A033428 a(n) = 3*n^2.
0, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, 675, 768, 867, 972, 1083, 1200, 1323, 1452, 1587, 1728, 1875, 2028, 2187, 2352, 2523, 2700, 2883, 3072, 3267, 3468, 3675, 3888, 4107, 4332, 4563, 4800, 5043, 5292, 5547, 5808, 6075, 6348
Offset: 0
Examples
From _Ilya Gutkovskiy_, Apr 13 2016: (Start) Illustration of initial terms: . o . o o . o o . o o o o . o o o o o o . o o o o o o . o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o . n=1 n=2 n=3 n=4 (End)
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- Francesco Brenti and Paolo Sentinelli, Wachs permutations, Bruhat order and weak order, arXiv:2212.04932 [math.CO], 2022.
- A. J. C. Cunningham, Factorisation of N and N' = (x^n -+ y^n) / (x -+ y) [when x-y=n], Messenger Math., 54 (1924), 17-21. [Incomplete annotated scanned copy]
- Frank Ellermann, Illustration of binomial transforms.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Leo Tavares, Hexagonal illustration
- Eric Weisstein's World of Mathematics, Crown Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Eric Weisstein's World of Mathematics, Unit.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Haskell
a033428 = (* 3) . (^ 2) a033428_list = 0 : 3 : 12 : zipWith (+) a033428_list (map (* 3) $ tail $ zipWith (-) (tail a033428_list) a033428_list) -- Reinhard Zumkeller, Jul 11 2013
-
Magma
[3*n^2: n in [0..50]]; // Vincenzo Librandi, May 18 2015
-
Maple
seq(3*n^2, n=0..46); # Nathaniel Johnston, Jun 26 2011
-
Mathematica
3 Range[0, 50]^2 LinearRecurrence[{3, -3, 1}, {0, 3, 12}, 50] (* Harvey P. Dale, Feb 16 2013 *)
-
Maxima
makelist(3*n^2,n,0,30); /* Martin Ettl, Nov 12 2012 */
-
PARI
a(n)=3*n^2
-
Python
def a(n): return 3 * (n**2) # Torlach Rush, Aug 25 2022
Formula
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
G.f.: 3*x*(1+x)/(1-x)^3. - R. J. Mathar, Sep 09 2008
A214295(a(n)) = -1. - Reinhard Zumkeller, Jul 12 2012
a(n) = A215631(n,n) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) = A174709(6n+2). - Philippe Deléham, Mar 26 2013
a(n) = a(n-1) + 6*n - 3, with a(0)=0. - Jean-Bernard François, Oct 04 2013
E.g.f.: 3*x*(1 + x)*exp(x). - Ilya Gutkovskiy, Apr 13 2016
a(n) = t(3*n) - 3*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): A000217(3*n) - 3*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/18 (A086463).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/36. (End)
From Amiram Eldar, Feb 03 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sqrt(3)*sinh(Pi/sqrt(3))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(3)*sin(Pi/sqrt(3))/Pi. (End)
Extensions
Better description from N. J. A. Sloane, May 15 1998
Comments