cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 214 results. Next

A005117 Squarefree numbers: numbers that are not divisible by a square greater than 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Keywords

Comments

1 together with the numbers that are products of distinct primes.
Also smallest sequence with the property that a(m)*a(k) is never a square for k != m. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001
Numbers k such that there is only one Abelian group with k elements, the cyclic group of order k (the numbers such that A000688(k) = 1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
Numbers k such that A007913(k) > phi(k). - Benoit Cloitre, Apr 10 2002
a(n) is the smallest m with exactly n squarefree numbers <= m. - Amarnath Murthy, May 21 2002
k is squarefree <=> k divides prime(k)# where prime(k)# = product of first k prime numbers. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 30 2004
Numbers k such that omega(k) = Omega(k) = A072047(k). - Lekraj Beedassy, Jul 11 2006
The LCM of any finite subset is in this sequence. - Lekraj Beedassy, Jul 11 2006
This sequence and the Beatty Pi^2/6 sequence (A059535) are "incestuous": the first 20000 terms are bounded within (-9, 14). - Ed Pegg Jr, Jul 22 2008
Let us introduce a function D(n) = sigma_0(n)/2^(alpha(1) + ... + alpha(r)), sigma_0(n) number of divisors of n (A000005), prime factorization of n = p(1)^alpha(1) * ... * p(r)^alpha(r), alpha(1) + ... + alpha(r) is sequence (A001222). Function D(n) splits the set of positive integers into subsets, according to the value of D(n). Squarefree numbers (A005117) has D(n)=1, other numbers are "deviated" from the squarefree ideal and have 0 < D(n) < 1. For D(n)=1/2 we have A048109, for D(n)=3/4 we have A060687. - Ctibor O. Zizka, Sep 21 2008
Numbers k such that gcd(k,k')=1 where k' is the arithmetic derivative (A003415) of k. - Giorgio Balzarotti, Apr 23 2011
Numbers k such that A007913(k) = core(k) = k. - Franz Vrabec, Aug 27 2011
Numbers k such that sqrt(k) cannot be simplified. - Sean Loughran, Sep 04 2011
Indices m where A057918(m)=0, i.e., positive integers m for which there are no integers k in {1,2,...,m-1} such that k*m is a square. - John W. Layman, Sep 08 2011
It appears that these are numbers j such that Product_{k=1..j} (prime(k) mod j) = 0 (see Maple code). - Gary Detlefs, Dec 07 2011. - This is the same claim as Mohammed Bouayoun's Mar 30 2004 comment above. To see why it holds: Primorial numbers, A002110, a subsequence of this sequence, are never divisible by any nonsquarefree number, A013929, and on the other hand, the index of the greatest prime dividing any n is less than n. Cf. A243291. - Antti Karttunen, Jun 03 2014
Conjecture: For each n=2,3,... there are infinitely many integers b > a(n) such that Sum_{k=1..n} a(k)*b^(k-1) is prime, and the smallest such an integer b does not exceed (n+3)*(n+4). - Zhi-Wei Sun, Mar 26 2013
The probability that a random natural number belongs to the sequence is 6/Pi^2, A059956 (see Cesàro reference). - Giorgio Balzarotti, Nov 21 2013
Booker, Hiary, & Keating give a subexponential algorithm for testing membership in this sequence without factoring. - Charles R Greathouse IV, Jan 29 2014
Because in the factorizations into prime numbers these a(n) (n >= 2) have exponents which are either 0 or 1 one could call the a(n) 'numbers with a fermionic prime number decomposition'. The levels are the prime numbers prime(j), j >= 1, and the occupation numbers (exponents) e(j) are 0 or 1 (like in Pauli's exclusion principle). A 'fermionic state' is then denoted by a sequence with entries 0 or 1, where, except for the zero sequence, trailing zeros are omitted. The zero sequence stands for a(1) = 1. For example a(5) = 6 = 2^1*3^1 is denoted by the 'fermionic state' [1, 1], a(7) = 10 by [1, 0, 1]. Compare with 'fermionic partitions' counted in A000009. - Wolfdieter Lang, May 14 2014
From Vladimir Shevelev, Nov 20 2014: (Start)
The following is an Eratosthenes-type sieve for squarefree numbers. For integers > 1:
1) Remove even numbers, except for 2; the minimal non-removed number is 3.
2) Replace multiples of 3 removed in step 1, and remove multiples of 3 except for 3 itself; the minimal non-removed number is 5.
3) Replace multiples of 5 removed as a result of steps 1 and 2, and remove multiples of 5 except for 5 itself; the minimal non-removed number is 6.
4) Replace multiples of 6 removed as a result of steps 1, 2 and 3 and remove multiples of 6 except for 6 itself; the minimal non-removed number is 7.
5) Repeat using the last minimal non-removed number to sieve from the recovered multiples of previous steps.
Proof. We use induction. Suppose that as a result of the algorithm, we have found all squarefree numbers less than n and no other numbers. If n is squarefree, then the number of its proper divisors d > 1 is even (it is 2^k - 2, where k is the number of its prime divisors), and, by the algorithm, it remains in the sequence. Otherwise, n is removed, since the number of its squarefree divisors > 1 is odd (it is 2^k-1).
(End)
The lexicographically least sequence of integers > 1 such that each entry has an even number of proper divisors occurring in the sequence (that's the sieve restated). - Glen Whitney, Aug 30 2015
0 is nonsquarefree because it is divisible by any square. - Jon Perry, Nov 22 2014, edited by M. F. Hasler, Aug 13 2015
The Heinz numbers of partitions with distinct parts. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} prime(j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] the Heinz number is 2*2*3*7*29 = 2436. The number 30 (= 2*3*5) is in the sequence because it is the Heinz number of the partition [1,2,3]. - Emeric Deutsch, May 21 2015
It is possible for 2 consecutive terms to be even; for example a(258)=422 and a(259)=426. - Thomas Ordowski, Jul 21 2015. [These form a subsequence of A077395 since their product is divisible by 4. - M. F. Hasler, Aug 13 2015]
There are never more than 3 consecutive terms. Runs of 3 terms start at 1, 5, 13, 21, 29, 33, ... (A007675). - Ivan Neretin, Nov 07 2015
a(n) = product of row n in A265668. - Reinhard Zumkeller, Dec 13 2015
Numbers without excess, i.e., numbers k such that A001221(k) = A001222(k). - Juri-Stepan Gerasimov, Sep 05 2016
Numbers k such that b^(phi(k)+1) == b (mod k) for every integer b. - Thomas Ordowski, Oct 09 2016
Boreico shows that the set of square roots of the terms of this sequence is linearly independent over the rationals. - Jason Kimberley, Nov 25 2016 (reference found by Michael Coons).
Numbers k such that A008836(k) = A008683(k). - Enrique Pérez Herrero, Apr 04 2018
The prime zeta function P(s) "has singular points along the real axis for s=1/k where k runs through all positive integers without a square factor". See Wolfram link. - Maleval Francis, Jun 23 2018
Numbers k such that A007947(k) = k. - Kyle Wyonch, Jan 15 2021
The Schnirelmann density of the squarefree numbers is 53/88 (Rogers, 1964). - Amiram Eldar, Mar 12 2021
Comment from Isaac Saffold, Dec 21 2021: (Start)
Numbers k such that all groups of order k have a trivial Frattini subgroup [Dummit and Foote].
Let the group G have order n. If n is squarefree and n > 1, then G is solvable, and thus by Hall's Theorem contains a subgroup H_p of index p for all p | n. Each H_p is maximal in G by order considerations, and the intersection of all the H_p's is trivial. Thus G's Frattini subgroup Phi(G), being the intersection of G's maximal subgroups, must be trivial. If n is not squarefree, the cyclic group of order n has a nontrivial Frattini subgroup. (End)
Numbers for which the squarefree divisors (A206778) and the unitary divisors (A077610) are the same; moreover they are also the set of divisors (A027750). - Bernard Schott, Nov 04 2022
0 = A008683(a(n)) - A008836(a(n)) = A001615(a(n)) - A000203(a(n)). - Torlach Rush, Feb 08 2023
From Robert D. Rosales, May 20 2024: (Start)
Numbers n such that mu(n) != 0, where mu(n) is the Möbius function (A008683).
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = mu(n)*n, where sigma(n) is the sum of divisors function (A000203). (End)
a(n) is the smallest root of x = 1 + Sum_{k=1..n-1} floor(sqrt(x/a(k))) greater than a(n-1). - Yifan Xie, Jul 10 2024
Number k such that A001414(k) = A008472(k). - Torlach Rush, Apr 14 2025
To elaborate on the formula from Greathouse (2018), the maximum of a(n) - floor(n*Pi^2/6 + sqrt(n)/17) is 10 at indices n = 48715, 48716, 48721, and 48760. The maximum is 11, at the same indices, if floor is taken individually for the two addends and the square root. If the value is rounded instead, the maximum is 9 at 10 indices between 48714 and 48765. - M. F. Hasler, Aug 08 2025

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 165, p. 53, Ellipses, Paris, 2008.
  • David S. Dummit and Richard M. Foote, Abstract algebra. Vol. 1999. Englewood Cliffs, NJ: David S.Prentice Hall, 1991.
  • Ivan M. Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 251.
  • Michael Pohst and Hans J. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A013929. Subsequence of A072774 and A209061.
Characteristic function: A008966 (mu(n)^2, where mu = A008683).
Subsequences: A000040, A002110, A235488.
Subsequences: numbers j such that j*a(k) is squarefree where k > 1: A056911 (k = 2), A261034 (k = 3), A274546 (k = 5), A276378 (k = 6).

Programs

  • Haskell
    a005117 n = a005117_list !! (n-1)
    a005117_list = filter ((== 1) . a008966) [1..]
    -- Reinhard Zumkeller, Aug 15 2011, May 10 2011
    
  • Magma
    [ n : n in [1..1000] | IsSquarefree(n) ];
    
  • Maple
    with(numtheory); a := [ ]; for n from 1 to 200 do if issqrfree(n) then a := [ op(a), n ]; fi; od:
    t:= n-> product(ithprime(k),k=1..n): for n from 1 to 113 do if(t(n) mod n = 0) then print(n) fi od; # Gary Detlefs, Dec 07 2011
    A005117 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if numtheory[issqrfree](a) then return a; end if; end do: end if; end proc:  # R. J. Mathar, Jan 09 2013
  • Mathematica
    Select[ Range[ 113], SquareFreeQ] (* Robert G. Wilson v, Jan 31 2005 *)
    Select[Range[150], Max[Last /@ FactorInteger[ # ]] < 2 &] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
    NextSquareFree[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sf = n + sgn; While[c < Abs[k], While[ ! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[ sgn < 0, sf--, sf++]; c++]; sf + If[ sgn < 0, 1, -1]]; NestList[ NextSquareFree, 1, 70] (* Robert G. Wilson v, Apr 18 2014 *)
    Select[Range[250], MoebiusMu[#] != 0 &] (* Robert D. Rosales, May 20 2024 *)
  • PARI
    bnd = 1000; L = vector(bnd); j = 1; for (i=1,bnd, if(issquarefree(i),L[j]=i; j=j+1)); L
    
  • PARI
    {a(n)= local(m,c); if(n<=1,n==1, c=1; m=1; while( cMichael Somos, Apr 29 2005 */
    
  • PARI
    list(n)=my(v=vectorsmall(n,i,1),u,j); forprime(p=2,sqrtint(n), forstep(i=p^2, n, p^2, v[i]=0)); u=vector(sum(i=1,n,v[i])); for(i=1,n,if(v[i],u[j++]=i)); u \\ Charles R Greathouse IV, Jun 08 2012
    
  • PARI
    for(n=1, 113, if(core(n)==n, print1(n, ", "))); \\ Arkadiusz Wesolowski, Aug 02 2016
    
  • PARI
    S(n) = my(s); forsquarefree(k=1,sqrtint(n),s+=n\k[1]^2*moebius(k)); s;
    a(n) = my(min=1, max=231, k=0, sc=0); if(n >= 144, min=floor(zeta(2)*n - 5*sqrt(n)); max=ceil(zeta(2)*n + 5*sqrt(n))); while(min <= max, k=(min+max)\2; sc=S(k); if(abs(sc-n) <= sqrtint(n), break); if(sc > n, max=k-1, if(sc < n, min=k+1, break))); while(!issquarefree(k), k-=1); while(sc != n, my(j=1); if(sc > n, j = -1); k += j; sc += j; while(!issquarefree(k), k += j)); k; \\ Daniel Suteu, Jul 07 2022
    
  • PARI
    first(n)=my(v=vector(n),i); forsquarefree(k=1,if(n<268293,(33*n+30)\20,(n*Pi^2/6+0.058377*sqrt(n))\1), if(i++>n, return(v)); v[i]=k[1]); v \\ Charles R Greathouse IV, Jan 10 2023
    
  • PARI
    A5117=[1..3]; A005117(n)={if(n>#A5117, my(N=#A5117); A5117=Vec(A5117, max(n+999, N*5\4)); iferr(forsquarefree(k=A5117[N]+1, #A5117*Pi^2\6+sqrtint(#A5117)\17+11, A5117[N++]=k[1]),E,)); A5117[n]} \\ M. F. Hasler, Aug 08 2025
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 2) == n
    print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, Jul 31 2021
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A005117_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(x == 1 for x in factorint(n).values()),count(max(startvalue,1)))
    A005117_list = list(islice(A005117_gen(),20)) # Chai Wah Wu, May 09 2022
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A005117(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 22 2024

Formula

Limit_{n->oo} a(n)/n = Pi^2/6 (see A013661). - Benoit Cloitre, May 23 2002
Equals A039956 UNION A056911. - R. J. Mathar, May 16 2008
A122840(a(n)) <= 1; A010888(a(n)) < 9. - Reinhard Zumkeller, Mar 30 2010
a(n) = A055229(A062838(n)) and a(n) > A055229(m) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010
A008477(a(n)) = 1. - Reinhard Zumkeller, Feb 17 2012
A055653(a(n)) = a(n); A055654(a(n)) = 0. - Reinhard Zumkeller, Mar 11 2012
A008966(a(n)) = 1. - Reinhard Zumkeller, May 26 2012
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2*s). - Enrique Pérez Herrero, Jul 07 2012
A056170(a(n)) = 0. - Reinhard Zumkeller, Dec 29 2012
A013928(a(n)+1) = n. - Antti Karttunen, Jun 03 2014
A046660(a(n)) = 0. - Reinhard Zumkeller, Nov 29 2015
Equals {1} UNION A000040 UNION A006881 UNION A007304 UNION A046386 UNION A046387 UNION A067885 UNION A123321 UNION A123322 UNION A115343 ... - R. J. Mathar, Nov 05 2016
|a(n) - n*Pi^2/6| < 0.058377*sqrt(n) for n >= 268293; this result can be derived from Cohen, Dress, & El Marraki, see links. - Charles R Greathouse IV, Jan 18 2018
From Amiram Eldar, Jul 07 2021: (Start)
Sum_{n>=1} (-1)^(a(n)+1)/a(n)^2 = 9/Pi^2.
Sum_{k=1..n} 1/a(k) ~ (6/Pi^2) * log(n).
Sum_{k=1..n} (-1)^(a(k)+1)/a(k) ~ (2/Pi^2) * log(n).
(all from Scott, 2006) (End)

A006881 Squarefree semiprimes: Numbers that are the product of two distinct primes.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that phi(k) + sigma(k) = 2*(k+1). - Benoit Cloitre, Mar 02 2002
Numbers k such that tau(k) = omega(k)^omega(k). - Benoit Cloitre, Sep 10 2002 [This comment is false. If k = 900 then tau(k) = omega(k)^omega(k) = 27 but 900 = (2*3*5)^2 is not the product of two distinct primes. - Peter Luschny, Jul 12 2023]
Could also be called 2-almost primes. - Rick L. Shepherd, May 11 2003
From the Goldston et al. reference's abstract: "lim inf [as n approaches infinity] [(a(n+1) - a(n))] <= 26. If an appropriate generalization of the Elliott-Halberstam Conjecture is true, then the above bound can be improved to 6." - Jonathan Vos Post, Jun 20 2005
The maximal number of consecutive integers in this sequence is 3 - there cannot be 4 consecutive integers because one of them would be divisible by 4 and therefore would not be product of distinct primes. There are several examples of 3 consecutive integers in this sequence. The first one is 33 = 3 * 11, 34 = 2 * 17, 35 = 5 * 7; (see A039833). - Matias Saucedo (solomatias(AT)yahoo.com.ar), Mar 15 2008
Number of terms less than or equal to 10^k for k >= 0 is A036351(k). - Robert G. Wilson v, Jun 26 2012
Are these the numbers k whose difference between the sum of proper divisors of k and the arithmetic derivative of k is equal to 1? - Omar E. Pol, Dec 19 2012
Intersection of A001358 and A030513. - Wesley Ivan Hurt, Sep 09 2013
A237114(n) (smallest semiprime k^prime(n)+1) is a term, for n != 2. - Jonathan Sondow, Feb 06 2014
a(n) are the reduced denominators of p_2/p_1 + p_4/p_3, where p_1 != p_2, p_3 != p_4, p_1 != p_3, and the p's are primes. In other words, (p_2*p_3 + p_1*p_4) never shares a common factor with p_1*p_3. - Richard R. Forberg, Mar 04 2015
Conjecture: The sums of two elements of a(n) forms a set that includes all primes greater than or equal to 29 and all integers greater than or equal to 83 (and many below 83). - Richard R. Forberg, Mar 04 2015
The (disjoint) union of this sequence and A001248 is A001358. - Jason Kimberley, Nov 12 2015
A263990 lists the subsequence of a(n) where a(n+1)=1+a(n). - R. J. Mathar, Aug 13 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Zervos, Marie: Sur une classe de nombres composés. Actes du Congrès interbalkanique de mathématiciens 267-268 (1935)

Crossrefs

Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
Cf. A030229, A051709, A001221 (omega(n)), A001222 (bigomega(n)), A001358 (semiprimes), A005117 (squarefree), A007304 (squarefree 3-almost primes), A213952, A039833, A016105 (subsequences), A237114 (subsequence, n != 2).
Subsequence of A007422.
Cf. A259758 (subsequence), A036351, A363923.

Programs

  • Haskell
    a006881 n = a006881_list !! (n-1)
    a006881_list = filter chi [1..] where
       chi n = p /= q && a010051 q == 1 where
          p = a020639 n
          q = n `div` p
    -- Reinhard Zumkeller, Aug 07 2011
    
  • Magma
    [n: n in [1..210] | EulerPhi(n) + DivisorSigma(1,n) eq 2*(n+1)]; // Vincenzo Librandi, Sep 17 2015
    
  • Maple
    N:= 1001: # to get all terms < N
    Primes:= select(isprime, [2,seq(2*k+1,k=1..floor(N/2))]):
    {seq(seq(p*q,q=Primes[1..ListTools:-BinaryPlace(Primes,N/p)]),p=Primes)} minus {seq(p^2,p=Primes)};
    # Robert Israel, Jul 23 2014
    # Alternative, using A001221:
    isA006881 := proc(n)
         if numtheory[bigomega](n) =2 and A001221(n) = 2 then
            true ;
        else
            false ;
        end if;
    end proc:
    A006881 := proc(n) if n = 1 then 6; else for a from procname(n-1)+1 do if isA006881(a) then return a; end if; end do: end if;
    end proc: # R. J. Mathar, May 02 2010
    # Alternative:
    with(NumberTheory): isA006881 := n -> is(NumberOfPrimeFactors(n, 'distinct') = 2 and NumberOfPrimeFactors(n) = 2):
    select(isA006881, [seq(1..205)]); # Peter Luschny, Jul 12 2023
  • Mathematica
    mx = 205; Sort@ Flatten@ Table[ Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[ mx/Prime[n]]}] (* Robert G. Wilson v, Dec 28 2005, modified Jul 23 2014 *)
    sqFrSemiPrimeQ[n_] := Last@# & /@ FactorInteger@ n == {1, 1}; Select[Range[210], sqFrSemiPrimeQ] (* Robert G. Wilson v, Feb 07 2012 *)
    With[{upto=250},Select[Sort[Times@@@Subsets[Prime[Range[upto/2]],{2}]],#<=upto&]] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    for(n=1,214,if(bigomega(n)==2&&omega(n)==2,print1(n,",")))
    
  • PARI
    for(n=1,214,if(bigomega(n)==2&&issquarefree(n),print1(n,",")))
    
  • PARI
    list(lim)=my(v=List()); forprime(p=2,sqrt(lim), forprime(q=p+1, lim\p, listput(v,p*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import factorint
    def ok(n): f=factorint(n); return len(f) == 2 and sum(f[p] for p in f) == 2
    print(list(filter(ok, range(1, 206)))) # Michael S. Branicky, Jun 10 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A006881(n):
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 15 2024
  • Sage
    def A006881_list(n) :
        R = []
        for i in (6..n) :
            d = prime_divisors(i)
            if len(d) == 2 :
                if d[0]*d[1] == i :
                    R.append(i)
        return R
    A006881_list(205)  # Peter Luschny, Feb 07 2012
    

Formula

A000005(a(n)^(k-1)) = A000290(k) for all k>0. - Reinhard Zumkeller, Mar 04 2007
A109810(a(n)) = 4; A178254(a(n)) = 6. - Reinhard Zumkeller, May 24 2010
A056595(a(n)) = 3. - Reinhard Zumkeller, Aug 15 2011
a(n) = A096916(n) * A070647(n). - Reinhard Zumkeller, Sep 23 2011
A211110(a(n)) = 3. - Reinhard Zumkeller, Apr 02 2012
Sum_{n >= 1} 1/a(n)^s = (1/2)*(P(s)^2 - P(2*s)), where P is Prime Zeta. - Enrique Pérez Herrero, Jun 24 2012
A050326(a(n)) = 2. - Reinhard Zumkeller, May 03 2013
sopf(a(n)) = a(n) - phi(a(n)) + 1 = sigma(a(n)) - a(n) - 1. - Wesley Ivan Hurt, May 18 2013
d(a(n)) = 4. Omega(a(n)) = 2. omega(a(n)) = 2. mu(a(n)) = 1. - Wesley Ivan Hurt, Jun 28 2013
a(n) ~ n log n/log log n. - Charles R Greathouse IV, Aug 22 2013
A089233(a(n)) = 1. - Reinhard Zumkeller, Sep 04 2013
From Peter Luschny, Jul 12 2023: (Start)
For k > 1: k is a term <=> k^A001221(k) = k*A007947(k).
For k > 1: k is a term <=> k^A001222(k) = k*A007947(k).
For k > 1: k is a term <=> A363923(k) = k. (End)
a(n) ~ n log n/log log n. - Charles R Greathouse IV, Jan 13 2025

Extensions

Name expanded (based on a comment of Rick L. Shepherd) by Charles R Greathouse IV, Sep 16 2015

A014612 Numbers that are the product of exactly three (not necessarily distinct) primes.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, 63, 66, 68, 70, 75, 76, 78, 92, 98, 99, 102, 105, 110, 114, 116, 117, 124, 125, 130, 138, 147, 148, 153, 154, 164, 165, 170, 171, 172, 174, 175, 182, 186, 188, 190, 195, 207, 212, 222, 230, 231, 236, 238, 242, 244
Offset: 1

Views

Author

Keywords

Comments

Sometimes called "triprimes" or "3-almost primes".
See also A001358 for product of two primes (sometimes called semiprimes).
If you graph a(n)/n for n up to 10000 (and probably quite a bit higher), it appears to be converging to something near 3.9. In fact the limit is infinite. - Franklin T. Adams-Watters, Sep 20 2006
Meng shows that for any sufficiently large odd integer n, the equation n = a + b + c has solutions where each of a, b, c is 3-almost prime. The number of such solutions is (log log n)^6/(16 (log n)^3)*n^2*s(n)*(1 + O(1/log log n)), where s(n) = Sum_{q >= 1} Sum_{a = 1..q, (a, q) = 1} exp(i*2*Pi*n*a/q)*mu(n)/phi(n)^3 > 1/2. - Jonathan Vos Post, Sep 16 2005, corrected & rewritten by M. F. Hasler, Apr 24 2019
Also, a(n) are the numbers such that exactly half of their divisors are composite. For the numbers in which exactly half of the divisors are prime, see A167171. - Ivan Neretin, Jan 12 2016

Examples

			From _Gus Wiseman_, Nov 04 2020: (Start)
Also Heinz numbers of integer partitions into three parts, counted by A001399(n-3) = A069905(n) with ordered version A000217, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence of terms together with their prime indices begins:
      8: {1,1,1}     70: {1,3,4}     130: {1,3,6}
     12: {1,1,2}     75: {2,3,3}     138: {1,2,9}
     18: {1,2,2}     76: {1,1,8}     147: {2,4,4}
     20: {1,1,3}     78: {1,2,6}     148: {1,1,12}
     27: {2,2,2}     92: {1,1,9}     153: {2,2,7}
     28: {1,1,4}     98: {1,4,4}     154: {1,4,5}
     30: {1,2,3}     99: {2,2,5}     164: {1,1,13}
     42: {1,2,4}    102: {1,2,7}     165: {2,3,5}
     44: {1,1,5}    105: {2,3,4}     170: {1,3,7}
     45: {2,2,3}    110: {1,3,5}     171: {2,2,8}
     50: {1,3,3}    114: {1,2,8}     172: {1,1,14}
     52: {1,1,6}    116: {1,1,10}    174: {1,2,10}
     63: {2,2,4}    117: {2,2,6}     175: {3,3,4}
     66: {1,2,5}    124: {1,1,11}    182: {1,4,6}
     68: {1,1,7}    125: {3,3,3}     186: {1,2,11}
(End)
		

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition : Chelsea, New York (1974). See p. 211.

Crossrefs

Cf. A000040, A001358 (biprimes), A014613 (quadruprimes), A033942, A086062, A098238, A123072, A123073, A101605 (characteristic function).
Cf. A109251 (number of 3-almost primes <= 10^n).
Subsequence of A145784. - Reinhard Zumkeller, Oct 19 2008
Cf. A007304 is the squarefree case.
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), this sequence (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Cf. A253721 (final digits).
A014311 is a different ranking of ordered triples, with strict case A337453.
A046316 is the restriction to odds, with strict case A307534.
A075818 is the restriction to evens, with strict case A075819.
A285508 is the nonsquarefree case.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.

Programs

  • Haskell
    a014612 n = a014612_list !! (n-1)
    a014612_list = filter ((== 3) . a001222) [1..] -- Reinhard Zumkeller, Apr 02 2012
    
  • Maple
    with(numtheory); A014612:=n->`if`(bigomega(n)=3, n, NULL); seq(A014612(n), n=1..250) # Wesley Ivan Hurt, Feb 05 2014
  • Mathematica
    threeAlmostPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 3; Select[ Range@244, threeAlmostPrimeQ[ # ] &] (* Robert G. Wilson v, Jan 04 2006 *)
    NextkAlmostPrime[n_, k_: 2, m_: 1] := Block[{c = 0, sgn = Sign[m]}, kap = n + sgn; While[c < Abs[m], While[ PrimeOmega[kap] != k, If[sgn < 0, kap--, kap++]]; If[ sgn < 0, kap--, kap++]; c++]; kap + If[sgn < 0, 1, -1]]; NestList[NextkAlmostPrime[#, 3] &, 2^3, 56] (* Robert G. Wilson v, Jan 27 2013 *)
    Select[Range[244], PrimeOmega[#] == 3 &] (* Jayanta Basu, Jul 01 2013 *)
  • PARI
    isA014612(n)=bigomega(n)==3 \\ Charles R Greathouse IV, May 07 2011
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,lim\4, forprime(q=2,min(lim\(2*p),p), t=p*q; forprime(r=2,min(lim\t,q),listput(v,t*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 04 2013
    
  • Python
    from sympy import factorint
    def ok(n): f = factorint(n); return sum(f[p] for p in f) == 3
    print(list(filter(ok, range(245)))) # Michael S. Branicky, Aug 12 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A014612(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 17 2024
  • Scala
    def primeFactors(number: Int, list: List[Int] = List())
                                                          : List[Int] = {
      for (n <- 2 to number if (number % n == 0)) {
        return primeFactors(number / n, list :+ n)
      }
      list
    }
    (1 to 250).filter(primeFactors().size == 3) // _Alonso del Arte, Nov 04 2020, based on algorithm by Victor Farcic (vfarcic)
    

Formula

Product p_i^e_i with Sum e_i = 3.
a(n) ~ 2n log n / (log log n)^2 as n -> infinity [Landau, p. 211].
Tau(a(n)) = 2 * (omega(a(n)) + 1) = 2*A083399(a(n)), where tau = A000005 and omega = A001221. - Wesley Ivan Hurt, Jun 28 2013
a(n) = A078840(3,n). - R. J. Mathar, Jan 30 2019

Extensions

More terms from Patrick De Geest, Jun 15 1998

A005179 Smallest number with exactly n divisors.

Original entry on oeis.org

1, 2, 4, 6, 16, 12, 64, 24, 36, 48, 1024, 60, 4096, 192, 144, 120, 65536, 180, 262144, 240, 576, 3072, 4194304, 360, 1296, 12288, 900, 960, 268435456, 720, 1073741824, 840, 9216, 196608, 5184, 1260, 68719476736, 786432, 36864, 1680, 1099511627776, 2880
Offset: 1

Views

Author

N. J. A. Sloane, David Singmaster

Keywords

Comments

A number n is called ordinary iff a(n)=A037019(n). Brown shows that the ordinary numbers have density 1 and all squarefree numbers are ordinary. See A072066 for the extraordinary or exceptional numbers. - M. F. Hasler, Oct 14 2014
All terms are in A025487. Therefore, a(n) is even for n > 1. - David A. Corneth, Jun 23 2017 [corrected by Charles R Greathouse IV, Jul 05 2023]

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 52.
  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 86.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 89.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a005179 n = succ $ fromJust $ elemIndex n $ map a000005 [1..]
    -- Reinhard Zumkeller, Apr 01 2011
    
  • Maple
    A005179_list := proc(SearchLimit, ListLength)
    local L, m, i, d; m := 1;
    L := array(1..ListLength,[seq(0,i=1..ListLength)]);
    for i from 1 to SearchLimit while m <= ListLength do
      d := numtheory[tau](i);
      if d <= ListLength and 0 = L[d] then L[d] := i;
      m := m + 1; fi
    od:
    print(L) end: A005179_list(65537,18);
    # If a '0' appears in the list the search limit has to be increased. - Peter Luschny, Mar 09 2011
    # alternative
    # Construct list of ordered lists of factorizations of n with
    # minimum divisors mind.
    # Returns a list with A001055(n) entries if called with mind=2.
    # Example: print(ofact(10^3,2))
    ofact := proc(n,mind)
        local fcts,d,rec,r ;
        fcts := [] ;
        for d in numtheory[divisors](n) do
            if d >= mind then
                if d = n then
                    fcts := [op(fcts),[n]] ;
                else
                    # recursive call supposed one more factor fixed now
                    rec := procname(n/d,max(d,mind)) ;
                    for r in rec do
                        fcts := [op(fcts),[d,op(r)]] ;
                    end do:
                end if;
            end if;
        end do:
        return fcts ;
    end proc:
    A005179 := proc(n)
        local Lexp,a,eList,cand,maxxrt ;
        if n = 1 then
            return 1;
        end if;
        Lexp := ofact(n,2) ;
        a := 0 ;
        for eList in Lexp do
            maxxrt := ListTools[Reverse](eList) ;
            cand := mul( ithprime(i)^ ( op(i,maxxrt)-1),i=1..nops(maxxrt)) ;
            if a =0 or cand < a then
                a := cand ;
            end if;
        end do:
        a ;
    end proc:
    seq(A005179(n),n=1..40) ; # R. J. Mathar, Jun 06 2024
  • Mathematica
    a = Table[ 0, {43} ]; Do[ d = Length[ Divisors[ n ]]; If[ d < 44 && a[[ d ]] == 0, a[[ d]] = n], {n, 1, 1099511627776} ]; a
    (* Second program: *)
    Function[s, Map[Lookup[s, #] &, Range[First@ Complement[Range@ Max@ #, #] - 1]] &@ Keys@ s]@ Map[First, KeySort@ PositionIndex@ Table[DivisorSigma[0, n], {n, 10^7}]] (* Michael De Vlieger, Dec 11 2016, Version 10 *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)
    a[n_] := Module[{e = f[n] - 1}, Min[Times @@@ ((Prime[Range[Length[#], 1, -1]]^#) & /@ e)]]; Array[a, 100] (* Amiram Eldar, Jul 26 2025 using the function f by T. D. Noe at A162247 *)
  • PARI
    (prodR(n,maxf)=my(dfs=divisors(n),a=[],r); for(i=2,#dfs, if( dfs[i]<=maxf, if(dfs[i]==n, a=concat(a,[[n]]), r=prodR(n/dfs[i],min(dfs[i],maxf)); for(j=1,#r, a=concat(a,[concat(dfs[i],r[j])]))))); a); A005179(n)=my(pf=prodR(n,n),a=1,b); for(i=1,#pf, b=prod(j=1,length(pf[i]),prime(j)^(pf[i][j]-1)); if(bA005179(n)", ")) \\ R. J. Mathar, May 26 2008, edited by M. F. Hasler, Oct 11 2014
    
  • Python
    from math import prod
    from sympy import isprime, divisors, prime
    def A005179(n):
        def mult_factors(n):
            if isprime(n):
                return [(n,)]
            c = []
            for d in divisors(n,generator=True):
                if 1Chai Wah Wu, Aug 17 2024

Formula

a(p) = 2^(p-1) for primes p: a(A000040(n)) = A061286(n); a(p^2) = 6^(p-1) for primes p: a(A001248(n)) = A061234(n); a(p*q) = 2^(q-1)*3^(p-1) for primes p<=q: a(A001358(n)) = A096932(n); a(p*m*q) = 2^(q-1) * 3^(m-1) * 5^(p-1) for primes pA005179(A007304(n)) = A061299(n). - Reinhard Zumkeller, Jul 15 2004 [This can be continued to arbitrarily many distinct prime factors since no numbers in A072066 (called "exceptional" or "extraordinary") are squarefree. - Jianing Song, Jul 18 2025]
a(p^n) = (2*3...*p_n)^(p-1) for p > log p_n / log 2. Unpublished proof from Andrzej Schinzel. - Thomas Ordowski, Jul 22 2005
If p is a prime and n=p^k then a(p^k)=(2*3*...*s_k)^(p-1) where (s_k) is the numbers of the form q^(p^j) for every q and j>=0, according to Grost (1968), Theorem 4. For example, if p=2 then a(2^k) is the product of the first k members of the A050376 sequence: number of the form q^(2^j) for j>=0, according to Ramanujan (1915). - Thomas Ordowski, Aug 30 2005
a(2^k) = A037992(k). - Thomas Ordowski, Aug 30 2005
a(n) <= A037019(n) with equality except for n in A072066. - M. F. Hasler, Jun 15 2022

Extensions

More terms from David W. Wilson

A001399 a(n) is the number of partitions of n into at most 3 parts; also partitions of n+3 in which the greatest part is 3; also number of unlabeled multigraphs with 3 nodes and n edges.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341
Offset: 0

Views

Author

Keywords

Comments

Also number of tripods (trees with exactly 3 leaves) on n vertices. - Eric W. Weisstein, Mar 05 2011
Also number of partitions of n+3 into exactly 3 parts; number of partitions of n in which the greatest part is less than or equal to 3; and the number of nonnegative solutions to b + 2c + 3d = n.
Also a(n) gives number of partitions of n+6 into 3 distinct parts and number of partitions of 2n+9 into 3 distinct and odd parts, e.g., 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3. - Jon Perry, Jan 07 2004
Also bracelets with n+3 beads 3 of which are red (so there are 2 possibilities with 5 beads).
More generally, the number of partitions of n into at most k parts is also the number of partitions of n+k into k positive parts, the number of partitions of n+k in which the greatest part is k, the number of partitions of n in which the greatest part is less than or equal to k, the number of partitions of n+k(k+1)/2 into exactly k distinct positive parts, the number of nonnegative solutions to b + 2c + 3d + ... + kz = n and the number of nonnegative solutions to 2c + 3d + ... + kz <= n. - Henry Bottomley, Apr 17 2001
Also coefficient of q^n in the expansion of (m choose 3)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
From Winston C. Yang (winston(AT)cs.wisc.edu), Apr 30 2002: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) for n > 0 is formed by the folding points (including the initial 1). The spiral begins:
.
85--84--83--82--81--80
/ \
86 56--55--54--53--52 79
/ / \ \
87 57 33--32--31--30 51 78
/ / / \ \ \
88 58 34 16--15--14 29 50 77
/ / / / \ \ \ \
89 59 35 17 5---4 13 28 49 76
/ / / / / \ \ \ \ \
90 60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / / /
91 61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
.
a(p) is maximal number of hexagons in a polyhex with perimeter at most 2p + 6. (End)
a(n-3) is the number of partitions of n into 3 distinct parts, where 0 is allowed as a part. E.g., at n=9, we can write 8+1+0, 7+2+0, 6+3+0, 4+5+0, 1+2+6, 1+3+5 and 2+3+4, which is a(6)=7. - Jon Perry, Jul 08 2003
a(n) gives number of partitions of n+6 into parts <=3 where each part is used at least once (subtract 6=1+2+3 from n). - Jon Perry, Jul 03 2004
This is also the number of partitions of n+3 into exactly 3 parts (there is a 1-to-1 correspondence between the number of partitions of n+3 in which the greatest part is 3 and the number of partitions of n+3 into exactly three parts). - Graeme McRae, Feb 07 2005
Apply the Riordan array (1/(1-x^3),x) to floor((n+2)/2). - Paul Barry, Apr 16 2005
Also, number of triangles that can be created with odd perimeter 3,5,7,9,11,... with all sides whole numbers. Note that triangles with even perimeter can be generated from the odd ones by increasing each side by 1. E.g., a(1) = 1 because perimeter 3 can make {1,1,1} 1 triangle. a(4) = 3 because perimeter 9 can make {1,4,4} {2,3,4} {3,3,3} 3 possible triangles. - Bruce Love (bruce_love(AT)ofs.edu.sg), Nov 20 2006
Also number of nonnegative solutions of the Diophantine equation x+2*y+3*z=n, cf. Pólya/Szegő reference.
From Vladimir Shevelev, Apr 23 2011: (Start)
Also a(n-3), n >= 3, is the number of non-equivalent necklaces of 3 beads each of them painted by one of n colors.
The sequence {a(n-3), n >= 3} solves the so-called Reis problem about convex k-gons in case k=3 (see our comment to A032279).
a(n-3) (n >= 3) is an essentially unimprovable upper estimate for the number of distinct values of the permanent in (0,1)-circulants of order n with three 1's in every row. (End)
A001399(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and w = 2*x+3*y. - Clark Kimberling, Jun 04 2012
Also, for n >= 3, a(n-3) is the number of the distinct triangles in an n-gon, see the Ngaokrajang links. - Kival Ngaokrajang, Mar 16 2013
Also, a(n) is the total number of 5-curve coin patterns (5C4S type: 5 curves covering full 4 coins and symmetry) packing into fountain of coins base (n+3). See illustration in links. - Kival Ngaokrajang, Oct 16 2013
Also a(n) = half the number of minimal zero sequences for Z_n of length 3 [Ponomarenko]. - N. J. A. Sloane, Feb 25 2014
Also, a(n) equals the number of linearly-independent terms at 2n-th order in the power series expansion of an Octahedral Rotational Energy Surface (cf. Harter & Patterson). - Bradley Klee, Jul 31 2015
Also Molien series for invariants of finite Coxeter groups D_3 and A_3. - N. J. A. Sloane, Jan 10 2016
Number of different distributions of n+6 identical balls in 3 boxes as x,y,z where 0 < x < y < z. - Ece Uslu and Esin Becenen, Jan 11 2016
a(n) is also the number of partitions of 2*n with <= n parts and no part >= 4. The bijection to partitions of n with no part >= 4 is: 1 <-> 2, 2 <-> 1 + 3, 3 <-> 3 + 3 (observing the order of these rules). The <- direction uses the following fact for partitions of 2*n with <= n parts and no part >=4: for each part 1 there is a part 3, and an even number (including 0) of remaining parts 3. - Wolfdieter Lang, May 21 2019
List of the terms in A000567(n>=1), A049450(n>=1), A033428(n>=1), A049451(n>=1), A045944(n>=1), and A003215(n) in nondecreasing order. List of the numbers A056105(n)-1, A056106(n)-1, A056107(n)-1, A056108(n)-1, A056109(n)-1, and A003215(m) with n >= 1 and m >= 0 in nondecreasing order. Numbers of the forms 3n*(n-1)+1, n*(3n-2), n*(3n-1), 3n^2, n*(3n+1), n*(3n+2) with n >= 1 listed in nondecreasing order. Integers m such that lattice points from 1 through m on a hexagonal spiral starting at 1 forms a convex polygon. - Ya-Ping Lu, Jan 24 2024

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 8*x^7 + 10*x^8 + 12*x^9 + ...
Recall that in a necklace the adjacent beads have distinct colors. Suppose we have n colors with labels 1,...,n. Two colorings of the beads are equivalent if the cyclic sequences of the distances modulo n between labels of adjacent colors have the same period. If n=4, all colorings are equivalent. E.g., for the colorings {1,2,3} and {1,2,4} we have the same period {1,1,2} of distances modulo 4. So, a(n-3)=a(1)=1. If n=5, then we have two such periods {1,1,3} and {1,2,2} modulo 5. Thus a(2)=2. - _Vladimir Shevelev_, Apr 23 2011
a(0) = 1, i.e., {1,2,3} Number of different distributions of 6 identical balls to 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016
a(3) = 3, i.e., {1,2,6}, {1,3,5}, {2,3,4} Number of different distributions of 9 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016
From _Gus Wiseman_, Apr 15 2019: (Start)
The a(0) = 1 through a(8) = 10 integer partitions of n with at most three parts are the following. The Heinz numbers of these partitions are given by A037144.
  ()  (1)  (2)   (3)    (4)    (5)    (6)    (7)    (8)
           (11)  (21)   (22)   (32)   (33)   (43)   (44)
                 (111)  (31)   (41)   (42)   (52)   (53)
                        (211)  (221)  (51)   (61)   (62)
                               (311)  (222)  (322)  (71)
                                      (321)  (331)  (332)
                                      (411)  (421)  (422)
                                             (511)  (431)
                                                    (521)
                                                    (611)
The a(0) = 1 through a(7) = 8 integer partitions of n + 3 whose greatest part is 3 are the following. The Heinz numbers of these partitions are given by A080193.
  (3)  (31)  (32)   (33)    (322)    (332)     (333)      (3322)
             (311)  (321)   (331)    (3221)    (3222)     (3331)
                    (3111)  (3211)   (3311)    (3321)     (32221)
                            (31111)  (32111)   (32211)    (33211)
                                     (311111)  (33111)    (322111)
                                               (321111)   (331111)
                                               (3111111)  (3211111)
                                                          (31111111)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 5 unlabeled multigraphs with 3 vertices and n edges are the following.
  {}  {12}  {12,12}  {12,12,12}  {12,12,12,12}  {12,12,12,12,12}
            {13,23}  {12,13,23}  {12,13,23,23}  {12,13,13,23,23}
                     {13,23,23}  {13,13,23,23}  {12,13,23,23,23}
                                 {13,23,23,23}  {13,13,23,23,23}
                                                {13,23,23,23,23}
The a(0) = 1 through a(8) = 10 strict integer partitions of n - 6 with three parts are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A007304.
  (321)  (421)  (431)  (432)  (532)  (542)  (543)  (643)   (653)
                (521)  (531)  (541)  (632)  (642)  (652)   (743)
                       (621)  (631)  (641)  (651)  (742)   (752)
                              (721)  (731)  (732)  (751)   (761)
                                     (821)  (741)  (832)   (842)
                                            (831)  (841)   (851)
                                            (921)  (931)   (932)
                                                   (A21)   (941)
                                                           (A31)
                                                           (B21)
The a(0) = 1 through a(8) = 10 integer partitions of n + 3 with three parts are the following. The Heinz numbers of these partitions are given by A014612.
  (111)  (211)  (221)  (222)  (322)  (332)  (333)  (433)  (443)
                (311)  (321)  (331)  (422)  (432)  (442)  (533)
                       (411)  (421)  (431)  (441)  (532)  (542)
                              (511)  (521)  (522)  (541)  (551)
                                     (611)  (531)  (622)  (632)
                                            (621)  (631)  (641)
                                            (711)  (721)  (722)
                                                   (811)  (731)
                                                          (821)
                                                          (911)
The a(0) = 1 through a(8) = 10 integer partitions of n whose greatest part is <= 3 are the following. The Heinz numbers of these partitions are given by A051037.
  ()  (1)  (2)   (3)    (22)    (32)     (33)      (322)      (332)
           (11)  (21)   (31)    (221)    (222)     (331)      (2222)
                 (111)  (211)   (311)    (321)     (2221)     (3221)
                        (1111)  (2111)   (2211)    (3211)     (3311)
                                (11111)  (3111)    (22111)    (22211)
                                         (21111)   (31111)    (32111)
                                         (111111)  (211111)   (221111)
                                                   (1111111)  (311111)
                                                              (2111111)
                                                              (11111111)
The a(0) = 1 through a(6) = 7 strict integer partitions of 2n+9 with 3 parts, all of which are odd, are the following. The Heinz numbers of these partitions are given by A307534.
  (5,3,1)  (7,3,1)  (7,5,1)  (7,5,3)   (9,5,3)   (9,7,3)   (9,7,5)
                    (9,3,1)  (9,5,1)   (9,7,1)   (11,5,3)  (11,7,3)
                             (11,3,1)  (11,5,1)  (11,7,1)  (11,9,1)
                                       (13,3,1)  (13,5,1)  (13,5,3)
                                                 (15,3,1)  (13,7,1)
                                                           (15,5,1)
                                                           (17,3,1)
The a(0) = 1 through a(8) = 10 strict integer partitions of n + 3 with 3 parts where 0 is allowed as a part (A = 10):
  (210)  (310)  (320)  (420)  (430)  (530)  (540)  (640)  (650)
                (410)  (510)  (520)  (620)  (630)  (730)  (740)
                       (321)  (610)  (710)  (720)  (820)  (830)
                              (421)  (431)  (810)  (910)  (920)
                                     (521)  (432)  (532)  (A10)
                                            (531)  (541)  (542)
                                            (621)  (631)  (632)
                                                   (721)  (641)
                                                          (731)
                                                          (821)
The a(0) = 1 through a(7) = 7 integer partitions of n + 6 whose distinct parts are 1, 2, and 3 are the following. The Heinz numbers of these partitions are given by A143207.
  (321)  (3211)  (3221)   (3321)    (32221)    (33221)     (33321)
                 (32111)  (32211)   (33211)    (322211)    (322221)
                          (321111)  (322111)   (332111)    (332211)
                                    (3211111)  (3221111)   (3222111)
                                               (32111111)  (3321111)
                                                           (32211111)
                                                           (321111111)
(End)
Partitions of 2*n with <= n parts and no part >= 4: a(3) = 3 from (2^3), (1,2,3), (3^2) mapping to (1^3), (1,2), (3), the partitions of 3 with no part >= 4, respectively. - _Wolfdieter Lang_, May 21 2019
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter III, Problem 33.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 110, D(n); page 263, #18, P_n^{3}.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
  • R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39.
  • J. H. van Lint, Combinatorial Seminar Eindhoven, Lecture Notes Math., 382 (1974), see pp. 33-34.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 1, Sect. 1, Problem 25.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001399 = p [1,2,3] where
       p _      0 = 1
       p []     _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 28 2013
    
  • Magma
    I:=[1,1,2,3,4,5]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..80]]; // Vincenzo Librandi, Feb 14 2015
    
  • Magma
    [#RestrictedPartitions(n,{1,2,3}): n in [0..62]]; // Marius A. Burtea, Jan 06 2019
    
  • Magma
    [Round((n+3)^2/12): n in [0..70]]; // Marius A. Burtea, Jan 06 2019
    
  • Maple
    A001399 := proc(n)
        round( (n+3)^2/12) ;
    end proc:
    seq(A001399(n),n=0..40) ;
    with(combstruct):ZL4:=[S,{S=Set(Cycle(Z,card<4))}, unlabeled]:seq(count(ZL4,size=n),n=0..61); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=3)},unlabelled]: seq(combstruct[count](B, size=n), n=0..61); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)), {x, 0, 65} ], x ]
    Table[ Length[ IntegerPartitions[n, 3]], {n, 0, 61} ] (* corrected by Jean-François Alcover, Aug 08 2012 *)
    k = 3; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    LinearRecurrence[{1,1,0,-1,-1,1},{1,1,2,3,4,5},70] (* Harvey P. Dale, Jun 21 2012 *)
    a[ n_] := With[{m = Abs[n + 3] - 3}, Length[ IntegerPartitions[ m, 3]]]; (* Michael Somos, Dec 25 2014 *)
    k=3 (* Number of red beads in bracelet problem *);CoefficientList[Series[(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&]],{n,0,30}] (* Gus Wiseman, Apr 15 2019 *)
  • PARI
    {a(n) = round((n + 3)^2 / 12)}; /* Michael Somos, Sep 04 2006 */
    
  • Python
    [round((n+3)**2 / 12) for n in range(0,62)] # Ya-Ping Lu, Jan 24 2024

Formula

G.f.: 1/((1 - x) * (1 - x^2) * (1 - x^3)) = -1/((x+1)*(x^2+x+1)*(x-1)^3); Simon Plouffe in his 1992 dissertation
a(n) = round((n + 3)^2/12). Note that this cannot be of the form (2*i + 1)/2, so ties never arise.
a(n) = A008284(n+3, 3), n >= 0.
a(n) = 1 + a(n-2) + a(n-3) - a(n-5) for all n in Z. - Michael Somos, Sep 04 2006
a(n) = a(-6 - n) for all n in Z. - Michael Somos, Sep 04 2006
a(6*n) = A003215(n), a(6*n + 1) = A000567(n + 1), a(6*n + 2) = A049450(n + 1), a(6*n + 3) = A033428(n + 1), a(6*n + 4) = A049451(n + 1), a(6*n + 5) = A045944(n + 1).
a(n) = a(n-1) + A008615(n+2) = a(n-2) + A008620(n) = a(n-3) + A008619(n) = A001840(n+1) - a(n-1) = A002620(n+2) - A001840(n) = A000601(n) - A000601(n-1). - Henry Bottomley, Apr 17 2001
P(n, 3) = (1/72) * (6*n^2 - 7 - 9*pcr{1, -1}(2, n) + 8*pcr{2, -1, -1}(3, n)) (see Comtet). [Here "pcr" stands for "prime circulator" and it is defined on p. 109 of Comtet, while the formula appears on p. 110. - Petros Hadjicostas, Oct 03 2019]
Let m > 0 and -3 <= p <= 2 be defined by n = 6*m+p-3; then for n > -3, a(n) = 3*m^2 + p*m, and for n = -3, a(n) = 3*m^2 + p*m + 1. - Floor van Lamoen, Jul 23 2001
72*a(n) = 17 + 6*(n+1)*(n+5) + 9*(-1)^n - 8*A061347(n). - Benoit Cloitre, Feb 09 2003
From Jon Perry, Jun 17 2003: (Start)
a(n) = 6*t(floor(n/6)) + (n%6) * (floor(n/6) + 1) + (n mod 6 == 0?1:0), where t(n) = n*(n+1)/2.
a(n) = ceiling(1/12*n^2 + 1/2*n) + (n mod 6 == 0?1:0).
[Here "n%6" means "n mod 6" while "(n mod 6 == 0?1:0)" means "if n mod 6 == 0 then 1, else 0" (as in C).]
(End)
a(n) = Sum_{i=0..floor(n/3)} 1 + floor((n - 3*i)/2). - Jon Perry, Jun 27 2003
a(n) = Sum_{k=0..n} floor((k + 2)/2) * (cos(2*Pi*(n - k)/3 + Pi/3)/3 + sqrt(3) * sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3). - Paul Barry, Apr 16 2005
(m choose 3)_q = (q^m-1) * (q^(m-1) - 1) * (q^(m-2) - 1)/((q^3 - 1) * (q^2 - 1) * (q - 1)).
a(n) = Sum_{k=0..floor(n/2)} floor((3 + n - 2*k)/3). - Paul Barry, Nov 11 2003
A117220(n) = a(A003586(n)). - Reinhard Zumkeller, Mar 04 2006
a(n) = 3 * Sum_{i=2..n+1} floor(i/2) - floor(i/3). - Thomas Wieder, Feb 11 2007
Identical to the number of points inside or on the boundary of the integer grid of {I, J}, bounded by the three straight lines I = 0, I - J = 0 and I + 2J = n. - Jonathan Vos Post, Jul 03 2007
a(n) = A026820(n,3) for n > 2. - Reinhard Zumkeller, Jan 21 2010
Euler transform of length 3 sequence [ 1, 1, 1]. - Michael Somos, Feb 25 2012
a(n) = A005044(2*n + 3) = A005044(2*n + 6). - Michael Somos, Feb 25 2012
a(n) = A000212(n+3) - A002620(n+3). - Richard R. Forberg, Dec 08 2013
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6). - David Neil McGrath, Feb 14 2015
a(n) = floor((n^2+3)/12) + floor((n+2)/2). - Giacomo Guglieri, Apr 02 2019
From Devansh Singh, May 28 2020: (Start)
Let p(n, 3) be the number of 3-part integer partitions in which every part is > 0.
Then for n >= 3, p(n, 3) is equal to:
(n^2 - 1)/12 when n is odd and 3 does not divide n.
(n^2 + 3)/12 when n is odd and 3 divides n.
(n^2 - 4)/12 when n is even and 3 does not divide n.
(n^2)/12 when n is even and 3 divides n.
For n >= 3, p(n, 3) = a(n-3). (End)
a(n) = floor(((n+3)^2 + 4)/12). - Vladimír Modrák, Zuzana Soltysova, Dec 08 2020
Sum_{n>=0} 1/a(n) = 15/4 - Pi/(2*sqrt(3)) + Pi^2/18 + tanh(Pi/(2*sqrt(3)))*Pi/sqrt(3). - Amiram Eldar, Sep 29 2022
E.g.f.: exp(-x)*(9 + exp(2*x)*(47 + 42*x + 6*x^2) + 16*exp(x/2)*cos(sqrt(3)*x/2))/72. - Stefano Spezia, Mar 05 2023
a(6n) = 1+6*A000217(n); Sum_{i=1..n} a(6*i) = A000578(n+1). - David García Herrero, May 05 2024

Extensions

Name edited by Gus Wiseman, Apr 15 2019

A101296 n has the a(n)-th distinct prime signature.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 5, 6, 2, 9, 2, 10, 4, 4, 4, 11, 2, 4, 4, 8, 2, 9, 2, 6, 6, 4, 2, 12, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 13, 2, 4, 6, 14, 4, 9, 2, 6, 4, 9, 2, 15, 2, 4, 6, 6, 4, 9, 2, 12, 7, 4, 2, 13, 4, 4, 4, 8, 2, 13, 4, 6, 4, 4, 4, 16, 2, 6, 6, 11, 2, 9, 2, 8, 9, 4, 2, 15, 2, 9, 4, 12, 2, 9, 4, 6, 6, 4, 4, 17
Offset: 1

Views

Author

David Wasserman, Dec 21 2004

Keywords

Comments

From Antti Karttunen, May 12 2017: (Start)
Restricted growth sequence transform of A046523, the least representative of each prime signature. Thus this partitions the natural numbers to the same equivalence classes as A046523, i.e., for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j), and for that reason satisfies in that respect all the same conditions as A046523. For example, we have, for all i, j: if a(i) = a(j), then:
A000005(i) = A000005(j), A008683(i) = A008683(j), A286605(i) = A286605(j).
So, this sequence (instead of A046523) can be used for finding sequences where a(n)'s value is dependent only on the prime signature of n, that is, only on the multiset of prime exponents in the factorization of n. (End)
This is also the restricted growth sequence transform of many other sequences, for example, that of A181819. See further comments there. - Antti Karttunen, Apr 30 2022

Examples

			From _David A. Corneth_, May 12 2017: (Start)
1 has prime signature (), the first distinct prime signature. Therefore, a(1) = 1.
2 has prime signature (1), the second distinct prime signature after (1). Therefore, a(2) = 2.
3 has prime signature (1), as does 2. Therefore, a(3) = a(2) = 2.
4 has prime signature (2), the third distinct prime signature after () and (1). Therefore, a(4) = 3. (End)
From _Antti Karttunen_, May 12 2017: (Start)
Construction of restricted growth sequences: In this case we start with a(1) = 1 for A046523(1) = 1, and thereafter, for all n > 1, we use the least so far unused natural number k for a(n) if A046523(n) has not been encountered before, otherwise [whenever A046523(n) = A046523(m), for some m < n], we set a(n) = a(m).
For n = 2, A046523(2) = 2, which has not been encountered before (first prime), thus we allot for a(2) the least so far unused number, which is 2, thus a(2) = 2.
For n = 3, A046523(2) = 2, which was already encountered as A046523(1), thus we set a(3) = a(2) = 2.
For n = 4, A046523(4) = 4, not encountered before (first square of prime), thus we allot for a(4) the least so far unused number, which is 3, thus a(4) = 3.
For n = 5, A046523(5) = 2, as for the first time encountered at n = 2, thus we set a(5) = a(2) = 2.
For n = 6, A046523(6) = 6, not encountered before (first semiprime pq with distinct p and q), thus we allot for a(6) the least so far unused number, which is 4, thus a(6) = 4.
For n = 8, A046523(8) = 8, not encountered before (first cube of a prime), thus we allot for a(8) the least so far unused number, which is 5, thus a(8) = 5.
For n = 9, A046523(9) = 4, as for the first time encountered at n = 4, thus a(9) = 3.
(End)
From _David A. Corneth_, May 12 2017: (Start)
(Rough) description of an algorithm of computing the sequence:
Suppose we want to compute a(n) for n in [1..20].
We set up a vector of 20 elements, values 0, and a number m = 1, the minimum number we haven't checked and c = 0, the number of distinct prime signatures we've found so far.
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
We check the prime signature of m and see that it's (). We increase c with 1 and set all elements up to 20 with prime signature () to 1. In the process, we adjust m. This gives:
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The least number we haven't checked is m = 2. 2 has prime signature (1). We increase c with 1 and set all elements up to 20 with prime signature (1) to 2. In the process, we adjust m. This gives:
[1, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]
We check the prime signature of m = 4 and see that its prime signature is (2). We increase c with 1 and set all numbers up to 20 with prime signature (2) to 3. This gives:
[1, 2, 2, 3, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]
Similarily, after m = 6, we get
[1, 2, 2, 3, 2, 4, 2, 0, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 8 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 12 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 0, 2, 6, 2, 0], after m = 16 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 0], after m = 20 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 8]. Now, m > 20 so we stop. (End)
The above method is inefficient, because the step "set all elements a(n) up to n = Nmax with prime signature s(n) = S[c] to c" requires factoring all integers up to Nmax (or at least comparing their signature, once computed, with S[c]) again and again. It is much more efficient to run only once over each m = 1..Nmax, compute its prime signature s(m), add it to an ordered list in case it did not occur earlier, together with its "rank" (= new size of the list), and assign that rank to a(m). The list of prime signatures is much shorter than [1..Nmax]. One can also use m'(m) := the smallest n with the prime signature of m (which is faster to compute than to search for the signature) as representative for s(m), and set a(m) := a(m'(m)). Then it is sufficient to have just one counter (number of prime signatures seen so far) as auxiliary variable, in addition to the sequence to be computed. - _M. F. Hasler_, Jul 18 2019
		

Crossrefs

Cf. A025487, A046523, A064839 (ordinal transform of this sequence), A181819, and arrays A095904, A179216.
Sequences that are unions of finite number (>= 2) of equivalence classes determined by the values that this sequence obtains (i.e., sequences mentioned in David A. Corneth's May 12 2017 formula): A001358 (A001248 U A006881, values 3 & 4), A007422 (values 1, 4, 5), A007964 (2, 3, 4, 5), A014612 (5, 6, 9), A030513 (4, 5), A037143 (1, 2, 3, 4), A037144 (1, 2, 3, 4, 5, 6, 9), A080258 (6, 7), A084116 (2, 4, 5), A167171 (2, 4), A217856 (6, 9).
Cf. also A077462, A305897 (stricter variants, with finer partitioning) and A254524, A286603, A286605, A286610, A286619, A286621, A286622, A286626, A286378 for other similarly constructed sequences.

Programs

  • Maple
    A101296 := proc(n)
        local a046523, a;
        a046523 := A046523(n) ;
        for a from 1 do
            if A025487(a) = a046523 then
                return a;
            elif A025487(a) > a046523 then
                return -1 ;
            end if;
        end do:
    end proc: # R. J. Mathar, May 26 2017
  • Mathematica
    With[{nn = 120}, Function[s, Table[Position[Keys@s, k_ /; MemberQ[k, n]][[1, 1]], {n, nn}]]@ Map[#1 -> #2 & @@ # &, Transpose@ {Values@ #, Keys@ #}] &@ PositionIndex@ Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1], {n, nn}] ] (* Michael De Vlieger, May 12 2017, Version 10 *)
  • PARI
    find(ps, vps) = {for (k=1, #vps, if (vps[k] == ps, return(k)););}
    lisps(nn) = {vps = []; for (n=1, nn, ps = vecsort(factor(n)[,2]); ips = find(ps, vps); if (! ips, vps = concat(vps, ps); ips = #vps); print1(ips, ", "););} \\ Michel Marcus, Nov 15 2015; edited by M. F. Hasler, Jul 16 2019
    
  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    write_to_bfile(1,rgs_transform(vector(100000,n,A046523(n))),"b101296.txt");
    \\ Antti Karttunen, May 12 2017

Formula

A025487(a(n)) = A046523(n).
Indices of records give A025487. - Michel Marcus, Nov 16 2015
From David A. Corneth, May 12 2017: (Start) [Corresponding characteristic function in brackets]
a(A000012(n)) = 1 (sig.: ()). [A063524]
a(A000040(n)) = 2 (sig.: (1)). [A010051]
a(A001248(n)) = 3 (sig.: (2)). [A302048]
a(A006881(n)) = 4 (sig.: (1,1)). [A280710]
a(A030078(n)) = 5 (sig.: (3)).
a(A054753(n)) = 6 (sig.: (1,2)). [A353472]
a(A030514(n)) = 7 (sig.: (4)).
a(A065036(n)) = 8 (sig.: (1,3)).
a(A007304(n)) = 9 (sig.: (1,1,1)). [A354926]
a(A050997(n)) = 10 (sig.: (5)).
a(A085986(n)) = 11 (sig.: (2,2)).
a(A178739(n)) = 12 (sig.: (1,4)).
a(A085987(n)) = 13 (sig.: (1,1,2)).
a(A030516(n)) = 14 (sig.: (6)).
a(A143610(n)) = 15 (sig.: (2,3)).
a(A178740(n)) = 16 (sig.: (1,5)).
a(A189975(n)) = 17 (sig.: (1,1,3)).
a(A092759(n)) = 18 (sig.: (7)).
a(A189988(n)) = 19 (sig.: (2,4)).
a(A179643(n)) = 20 (sig.: (1,2,2)).
a(A189987(n)) = 21 (sig.: (1,6)).
a(A046386(n)) = 22 (sig.: (1,1,1,1)).
a(A162142(n)) = 23 (sig.: (2,2,2)).
a(A179644(n)) = 24 (sig.: (1,1,4)).
a(A179645(n)) = 25 (sig.: (8)).
a(A179646(n)) = 26 (sig.: (2,5)).
a(A163569(n)) = 27 (sig.: (1,2,3)).
a(A179664(n)) = 28 (sig.: (1,7)).
a(A189982(n)) = 29 (sig.: (1,1,1,2)).
a(A179666(n)) = 30 (sig.: (3,4)).
a(A179667(n)) = 31 (sig.: (1,1,5)).
a(A179665(n)) = 32 (sig.: (9)).
a(A189990(n)) = 33 (sig.: (2,6)).
a(A179669(n)) = 34 (sig.: (1,2,4)).
a(A179668(n)) = 35 (sig.: (1,8)).
a(A179670(n)) = 36 (sig.: (1,1,1,3)).
a(A179671(n)) = 37 (sig.: (3,5)).
a(A162143(n)) = 38 (sig.: (2,2,2)).
a(A179672(n)) = 39 (sig.: (1,1,6)).
a(A030629(n)) = 40 (sig.: (10)).
a(A179688(n)) = 41 (sig.: (1,3,3)).
a(A179689(n)) = 42 (sig.: (2,7)).
a(A179690(n)) = 43 (sig.: (1,1,2,2)).
a(A189991(n)) = 44 (sig.: (4,4)).
a(A179691(n)) = 45 (sig.: (1,2,5)).
a(A179692(n)) = 46 (sig.: (1,9)).
a(A179693(n)) = 47 (sig.: (1,1,1,4)).
a(A179694(n)) = 48 (sig.: (3,6)).
a(A179695(n)) = 49 (sig.: (2,2,3)).
a(A179696(n)) = 50 (sig.: (1,1,7)).
(End)

Extensions

Data section extended to 120 terms by Antti Karttunen, May 12 2017
Minor edits/corrections by M. F. Hasler, Jul 18 2019

A046386 Products of exactly four distinct primes.

Original entry on oeis.org

210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 910, 930, 966, 1110, 1122, 1155, 1190, 1218, 1230, 1254, 1290, 1302, 1326, 1330, 1365, 1410, 1430, 1482, 1518, 1554, 1590, 1610, 1722, 1770, 1785, 1794, 1806, 1830, 1870, 1914, 1938, 1974
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

A squarefree subsequence of A033993. Numbers like 420 = 2^2*3*5*7 with at least one prime exponent greater than 1 in the prime signature are excluded here. - R. J. Mathar, Apr 03 2011
Numbers such that omega(n) = bigomega(n) = 4. - Michel Marcus, Dec 15 2015

Examples

			210 = 2*3*5*7;
330 = 2*3*5*11;
390 = 2*3*5*13;
462 = 2*3*7*11.
		

Crossrefs

Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
Cf. A001221 (omega), A001222 (bigomega), A014613 (bigomega(N) = 4) and A033993 (omega(N) = 4).
Cf. A046402 (4 palindromic prime factors).

Programs

  • Mathematica
    fQ[n_] := Last /@ FactorInteger[n] == {1, 1, 1, 1}; Select[ Range[2000], fQ[ # ] &] (* Robert G. Wilson v, Aug 04 2005 *)
    Select[Range[2000],PrimeNu[#]==PrimeOmega[#]==4&] (* Harvey P. Dale, Jan 05 2025 *)
  • PARI
    is(n)=factor(n)[,2]==[1,1,1,1]~ \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    is(n) = omega(n)==4 && bigomega(n)==4 \\ Hugo Pfoertner, Dec 18 2018
    
  • PARI
    list(lim)=my(v=List()); forprime(p=2,sqrtnint(lim\=1,4), forprime(q=p+1,sqrtnint(lim\p,3), forprime(r=q+2,sqrtint(lim\p\q), my(t=p*q*r); forprime(s=r+2,lim\t, listput(v,t*s))))); Set(v) \\ Charles R Greathouse IV, Dec 05 2024
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A046386(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1),1) for b,m in enumerate(primerange(k+1,integer_nthroot(x//k,3)[0]+1),a+1) for c,r in enumerate(primerange(m+1,isqrt(x//(k*m))+1),b+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 29 2024

Formula

Intersection of A014613 (product of 4 primes) and A033993 (divisible by 4 distinct primes). - M. F. Hasler, Mar 24 2022

A000212 a(n) = floor(n^2/3).

Original entry on oeis.org

0, 0, 1, 3, 5, 8, 12, 16, 21, 27, 33, 40, 48, 56, 65, 75, 85, 96, 108, 120, 133, 147, 161, 176, 192, 208, 225, 243, 261, 280, 300, 320, 341, 363, 385, 408, 432, 456, 481, 507, 533, 560, 588, 616, 645, 675, 705, 736, 768, 800, 833, 867, 901, 936
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the n X n matrix of the following form: [3 2 1 0 0 0 0 0 0 0 / 2 3 2 1 0 0 0 0 0 0 / 1 2 3 2 1 0 0 0 0 0 / 0 1 2 3 2 1 0 0 0 0 / 0 0 1 2 3 2 1 0 0 0 / 0 0 0 1 2 3 2 1 0 0 / 0 0 0 0 1 2 3 2 1 0 / 0 0 0 0 0 1 2 3 2 1 / 0 0 0 0 0 0 1 2 3 2 / 0 0 0 0 0 0 0 1 2 3]. Then for n > 2 a(n) = det M_(n-2). - Benoit Cloitre, Jun 20 2002
Largest possible size for the directed Cayley graph on two generators having diameter n - 2. - Ralf Stephan, Apr 27 2003
It seems that for n >= 2, a(n) is the maximum number of non-overlapping 1 X 3 rectangles that can be packed into an n X n square. Rectangles can only be placed parallel to the sides of the square. Verified with Lobato's tool, see links. - Dmitry Kamenetsky, Aug 03 2009
Maximum number of edges in a K4-free graph with n vertices. - Yi Yang, May 23 2012
3a(n) + 1 = y^2 if n is not 0 mod 3 and 3a(n) = y^2 otherwise. - Jon Perry, Sep 10 2012
Apart from the initial term this is the elliptic troublemaker sequence R_n(1, 3) (also sequence R_n(2, 3)) in the notation of Stange (see Table 1, p. 16). For other elliptic troublemaker sequences R_n(a, b) see the cross references below. - Peter Bala, Aug 08 2013
The number of partitions of 2n into exactly 3 parts. - Colin Barker, Mar 22 2015
a(n-1) is the maximum number of non-overlapping triples (i,k), (i+1, k+1), (i+2, k+2) in an n X n matrix. Details: The triples are distributed along the main diagonal and 2*(n-1) other diagonals. Their maximum number is floor(n/3) + 2*Sum_{k = 1..n-1} floor(k/3) = floor((n-1)^2/3). - Gerhard Kirchner, Feb 04 2017
Conjecture: a(n) is the number of intersection points of n cevians that cut a triangle into the maximum number of pieces (see A007980). - Anton Zakharov, May 07 2017
From Gus Wiseman, Oct 05 2020: (Start)
Also the number of unimodal triples (meaning the middle part is not strictly less than both of the other two) of positive integers summing to n + 1. The a(2) = 1 through a(6) = 12 triples are:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5)
(1,2,1) (1,2,2) (1,2,3) (1,2,4)
(2,1,1) (1,3,1) (1,3,2) (1,3,3)
(2,2,1) (1,4,1) (1,4,2)
(3,1,1) (2,2,2) (1,5,1)
(2,3,1) (2,2,3)
(3,2,1) (2,3,2)
(4,1,1) (2,4,1)
(3,2,2)
(3,3,1)
(4,2,1)
(5,1,1)
(End)

Examples

			G.f. = x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 12*x^6 + 16*x^7 + 21*x^8 + 27*x^9 + 33*x^10 + ...
From _Gus Wiseman_, Oct 07 2020: (Start)
The a(2) = 1 through a(6) = 12 partitions of 2*n into exactly 3 parts (Barker) are the following. The Heinz numbers of these partitions are given by the intersection of A014612 (triples) and A300061 (even sum).
  (2,1,1)  (2,2,2)  (3,3,2)  (4,3,3)  (4,4,4)
           (3,2,1)  (4,2,2)  (4,4,2)  (5,4,3)
           (4,1,1)  (4,3,1)  (5,3,2)  (5,5,2)
                    (5,2,1)  (5,4,1)  (6,3,3)
                    (6,1,1)  (6,2,2)  (6,4,2)
                             (6,3,1)  (6,5,1)
                             (7,2,1)  (7,3,2)
                             (8,1,1)  (7,4,1)
                                      (8,2,2)
                                      (8,3,1)
                                      (9,2,1)
                                      (10,1,1)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000290, A007590 (= R_n(2,4)), A002620 (= R_n(1,2)), A118015, A056827, A118013.
Cf. A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A033440, A033441, A033442, A033443, A033444.
Cf. A001353 and A004523 (first differences). A184535 (= R_n(2,5) = R_n(3,5)).
Cf. A238738. - Bruno Berselli, Apr 17 2015
Cf. A005408.
A000217(n-2) counts 3-part compositions.
A014612 ranks 3-part partitions, with strict case A007304.
A069905 counts the 3-part partitions.
A211540 counts strict 3-part partitions.
A337453 ranks strict 3-part compositions.
A001399(n-6)*4 is the strict version.
A001523 counts unimodal compositions, with strict case A072706.
A001840(n-4) is the non-unimodal version.
A001399(n-6)*2 is the strict non-unimodal version.
A007052 counts unimodal patterns.
A115981 counts non-unimodal compositions, ranked by A335373.
A011782 counts unimodal permutations.
A335373 is the complement of a ranking sequence for unimodal compositions.
A337459 ranks these compositions, with complement A337460.

Programs

  • Magma
    [Floor(n^2 / 3): n in [0..50]]; // Vincenzo Librandi, May 08 2011
    
  • Maple
    A000212:=(-1+z-2*z**2+z**3-2*z**4+z**5)/(z**2+z+1)/(z-1)**3; # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence with an additional leading 1.
    A000212 := proc(n) option remember; `if`(n<4, [0,0,1,3][n+1], a(n-1)+a(n-3) -a(n-4)+2) end; # Peter Luschny, Nov 20 2011
  • Mathematica
    Table[Quotient[n^2, 3], {n, 0, 59}] (* Michael Somos, Jan 22 2014 *)
  • PARI
    {a(n) = n^2 \ 3}; /* Michael Somos, Sep 25 2006 */
    
  • Python
    def A000212(n): return n**2//3 # Chai Wah Wu, Jun 07 2022

Formula

G.f.: x^2*(1+x)/((1-x)^2*(1-x^3)). - Franklin T. Adams-Watters, Apr 01 2002
Euler transform of length 3 sequence [ 3, -1, 1]. - Michael Somos, Sep 25 2006
G.f.: x^2 * (1 - x^2) / ((1 - x)^3 * (1 - x^3)). a(-n) = a(n). - Michael Somos, Sep 25 2006
a(n) = Sum_{k = 0..n} A011655(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = a(n-1) + a(n-3) - a(n-4) + 2 for n >= 4. - Alexander Burstein, Nov 20 2011
a(n) = a(n-3) + A005408(n-2) for n >= 3. - Alexander Burstein, Feb 15 2013
a(n) = (n-1)^2 - a(n-1) - a(n-2) for n >= 2. - Richard R. Forberg, Jun 05 2013
Sum_{n >= 2} 1/a(n) = (27 + 6*sqrt(3)*Pi + 2*Pi^2)/36. - Enrique Pérez Herrero, Jun 29 2013
0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jan 22 2014
a(n) = Sum_{k = 1..n} k^2*A049347(n+2-k). - Mircea Merca, Feb 04 2014
a(n) = Sum_{i = 1..n+1} (ceiling(i/3) + floor(i/3) - 1). - Wesley Ivan Hurt, Jun 06 2014
a(n) = Sum_{j = 1..n} Sum_{i=1..n} ceiling((i+j-n-1)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = Sum_{i = 1..n} floor(2*i/3). - Wesley Ivan Hurt, May 22 2017
a(-n) = a(n). - Paul Curtz, Jan 19 2020
a(n) = A001399(2*n - 3). - Gus Wiseman, Oct 07 2020
a(n) = (1/6)*(2*n^2 - 3 + gcd(n,3)). - Ridouane Oudra, Apr 15 2021
E.g.f.: (exp(x)*(-2 + 3*x*(1 + x)) + 2*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 24 2022
Sum_{n>=2} (-1)^n/a(n) = Pi/sqrt(3) - Pi^2/36 - 3/4. - Amiram Eldar, Dec 02 2022

Extensions

Edited by Charles R Greathouse IV, Apr 19 2010

A087788 3-Carmichael numbers: Carmichael numbers equal to the product of 3 primes: k = p*q*r, where p < q < r are primes such that a^(k-1) == 1 (mod k) if a is prime to k.

Original entry on oeis.org

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 46657, 52633, 115921, 162401, 252601, 294409, 314821, 334153, 399001, 410041, 488881, 512461, 530881, 1024651, 1152271, 1193221, 1461241, 1615681, 1857241, 1909001, 2508013
Offset: 1

Views

Author

Miklos Kristof, Oct 07 2003

Keywords

Comments

It is interesting that most of the numbers have the last digit 1. For example 530881, 3581761, 7207201, etc.
Granville & Pomerance conjecture that there are ~ c x^(1/3)/(log x)^3 terms of this sequence up to x. Heath-Brown proves that, for any e > 0, there are O(x^(7/20 + e)) terms of this sequence up to x. - Charles R Greathouse IV, Nov 19 2012

Examples

			a(6)=6601=7*23*41: 7-1|6601-1, 23-1|6601-1, 41-1|6601-1, i.e., 6|6600, 22|6600, 40|6600.
		

References

  • O. Ore, Number Theory and Its History, McGraw-Hill, 1948, Reprinted by Dover Publications, 1988, Chapter 14.

Crossrefs

Intersection of A002997 and A007304.
Cf. A162290.

Programs

  • PARI
    list(lim)=my(v=List());forprime(p=3,(lim)^(1/3), forprime(q=p+1, sqrt(lim\p),forprime(r=q+1,lim\(p*q),if((q*r-1)%(p-1)||(p*r-1)%(q-1)||(p*q-1)%(r-1),,listput(v,p*q*r)))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Nov 19 2012

Formula

k is composite and squarefree and for p prime, p|k => p-1|k-1. A composite odd number k is a Carmichael number if and only if k is squarefree and p-1 divides k-1 for every prime p dividing k (Korselt, 1899) k = p*q*r, p-1|k-1, q-1|k-1, r-1|k-1.

Extensions

Minor edit to definition by N. J. A. Sloane, Sep 14 2009

A001840 Expansion of g.f. x/((1 - x)^2*(1 - x^3)).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551, 570, 590
Offset: 0

Views

Author

Keywords

Comments

a(n-3) is the number of aperiodic necklaces (Lyndon words) with 3 black beads and n-3 white beads.
Number of triangular partitions (see Almkvist).
Consists of arithmetic progression quadruples of common difference n+1 starting at A045943(n). Refers to the least number of coins needed to be rearranged in order to invert the pattern of a (n+1)-rowed triangular array. For instance, a 5-rowed triangular array requires a minimum of a(4)=5 rearrangements (shown bracketed here) for it to be turned upside down.
.....{*}..................{*}*.*{*}{*}
.....*.*....................*.*.*.{*}
....*.*.*....---------\......*.*.*
..{*}*.*.*...---------/.......*.*
{*}{*}*.*{*}..................{*}
- Lekraj Beedassy, Oct 13 2003
Partial sums of 1,1,1,2,2,2,3,3,3,4,4,4,... - Jon Perry, Mar 01 2004
Sum of three successive terms is a triangular number in natural order starting with 3: a(n)+a(n+1)+a(n+2) = T(n+2) = (n+2)*(n+3)/2. - Amarnath Murthy, Apr 25 2004
Apply Riordan array (1/(1-x^3),x) to n. - Paul Barry, Apr 16 2005
Absolute values of numbers that appear in A145919. - Matthew Vandermast, Oct 28 2008
In the Moree definition, (-1)^n*a(n) is the 3rd Witt transform of A033999 and (-1)^n*A004524(n) with 2 leading zeros dropped is the 2nd Witt transform of A033999. - R. J. Mathar, Nov 08 2008
Column sums of:
1 2 3 4 5 6 7 8 9.....
1 2 3 4 5 6.....
1 2 3.....
........................
----------------------
1 2 3 5 7 9 12 15 18 - Jon Perry, Nov 16 2010
a(n) is the sum of the positive integers <= n that have the same residue modulo 3 as n. They are the additive counterpart of the triple factorial numbers. - Peter Luschny, Jul 06 2011
a(n+1) is the number of 3-tuples (w,x,y) with all terms in {0,...,n} and w=3*x+y. - Clark Kimberling, Jun 04 2012
a(n+1) is the number of pairs (x,y) with x and y in {0,...,n}, x-y = (1 mod 3), and x+y < n. - Clark Kimberling, Jul 02 2012
a(n+1) is the number of partitions of n into two sorts of part(s) 1 and one sort of (part) 3. - Joerg Arndt, Jun 10 2013
Arrange A004523 in rows successively shifted to the right two spaces and sum the columns:
1 2 2 3 4 4 5 6 6...
1 2 2 3 4 4 5...
1 2 2 3 4...
1 2 2...
1...
------------------------------
1 2 3 5 7 9 12 15 18... - L. Edson Jeffery, Jul 30 2014
a(n) = A258708(n+1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
Also the number of triples of positive integers summing to n + 4, the first less than each of the other two. Also the number of triples of positive integers summing to n + 2, the first less than or equal to each of the other two. - Gus Wiseman, Oct 11 2020
Also the lower matching number of the (n+1)-triangular honeycomb king graph = n-triangular grid graph (West convention). - Eric W. Weisstein, Dec 14 2024

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 9*x^6 + 12*x^7 + 15*x^8 + 18*x^9 + ...
1+2+3=6=t(3), 2+3+5=t(4), 5+7+9=t(5).
[n] a(n)
--------
[1] 1
[2] 2
[3] 3
[4] 1 + 4
[5] 2 + 5
[6] 3 + 6
[7] 1 + 4 + 7
[8] 2 + 5 + 8
[9] 3 + 6 + 9
a(7) = floor(2/3) +floor(3/3) +floor(4/3) +floor(5/3) +floor(6/3) +floor(7/3) +floor(8/3) +floor(9/3) = 12. - _Bruno Berselli_, Aug 29 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 25.
  • Ulrich Faigle, Review of Gerhard Post and G.J. Woeginger, Sports tournaments, home-away assignments and the break minimization problem, MR2224983(2007b:90134), 2007.
  • Hansraj Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • Richard K. Guy, A problem of Zarankiewicz, in P. Erdős and G. Katona, editors, Theory of Graphs (Proceedings of the Colloquium, Tihany, Hungary), Academic Press, NY, 1968, pp. 119-150, (p. 126, divided by 2).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Ordered union of triangular matchstick numbers A045943 and generalized pentagonal numbers A001318.
Cf. A058937.
A column of triangle A011847.
Cf. A258708.
A001399 counts 3-part partitions, ranked by A014612.
A337483 counts either weakly increasing or weakly decreasing triples.
A337484 counts neither strictly increasing nor strictly decreasing triples.
A014311 ranks 3-part compositions, with strict case A337453.

Programs

  • Haskell
    a001840 n = a001840_list !! n
    a001840_list = scanl (+) 0 a008620_list
    -- Reinhard Zumkeller, Apr 16 2012
  • Magma
    [ n le 2 select n else n*(n+1)/2-Self(n-1)-Self(n-2): n in [1..58] ];  // Klaus Brockhaus, Oct 01 2009
    
  • Maple
    A001840 := n->floor((n+1)*(n+2)/6);
    A001840:=-1/((z**2+z+1)*(z-1)**3); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
    seq(floor(binomial(n-1,2)/3), n=3..61); # Zerinvary Lajos, Jan 12 2009
    A001840 :=  n -> add(k, k = select(k -> k mod 3 = n mod 3, [$1 .. n])): seq(A001840(n), n = 0 .. 58); # Peter Luschny, Jul 06 2011
  • Mathematica
    a[0]=0; a[1]=1; a[n_]:= a[n]= n(n+1)/2 -a[n-1] -a[n-2]; Table[a[n], {n,0,100}]
    f[n_] := Floor[(n + 1)(n + 2)/6]; Array[f, 59, 0] (* Or *)
    CoefficientList[ Series[ x/((1 + x + x^2)*(1 - x)^3), {x, 0, 58}], x] (* Robert G. Wilson v *)
    a[ n_] := With[{m = If[ n < 0, -3 - n, n]}, SeriesCoefficient[ x /((1 - x^3) (1 - x)^2), {x, 0, m}]]; (* Michael Somos, Jul 11 2011 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,5},60] (* Harvey P. Dale, Jul 25 2011 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n+4,{3}],#[[1]]<#[[2]]&&#[[1]]<#[[3]]&]],{n,0,15}] (* Gus Wiseman, Oct 05 2020 *)
  • PARI
    {a(n) = (n+1) * (n+2) \ 6}; /* Michael Somos, Feb 11 2004 */
    
  • Sage
    [binomial(n, 2) // 3 for n in range(2, 61)] # Zerinvary Lajos, Dec 01 2009
    

Formula

a(n) = (A000217(n+1) - A022003(n-1))/3;
a(n) = (A016754(n+1) - A010881(A016754(n+1)))/24;
a(n) = (A033996(n+1) - A010881(A033996(n+1)))/24.
Euler transform of length 3 sequence [2, 0, 1].
a(3*k-1) = k*(3*k + 1)/2;
a(3*k) = 3*k*(k + 1)/2;
a(3*k+1) = (k + 1)*(3*k + 2)/2.
a(n) = floor( (n+1)*(n+2)/6 ) = floor( A000217(n+1)/3 ).
a(n+1) = a(n) + A008620(n) = A002264(n+3). - Reinhard Zumkeller, Aug 01 2002
From Michael Somos, Feb 11 2004: (Start)
G.f.: x / ((1-x)^2 * (1-x^3)).
a(n) = 1 + a(n-1) + a(n-3) - a(n-4).
a(-3-n) = a(n). (End)
a(n) = a(n-3) + n for n > 2; a(0)=0, a(1)=1, a(2)=2. - Paul Barry, Jul 14 2004
a(n) = binomial(n+3, 3)/(n+3) + cos(2*Pi*(n-1)/3)/9 + sqrt(3)sin(2*Pi*(n-1)/3)/9 - 1/9. - Paul Barry, Jan 01 2005
From Paul Barry, Apr 16 2005: (Start)
a(n) = Sum_{k=0..n} k*(cos(2*Pi*(n-k)/3 + Pi/3)/3 + sqrt(3)*sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3).
a(n) = Sum_{k=0..floor(n/3)} n-3*k. (End)
For n > 1, a(n) = A000217(n) - a(n-1) - a(n-2); a(0)=0, a(1)=1.
G.f.: x/(1 + x + x^2)/(1 - x)^3. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = (4 + 3*n^2 + 9*n)/18 + ((n mod 3) - ((n-1) mod 3))/9. - Klaus Brockhaus, Oct 01 2009
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5), with n>4, a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=5. - Harvey P. Dale, Jul 25 2011
a(n) = A214734(n + 2, 1, 3). - Renzo Benedetti, Aug 27 2012
G.f.: x*G(0), where G(k) = 1 + x*(3*k+4)/(3*k + 2 - 3*x*(k+2)*(3*k+2)/(3*(1+x)*k + 6*x + 4 - x*(3*k+4)*(3*k+5)/(x*(3*k+5) + 3*(k+1)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 10 2013
Empirical: a(n) = floor((n+3)/(e^(6/(n+3))-1)). - Richard R. Forberg, Jul 24 2013
a(n) = Sum_{i=0..n} floor((i+2)/3). - Bruno Berselli, Aug 29 2013
0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jan 22 2014
a(n) = n/2 + floor(n^2/3 + 2/3)/2. - Bruno Berselli, Jan 23 2017
a(n) + a(n+1) = A000212(n+2). - R. J. Mathar, Jan 14 2021
Sum_{n>=1} 1/a(n) = 20/3 - 2*Pi/sqrt(3). - Amiram Eldar, Sep 27 2022
E.g.f.: (exp(x)*(4 + 12*x + 3*x^2) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/18. - Stefano Spezia, Apr 05 2023
Previous Showing 11-20 of 214 results. Next