalambides reference).
(End)
T(n,k) is the number of permutations of {1..n} that don't fix the points 1..k. - Robert FERREOL, Aug 04 2016

Examples

			Triangle begins:
    1;
    1,  0;
    2,  1,  1;
    6,  4,  3,  2;
   24, 18, 14, 11,  9;
  120, 96, 78, 64, 53, 44;
  ...
The left-hand column is the factorial numbers (A000142). The other numbers in the row are calculated by subtracting the numbers in the previous row. For example, row 4 is 6, 4, 3, 2, so row 5 is 4! = 24, 24 - 6 = 18, 18 - 4 = 14, 14 - 3 = 11, 11 - 2 = 9. - _Michael B. Porter_, Aug 05 2016
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 176, Table 5.3. [From Emeric Deutsch, Apr 21 2009]

Crossrefs

Columns give A000142, A001563, A001564, etc. Cf. A047922.
See A068106 for another version of this triangle.
Orthogonal columns: A000166, A000255, A055790. Main diagonal A033815.
Cf. A002467, A068106, A134830. - Emeric Deutsch, Apr 21 2009
Cf. A155521.
T(n+2,n) = 2*A000153(n+1). T(n+3,n) = 6*A000261(n+2). T(n+4,n) = 24*A001909(n+3). T(n+5, n) = 120*A001910(n+4). T(n+6,n) = 720*A176732(n).
T(n+7,n) = 5040*A176733(n) - Richard R. Forberg, Dec 29 2013

Programs

  • Haskell
    a047920 n k = a047920_tabl !! n !! k
    a047920_row n = a047920_tabl !! n
    a047920_tabl = map fst $ iterate e ([1], 1) where
       e (row, n) = (scanl (-) (n * head row) row, n + 1)
    -- Reinhard Zumkeller, Mar 05 2012
    
  • Maple
    d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k <= n then sum(binomial(n-k, j)*d[n-j], j = 0 .. n-k) else 0 end if end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jul 17 2009
    # second Maple program:
    T:= proc(n, k) option remember;
         `if`(k=0, n!, T(n, k-1)-T(n-1, k-1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Sep 01 2021
  • Mathematica
    t[n_, k_] = Sum[(-1)^j*Binomial[k, j]*(n-j)!, {j, 0, n}]; Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, May 17 2011, after Philippe Deléham *)
    T[n_, k_] := n! Hypergeometric1F1[-k, -n, -1];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten  (* Peter Luschny, Jul 28 2024 *)
  • PARI
    row(n) = vector(n+1, k, k--; sum(j=0, n, (-1)^j * binomial(k, j)*(n-j)!)); \\ Michel Marcus, Sep 04 2021

Formula

t(n, k) = t(n, k-1) - t(n-1, k-1) = t(n, k+1) - t(n-1, k) = n*t(n-1, k) + k*t(n-2, k-1) = (n-1)*t(n-1, k-1) + (k-1)*t(n-2, k-2) = A060475(n, k)*(n-k)!. - Henry Bottomley, Mar 16 2001
T(n, k) = Sum_{j>=0} (-1)^j * binomial(k, j)*(n-j)!. - Philippe Deléham, May 29 2005
T(n,k) = Sum_{j=0..n-k} d(n-j)*binomial(n-k,j), where d(i)=A000166(i) are the derangement numbers. - Emeric Deutsch, Jul 17 2009
Sum_{k=0..n} (k+1)*T(n,k) = A155521(n+1). - Emeric Deutsch, Jul 18 2009
T(n, k) = n!*hypergeom([-k], [-n], -1). - Peter Luschny, Jul 28 2024

A055790 a(n) = n*a(n-1) + (n-2)*a(n-2), a(0) = 0, a(1) = 2.

Original entry on oeis.org

0, 2, 4, 14, 64, 362, 2428, 18806, 165016, 1616786, 17487988, 206918942, 2657907184, 36828901754, 547499510764, 8691268384262, 146725287298888, 2624698909845026, 49592184973992676, 986871395973226286, 20630087248996393888, 451982388752415571082
Offset: 0

Views

Author

Henry Bottomley, Jul 13 2000

Keywords

Comments

With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=1 and n-1 zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p. 201-202. - Jaap Spies, Dec 12 2003
With a(0) = 1, number of degree-(n+1) permutations p such that p(i) != i+2 for each i=1,2,...,n+1. - Vladeta Jovovic, Jan 03 2003
Equivalently number of degree-(n+1) permutations p such that p(i) != i-2 for each i=1,2,...,n+1.
With a(0) = 1, number of degree-(n+1) permutations without fixed points between 2 and n. - Olivier Gérard, Jul 29 2016
Also column 3 of Euler's difference table (third diagonal in example of A068106). - Enrique Navarrete, Oct 31 2016
For n>=2, the number of circular permutations (in cycle notation) on [n+2] that avoid substrings (j,j+3), 1<=j<=n-1. For example, for n=2, the 4 circular permutations in S4 that avoid the substring {14} are (1234),(1243),(1324),(1342). Note that each of these circular permutations represent 4 permutations in one-line notation (see link 2017). - Enrique Navarrete, Feb 15 2017

Examples

			G.f. = 2*x + 4*x^2 + 14*x^3 + 64*x^4 + 362*x^5 + 2428*x^6 + ...
a(3) = 3*a(2)+(3-2)*a(1) = 12+2 = 14.
for n=1, the 2 permutations of [2] matches:
12, 21
for n=2, the 4 permutations of [3] without 2 as a fixed point are
132, 213, 231, 312.
for n=3, the 14 permutations of [4] without fixed point at 2 or 3 are
1324 1342 1423    2143 2314 2341 2413
3124 3142 3412 3421    4123 4312 4321
		

References

  • Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.

Crossrefs

Cf. A000166 (Derangements, permutations without fixed points ).
Cf. A000255 (permutations with p(i)!=i+1, same type of recurrence).
Apart from first term, appears in triangles A047920 or A068106 of differences of factorials, i.e. as third term of A000142, A001563, A001564, A001565 etc.

Programs

  • Haskell
    a055790 n = a055790_list !! n
    a055790_list = 0 : 2 : zipWith (+)
       (zipWith (*) [0..] a055790_list) (zipWith (*) [2..] $ tail a055790_list)
    -- Reinhard Zumkeller, Mar 05 2012
    
  • Maple
    f := proc(n) option remember; if n <= 1 then 2*n else n*f(n-1)+(n-2)*f(n-2); fi; end;
  • Mathematica
    a[0] = 0; a[1] = 2; a[n_] := a[n] = a[n] = n*a[n - 1] + (n - 2)*a[n - 2];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 14 2017 *)
    RecurrenceTable[{a[0]==0,a[1]==2,a[n]==n*a[n-1]+(n-2)a[n-2]},a,{n,30}] (* Harvey P. Dale, May 07 2018 *)
  • PARI
    a(n) = if(n==0, 0, round((n+3+1/n)*n!/exp(1))) \\ Felix Fröhlich, Jul 29 2016

Formula

For n > 0, a(n) = round[(n+3+1/n)*n!/e] = 2*A000153(n) = A000255(n-1)+A000255(n) = A000166(n-1)+2*A000166(n)+A000166(n+1).
G.f.: Q(0)*(1+x)/x - 1/x - 2, where Q(k)= 1 + (2*k + 1)*x/( (1+x) - 2*x*(1+x)*(k+1)/(2*x*(k+1) + (1+x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: (1+x)^2/x/Q(0) - 1/x - 2, where Q(k)= 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: 2*(1+x)/G(0) - 1-x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+1) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: W(0) -1, where W(k) = 1 - x*(k+2)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) ~ sqrt(Pi/2)*n^n*sqrt(n)*(12*n + 37)/(6*exp(n+1)). - Ilya Gutkovskiy, Jul 29 2016
0 = a(n)*(+a(n+1) + 3*a(n+2) - a(n+3)) + a(n+1)*(-a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) for n>=0. - Michael Somos, Nov 01 2016

Extensions

Comments corrected, new interpretation and examples by Olivier Gérard, Jul 29 2016
Previous Showing 11-20 of 119 results. Next