cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 231 results. Next

A001044 a(n) = (n!)^2.

Original entry on oeis.org

1, 1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, 131681894400, 13168189440000, 1593350922240000, 229442532802560000, 38775788043632640000, 7600054456551997440000, 1710012252724199424000000, 437763136697395052544000000, 126513546505547170185216000000
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the symmetrical n X n matrix M_n(i,j) = 1/Max(i,j); then for n > 0 det(M_n)=1/a(n). - Benoit Cloitre, Apr 27 2002
The n-th entry of the sequence is the value of the permanent of a k X k matrix A defined as follows: k is the n-th odd number; if we concatenate the rows of A to form a vector v of length n^2, v_{i}=1 if i=1 or a multiple of 2. - Simone Severini, Feb 15 2006
a(n) = number of set partitions of {1,2,...,3n-1,3n} into blocks of size 3 in which the entries of each block mod 3 are distinct. For example, a(2) = 4 counts 123-456, 156-234, 126-345, 135-246. - David Callan, Mar 30 2007
From Emeric Deutsch, Nov 22 2007: (Start)
Number of permutations of {1,2,...,2n} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 1234, 1324, 3124 and 2314.
Number of permutations of {1,2,...,2n} with n even entries that are followed by a smaller entry. Example: a(2)=4 because we have 2143, 3421, 4213 and 4321.
Number of permutations of {1,2,...,2n-1} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 123, 132, 312 and 231.
Number of permutations of {1,2,...,2n-1} with n-1 odd entries followed by a smaller entry. Example: a(2)=4 because we have 132, 312, 231 and 321.
(End)
G. Leibniz in his "Ars Combinatoria" established the identity P(n)^2 = P(n-1)[P(n+1)-P(n)], where P(n) = n!. (For example, see the Burton reference.) - Mohammad K. Azarian, Mar 28 2008
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma_2(gcd(i,j)) for 1 <= i,j <= n, and n>0, where sigma_2 is A001157. - Enrique Pérez Herrero, Aug 13 2011
The o.g.f. of 1/a(n) is BesselI(0,2*sqrt(x)). See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 09 2012
Number of n x n x n cubes C of zeros and ones such that C(x,y,z) and C(u,v,w) can be nonzero simultaneously only if either x!=u, y!=v, or z!=w. This generalizes permutations which can be considered as n x n squares P of zeros and ones such that P(x,y) and P(u,v) can be nonzero simultaneously only if either x!=u or y!=v. - Joerg Arndt, May 28 2012
a(n) is the number of functions f:[n]->[n(n+1)/2] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. - Dennis P. Walsh, Nov 26 2012
From Jerrold Grossman, Jul 22 2018: (Start)
a(n) is the number of n X n 0-1 matrices whose row sums and column sums are both {1,2,...,n}.
a(n) is the number of linear arrangements of 2n blocks of n different colors, 2 of each color, such that there are an even number of blocks between each pair of blocks of the same color.
(End)
Number of ways to place n instances of a digit inside an n X n X n cube so that no two instances lie on a plane parallel to a face of the cube (see Khovanova link, Lemma 6, p. 22). - Tanya Khovanova and Wayne Zhao, Oct 17 2018
Number of permutations P of length 2n which maximize Sum_{i=1..2n} |P_i - i|. - Fang Lixing, Dec 07 2018

Examples

			Consider the square array
  1,  2,  3,  4,  5,  6, ...
  2,  4,  6,  8, 10, 12, ...
  3,  6,  9, 12, 15, 18, ...
  4,  8, 12, 16, 20, 24, ...
  5, 10, 15, 20, 25, 30, ...
  ...
then a(n) = product of n-th antidiagonal. - _Amarnath Murthy_, Apr 06 2003
a(3) = 36 since there are 36 functions f:[3]->[6] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. The functions, denoted by <f(1),f(2),f(3)>, are <1,2,4>, <1,2,5>, <1,2,6>, <1,3,4>, <1,3,5>, <1,3,6> and their respective permutations. - _Dennis P. Walsh_, Nov 26 2012
1 + x + 4*x^2 + 36*x^3 + 576*x^4 + 14400*x^5 + 518400*x^6 + ...
		

References

  • Archimedeans Problems Drive, Eureka, 22 (1959), 15.
  • David Burton, "The History of Mathematics", Sixth Edition, Problem 2, p. 433.
  • J. Dezert, editor, Smarandacheials, Mathematics Magazine, Aurora, Canada, No. 4/2004 (to appear).
  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.62(b).

Crossrefs

First right-hand column of triangle A008955.
Row n=2 of A225816.
Cf. A000290.
With signs, a row of A288580.

Programs

  • GAP
    List([0..20],n->Factorial(n)^2); # Muniru A Asiru, Oct 24 2018
    
  • Haskell
    import Data.List (genericIndex)
    a001044 n = genericIndex a001044_list n
    a001044_list = 1 : zipWith (*) (tail a000290_list) a001044_list
    -- Reinhard Zumkeller, Sep 05 2015
    
  • Magma
    [Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Oct 24 2018
    
  • Maple
    seq((n!)^2,n=0..20); # Dennis P. Walsh, Nov 26 2012
  • Mathematica
    Table[n!^2, {n, 0, 20}] (* Stefan Steinerberger, Apr 07 2006 *)
    Join[{1},Table[Det[DiagonalMatrix[Range[n]^2]],{n,20}]] (* Harvey P. Dale, Mar 31 2020 *)
  • PARI
    a(n)=n!^2 \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    import math
    for n in range(0,20): print(math.factorial(n)**2, end=', ') # Stefano Spezia, Oct 29 2018

Formula

a(n) = Integral_{x>=0} 2*BesselK(0, 2*sqrt(x))*x^n. This integral represents the n-th moment of a positive function defined on the positive half-axis. - Karol A. Penson, Oct 09 2001
a(n) ~ 2*Pi*n*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
a(n) = polygorial(n, 4) = A000142(n)/A000079(n)*A000165(n) = (n!/2^n)*Product_{i=0..n-1} (2*i + 2) = n!*Pochhammer(1, n) = n!^2. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
a(n) = Sum_{k>=0} (-1)^k*C(n, k)^2*k!*(2*n-k)!. - Philippe Deléham, Jan 07 2004
a(n) = !n!1 = !n! = Product{i=0, 1, 2, ... .}_{0 < |n-i| <= n}(n-i) = n(n-1)(n-2)...(2)(1)(-1)(-2)...(-n+2)(-n+1)(-n) = [(-1)^n][(n!)^2]. - J. Dezert (Jean.Dezert(AT)onera.fr), Mar 21 2004
D-finite with recurrence: a(0) = 1, a(n) = n^2*a(n-1). - Arkadiusz Wesolowski, Oct 04 2011
From Sergei N. Gladkovskii, Jun 14 2012: (Start)
A(x) = Sum_{n>=0,N) a(n)*x^n = 1 + x/(U(0;N-2)-x); N >= 4; U(k)= 1 + x*(k+1)^2 - x*(k+2)^2/G(k+1); besides U(0;infinity)=x; (continued fraction).
Let B(x) = Sum_{n>=0} a(n)*x^n/((n!)*(n+s)!), then B(0) = 1/(1-x) for abs(x) < 1 and B(1)= -1/x * log(1-x) for abs(x)< 1.
(End).
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)^2*(1 - x*G(k+1)). - Sergei N. Gladkovskii, Jan 15 2013
a(n) = det(S(i+2,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
a(n) = (2*n+1)!*2^(-4*n)*Sum_{k=0..n} (-1)^k*C(2*n+1,n-k)/(2*k+1). - Mircea Merca, Nov 12 2013
a(n) = A000290(A000142(n)). - Michel Marcus, Nov 12 2013
Sum_{n>=0} 1/a(n) = A070910 [Gradsteyn, Rzyhik 0.246.1]. - R. J. Mathar, Feb 25 2014. Corrected by Ilya Gutkovskiy, Aug 16 2016
From Ivan N. Ianakiev, Aug 16 2016: (Start)
a(n) = a(n-1) + 2*((n-1)^2)*sqrt(a(n-1)*a(n-2)) + ((n-1)^4)*a(n-2), for n > 1.
a(n) = a(n-1) - 2*(n^2 - 1)*sqrt(a(n-1)*a(n-2)) + (n^2 - 1)*a(n-2), for n > 1.
(End).
From Ilya Gutkovskiy, Aug 16 2016: (Start)
a(n) = A184877(n)*A184877(n-1).
Sum_{n>=0} (-1)^n/a(n) = BesselJ(0,2) = A091681. (End)
Sum_{n>=0} a(n)/(2*n+1)! = 2*Pi/sqrt(27). - Daniel Suteu, Feb 06 2017
a(n) = [x^n] Product_{k=1..n} (1 + k^2*x). - Vaclav Kotesovec, Feb 19 2022
a(n) = (2*n+1)! * [x^(2*n+1)] 4*arcsin(x/2)/sqrt(4-x^2). - Ira M. Gessel, Dec 10 2024

Extensions

More terms from James Sellers, Sep 19 2000
More terms from Simone Severini, Feb 15 2006

A132393 Triangle of unsigned Stirling numbers of the first kind (see A048994), read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 10 2007, Oct 15 2008, Oct 17 2008

Keywords

Comments

Another name: Triangle of signless Stirling numbers of the first kind.
Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
A094645*A007318 as infinite lower triangular matrices.
Row sums are the factorial numbers. - Roger L. Bagula, Apr 18 2008
Exponential Riordan array [1/(1-x), log(1/(1-x))]. - Ralf Stephan, Feb 07 2014
Also the Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015
This is the lower triagonal Sheffer matrix of the associated or Jabotinsky type |S1| = (1, -log(1-x)) (see the W. Lang link under A006232 for the notation and references). This implies the e.g.f.s given below. |S1| is the transition matrix from the monomial basis {x^n} to the rising factorial basis {risefac(x,n)}, n >= 0. - Wolfdieter Lang, Feb 21 2017
T(n, k), for n >= k >= 1, is also the total volume of the n-k dimensional cell (polytope) built from the n-k orthogonal vectors of pairwise different lengths chosen from the set {1, 2, ..., n-1}. See the elementary symmetric function formula for T(n, k) and an example below. - Wolfdieter Lang, May 28 2017
From Wolfdieter Lang, Jul 20 2017: (Start)
The compositional inverse w.r.t. x of y = y(t;x) = x*(1 - t(-log(1-x)/x)) = x + t*log(1-x) is x = x(t;y) = ED(y,t) := Sum_{d>=0} D(d,t)*y^(d+1)/(d+1)!, the e.g.f. of the o.g.f.s D(d,t) = Sum_{m>=0} T(d+m, m)*t^m of the diagonal sequences of the present triangle. See the P. Bala link for a proof (there d = n-1, n >= 1, is the label for the diagonals).
This inversion gives D(d,t) = P(d, t)/(1-t)^(2*d+1), with the numerator polynomials P(d, t) = Sum_{m=0..d} A288874(d, m)*t^m. See an example below. See also the P. Bala formula in A112007. (End)
For n > 0, T(n,k) is the number of permutations of the integers from 1 to n which have k visible digits when viewed from a specific end, in the sense that a higher value hides a lower one in a subsequent position. - Ian Duff, Jul 12 2019

Examples

			Triangle T(n,k) begins:
  1;
  0,    1;
  0,    1,     1;
  0,    2,     3,     1;
  0,    6,    11,     6,    1;
  0,   24,    50,    35,   10,    1;
  0,  120,   274,   225,   85,   15,   1;
  0,  720,  1764,  1624,  735,  175,  21,  1;
  0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1;
  ...
---------------------------------------------------
Production matrix is
  0, 1
  0, 1, 1
  0, 1, 2,  1
  0, 1, 3,  3,  1
  0, 1, 4,  6,  4,  1
  0, 1, 5, 10, 10,  5,  1
  0, 1, 6, 15, 20, 15,  6, 1
  0, 1, 7, 21, 35, 35, 21, 7, 1
  ...
From _Wolfdieter Lang_, May 09 2017: (Start)
Three term recurrence: 50 = T(5, 2) = 1*6 + (5-1)*11 = 50.
Recurrence from the Sheffer a-sequence [1, 1/2, 1/6, 0, ...]: 50 = T(5, 2) = (5/2)*(binomial(1, 1)*1*6 + binomial(2, 1)*(1/2)*11 + binomial(3, 1)*(1/6)*6 + 0) = 50. The vanishing z-sequence produces the k=0 column from T(0, 0) = 1. (End)
Elementary symmetric function T(4, 2) = sigma^{(3)}_2 = 1*2 + 1*3 + 2*3 = 11. Here the cells (polytopes) are 3 rectangles with total area 11. - _Wolfdieter Lang_, May 28 2017
O.g.f.s of diagonals: d=2 (third diagonal) [0, 6, 50, ...] has D(2,t) = P(2, t)/(1-t)^5, with P(2, t) = 2 + t, the n = 2 row of A288874. - _Wolfdieter Lang_, Jul 20 2017
Boas-Buck recurrence for column k = 2 and n = 5: T(5, 2) = (5!*2/3)*((3/8)*T(2,2)/2! + (5/12)*T(3,2)/3! + (1/2)*T(4,2)/4!) = (5!*2/3)*(3/16 + (5/12)*3/3! + (1/2)*11/4!) = 50. The beta sequence begins: {1/2, 5/12, 3/8, ...}. - _Wolfdieter Lang_, Aug 11 2017
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 31, 187, 441, 996.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Table 259, p. 259.
  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150

Crossrefs

Essentially a duplicate of A048994. Cf. A008275, A008277, A112007, A130534, A288874, A354795.

Programs

  • Haskell
    a132393 n k = a132393_tabl !! n !! k
    a132393_row n = a132393_tabl !! n
    a132393_tabl = map (map abs) a048994_tabl
    -- Reinhard Zumkeller, Nov 06 2013
    
  • Maple
    a132393_row := proc(n) local k; seq(coeff(expand(pochhammer (x,n)),x,k),k=0..n) end: # Peter Luschny, Nov 28 2010
  • Mathematica
    p[t_] = 1/(1 - t)^x; Table[ ExpandAll[(n!)SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[(n!)* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 18 2008 *)
    Flatten[Table[Abs[StirlingS1[n,i]],{n,0,10},{i,0,n}]] (* Harvey P. Dale, Feb 04 2014 *)
  • Maxima
    create_list(abs(stirling1(n,k)),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    column(n,k) = my(v1, v2); v1 = vector(n-1, i, 0); v2 = vector(n, i, 0); v2[1] = 1; for(i=1, n-1, v1[i] = (i+k)*(i+k-1)/2*v2[i]; for(j=1, i-1, v1[j] *= (i-j)*(i+k)/(i-j+2)); v2[i+1] = vecsum(v1)/i); v2 \\ generates n first elements of the k-th column starting from the first nonzero element. - Mikhail Kurkov, Mar 05 2025

Formula

T(n,k) = T(n-1,k-1)+(n-1)*T(n-1,k), n,k>=1; T(n,0)=T(0,k); T(0,0)=1.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 13 2007
Expand 1/(1-t)^x = Sum_{n>=0}p(x,n)*t^n/n!; then the coefficients of the p(x,n) produce the triangle. - Roger L. Bagula, Apr 18 2008
Sum_{k=0..n} T(n,k)*2^k*x^(n-k) = A000142(n+1), A000165(n), A008544(n), A001813(n), A047055(n), A047657(n), A084947(n), A084948(n), A084949(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 18 2008
a(n) = Sum_{k=0..n} T(n,k)*3^k*x^(n-k) = A001710(n+2), A001147(n+1), A032031(n), A008545(n), A047056(n), A011781(n), A144739(n), A144756(n), A144758(n) for x=1,2,3,4,5,6,7,8,9,respectively. - Philippe Deléham, Sep 20 2008
Sum_{k=0..n} T(n,k)*4^k*x^(n-k) = A001715(n+3), A002866(n+1), A007559(n+1), A047053(n), A008546(n), A049308(n), A144827(n), A144828(n), A144829(n) for x=1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 21 2008
Sum_{k=0..n} x^k*T(n,k) = x*(1+x)*(2+x)*...*(n-1+x), n>=1. - Philippe Deléham, Oct 17 2008
From Wolfdieter Lang, Feb 21 2017: (Start)
E.g.f. k-th column: (-log(1 - x))^k, k >= 0.
E.g.f. triangle (see the Apr 18 2008 Baluga comment): exp(-x*log(1-z)).
E.g.f. a-sequence: x/(1 - exp(-x)). See A164555/A027642. The e.g.f. for the z-sequence is 0. (End)
From Wolfdieter Lang, May 28 2017: (Start)
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, for n >= 0, are R(n, x) = risefac(x,n-1) := Product_{j=0..n-1} x+j, with the empty product for n=0 put to 1. See the Feb 21 2017 comment above. This implies:
T(n, k) = sigma^{(n-1)}_(n-k), for n >= k >= 1, with the elementary symmetric functions sigma^{(n-1)}_m of degree m in the n-1 symbols 1, 2, ..., n-1, with binomial(n-1, m) terms. See an example below.(End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!*k/(n - k)) * Sum_{p=k..n-1} beta(n-1-p)*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
T(n,k) = Sum_{j=k..n} j^(j-k)*binomial(j-1, k-1)*A354795(n,j) for n > 0. - Mélika Tebni, Mar 02 2023
n-th row polynomial: n!*Sum_{k = 0..2*n} (-1)^k*binomial(-x, k)*binomial(-x, 2*n-k) = n!*Sum_{k = 0..2*n} (-1)^k*binomial(1-x, k)*binomial(-x, 2*n-k). - Peter Bala, Mar 31 2024
From Mikhail Kurkov, Mar 05 2025: (Start)
For a general proof of the formulas below via generating functions, see Mathematics Stack Exchange link.
Recursion for the n-th row (independently of other rows): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} binomial(-k,j)*T(n,k+j-1)*(-1)^j for 1 <= k < n with T(n,n) = 1.
Recursion for the k-th column (independently of other columns): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} (j-2)!*binomial(n,j)*T(n-j+1,k) for 1 <= k < n with T(n,n) = 1 (see Fedor Petrov link). (End)

A007661 Triple factorial numbers a(n) = n!!!, defined by a(n) = n*a(n-3), a(0) = a(1) = 1, a(2) = 2. Sometimes written n!3.

Original entry on oeis.org

1, 1, 2, 3, 4, 10, 18, 28, 80, 162, 280, 880, 1944, 3640, 12320, 29160, 58240, 209440, 524880, 1106560, 4188800, 11022480, 24344320, 96342400, 264539520, 608608000, 2504902400, 7142567040, 17041024000, 72642169600, 214277011200, 528271744000, 2324549427200
Offset: 0

Views

Author

Keywords

Comments

The triple factorial of a positive integer n is the product of the positive integers <= n that have the same residue modulo 3 as n. - Peter Luschny, Jun 23 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. Spanier and K. B. Oldham, An Atlas of Functions, Hemisphere, NY, 1987, p. 23.

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<3 then return Fibonacci(n+1);
        else return n*a(n-3);
        fi;
      end;
    List([0..30], n-> a(n) ); # G. C. Greubel, Aug 21 2019
  • Haskell
    a007661 n k = a007661_list !! n
    a007661_list = 1 : 1 : 2 : zipWith (*) a007661_list [3..]
    -- Reinhard Zumkeller, Sep 20 2013
    
  • Magma
    I:=[1,1,2];[n le 3 select I[n] else (n-1)*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 27 2015
    
  • Maple
    A007661 := n -> mul(k, k = select(k -> k mod 3 = n mod 3, [$1 .. n])): seq(A007661(n), n = 0 .. 29);  # Peter Luschny, Jun 23 2011
  • Mathematica
    multiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*multiFactorial[n - k, k]]]; Array[ multiFactorial[#, 3] &, 30, 0] (* Robert G. Wilson v, Apr 23 2011 *)
    RecurrenceTable[{a[0]==a[1]==1,a[2]==2,a[n]==n*a[n-3]},a,{n,30}] (* Harvey P. Dale, May 17 2012 *)
    Table[With[{q = Quotient[n + 2, 3]}, 3^q q! Binomial[n/3, q]], {n, 0, 30}] (* Jan Mangaldan, Mar 21 2013 *)
    a[ n_] := With[{m = Mod[n, 3, 1], q = 1 + Quotient[n, 3, 1]}, If[n < 0, 0, 3^q Pochhammer[m/3, q]]]; (* Michael Somos, Feb 24 2019 *)
    Table[Times@@Range[n,1,-3],{n,0,30}] (* Harvey P. Dale, Sep 12 2020 *)
  • PARI
    A007661(n,d=3)=prod(i=0,(n-1)\d,n-d*i) \\ M. F. Hasler, Feb 16 2008
    
  • Sage
    def a(n):
        if (n<3): return fibonacci(n+1)
        else: return n*a(n-3)
    [a(n) for n in (0..30)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Product_{i=0..floor((n-1)/3)} (n-3*i). - M. F. Hasler, Feb 16 2008
a(n) ~ c * n^(n/3+1/2)/exp(n/3), where c = sqrt(2*Pi/3) if n=3*k, c = sqrt(2*Pi)*3^(1/6) / Gamma(1/3) if n=3*k+1, c = sqrt(2*Pi)*3^(-1/6) / Gamma(2/3) if n=3*k+2. - Vaclav Kotesovec, Jul 29 2013
a(3*n) = A032031(n); a(3*n+1) = A007559(n+1); a(3*n+2) = A008544(n+1). - Reinhard Zumkeller, Sep 20 2013
0 = a(n)*(a(n+1) -a(n+4)) +a(n+1)*a(n+3) for all n>=0. - Michael Somos, Feb 24 2019
Sum_{n>=0} 1/a(n) = A288055. - Amiram Eldar, Nov 10 2020

A060187 Triangle read by rows: Eulerian numbers of type B, T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (2*n - 2*k + 1)*T(n-1, k-1) + (2*k - 1)*T(n-1, k).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 23, 23, 1, 1, 76, 230, 76, 1, 1, 237, 1682, 1682, 237, 1, 1, 722, 10543, 23548, 10543, 722, 1, 1, 2179, 60657, 259723, 259723, 60657, 2179, 1, 1, 6552, 331612, 2485288, 4675014, 2485288, 331612, 6552, 1, 1, 19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340, 19673, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2001

Keywords

Comments

Rows are expansions of p(x,n) = 2^n*(1 - x)^(1 + n)*LerchPhi(x, -n, 1/2). Row sums are A000165. - Roger L. Bagula, Sep 16 2008
Eulerian numbers of type B. The n-th row of this triangle is the h-vector of the simplicial complex dual to a permutohedron of type B_(n-1). For example, the permutohedron of type B_2 is an octagon whose dual, also an octagon, has f-polynomial f(x) = 1 + 8*x + 8*x^2 and h-polynomial given by (x-1)^2 + 8*(x-1) + 8 = 1 + 6*x + x^2, giving [1,6,1] as row 3 of this table (see Fomin and Reading, p. 21). The corresponding triangle of f-vectors for the type B permutohedra is A145901. The Hilbert transform of the current array is A145905. - Peter Bala, Oct 26 2008
From Peter Bala, Oct 13 2011: (Start)
The row polynomials count the elements of the hyperoctahedral group B_n (the group of signed permutations on n letters) according to the number of type B descents (see Chow and Gessel).
Let P denote Pascal's triangle. Then the first column of the array P*(I-t*P^2)^(-1) (I the identity array) begins [1/(1-t),(1+t)/(1-t)^2,(1+6*t+t^2)/(1-t)^3,...]. The numerator polynomials are the row polynomials of this table. Similarly, in the array (I-t*A062715)^-1, the numerator polynomials in the first column produce the row polynomials of this table (but with an extra factor of t). Cf. A145901. (End)
The Dasse-Hartaut and Hitczenko paper (section 6.1.4) shows this triangle of numbers, when suitably normalized, satisfies the central limit theorem. - Peter Bala, Mar 05 2012
These are the coefficients of the midpoint Eulerian polynomials (see Quade/Collatz and Schoenberg). In terms of the cardinal B-splines b_n(t) these polynomials can be defined as M_n(x) = 2^n*n!*Sum_{k=0..n} b_{n+1}(k+1/2)*x^k. - Peter Luschny, Apr 26 2013
The o.g.f. Godd(n, x) = Sum_{m>=0} Sodd(n, m)*x^m, with Sodd(n, m) = Sum_{j=0..m} (1+2*j)^n is Podd(n, x)/(1 - x)^(n+2) with Podd(n, x) = Sum_{k=0..n} T(n+1, k+1)*x^k. E.g., Godd(2, x) = (1 + 6*x + x^2)/(1 - x)^4; see A000447(n+1) for n >= 0. For the e.g.f.s see A282628. - Wolfdieter Lang, Mar 17 2017
Let h_0(x,y) = x*y/(x+y), and D = x*D_x - y*D_y where D_x is the partial derivative w.r.t. x, etc. Put h_{n+1}(x,y) = D(h_n)(x,y). Then h_n(x,y) = x*y/(x+y)^(n+1)*f_{n}(x,y) where f_n(x,y) = Sum_{k=0..n} (-1)^k*T(n+1,k+1)*y^(n-k)*x^k. If instead of h_0, one similarly uses g_0(x,y) = x*y/(y-x), etc., then one obtains g_n(x,y) = x*y/(y-x)^(n+1)*Sum_{k=0..n} T(n+1,k+1)*y^(n-k)*x^k. (If instead of D one considers D' = x*D_x + y*D_y, then h_0 and g_0 are fixed points of D'.) - Gregory Gerard Wojnar, Oct 28 2018
Counts coloop-free Schubert delta-matroids by cornered rank, see Remark 4.6 of the paper by Eur, Fink, Larson, Spink. - Matt Larson, May 20 2024

Examples

			The triangle T(n, k) begins:
n\k 1    2     3      4      5     6    7 8 ...
1:  1
2:  1    1
3:  1    6     1
4:  1   23    23      1
5:  1   76   230     76      1
6:  1  237  1682   1682    237     1
7:  1  722 10543  23548  10543   722    1
8:  1 2179 60657 259723 259723 60657 2179 1
...
row n = 9: 1 6552 331612 2485288 4675014 2485288 331612 6552 1,
row n = 10: 1 19673 1756340 21707972 69413294 69413294 21707972 1756340 19673 1,
row n = 11: 1 59038 9116141 178300904 906923282 1527092468 906923282 178300904 9116141 59038 1, ... reformatted. - _Wolfdieter Lang_, Mar 17 2017
		

References

  • G. Boros and V. H. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, 2004.
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 11.
  • W. Quade and L. Collatz, Zur Interpolationstheorie der reellen periodischen Funktionen. Sitzungsbericht der Preuss. Akad. der Wiss., Phys.-Math. Kl, (1938), 383-429.

Crossrefs

Diagonals give A060188, A060189, A060190. Cf. A008292.
Cf. also A000165 (row sums), A002436 (alt. row sums), A008292, A145901, A145905 (Hilbert transform). A062715.

Programs

  • GAP
    a:=Flat(List([1..11],n->List([1..n],k->Sum([1..k],i->(-1)^(k-i)*Binomial(n,k-i)*(2*i-1)^(n-1))))); # Muniru A Asiru, Feb 09 2018
    
  • Magma
    [[(&+[(-1)^(k-j)*Binomial(n,k-j)*(2*j-1)^(n-1): j in [1..k]]): k in [1..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018
    
  • Maple
    A060187:= (n,k) -> add((-1)^(k-i)*binomial(n,k-i)*(2*i-1)^(n-1), i = 1..k):
    for n from 1 to 10 do seq(A060187(n,k),k = 1..n); end do; # Peter Bala, Oct 26 2008
    T:=proc(n,k,l) option remember; if (n=1 or k=1 or k=n) then 1 else
    (l*n-l*k+1)*T(n-1,k-1,l)+(l*k-l+1)*T(n-1,k,l); fi; end;
    for n from 1 to 10 do lprint([seq(T(n,k,2),k=1..n)]); od; # N. J. A. Sloane, May 08 2013
    P := proc(n,x) option remember; if n = 0 then 1 else
      (n*x+(1/2)*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x);
      expand(%) fi end:
    A060187 := (n,k) -> 2^n*coeff(P(n,x),x,k):
    seq(print(seq(A060187(n,k), k=0..n)), n=0..10);  # Peter Luschny, Mar 08 2014
  • Mathematica
    p[x_, n_] = 2^n (1 - x)^(1 + n) LerchPhi[x, -n, 1/2]; Table[CoefficientList[p[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Sep 16 2008 *)
    T[n_, k_] := Sum[(-1)^(k-i)*Binomial[n, k-i]*(2*i-1)^(n-1), {i, 1, k}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 23 2015, after Peter Bala *)
  • PARI
    {T(n, k) = if( nMichael Somos, Jan 07 2011 */
    
  • Python
    from math import isqrt, comb
    def A060187(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        b = n-comb(a,2)
        return sum(-comb(a,b-i)*((i<<1)-1)**(a-1) if b-i&1 else comb(a,b-i)*((i<<1)-1)**(a-1) for i in range(1,b+1)) # Chai Wah Wu, Nov 13 2024
  • Sage
    @CachedFunction
    def A060187(n, k) :
        if n == 0: return 1 if k == 0 else 0
        return (2*(n-k)+1)*A060187(n-1, k-1) + (2*k+1)*A060187(n-1, k)
    for n in (0..8): [A060187(n,k) for k in (0..n)] # Peter Luschny, Apr 26 2013
    

Formula

T(s, 2) = 3^(s-1) - s. Sum_{t=1..s} T(s, t) = 2^(s-1)*(s-1)!.
From Peter Bala, Oct 26 2008: (Start)
T(n,k) = Sum_{i = 1..k} (-1)^(k-i)*binomial(n,k-i)*(2*i-1)^(n-1).
E.g.f.: (1 - x)*exp((1 - x)*t)/(1 - x*exp(2*(1 - x)*t)) = 1 + (1 + x)*t + (1 + 6*x + x^2)*t^2/2! + ... .
The row polynomials R(n,x) satisfy R(n,x)/(1 - x)^n = Sum_{i >= 1} (2*i - 1)^(n-1)*x^i. For example, row 3 gives (x + 6*x^2 + x^3)/ (1 - x)^3 = x + 3^2*x^2 + 5 ^2*x^3 + 7^2*x^4 + ... .
The recurrence relation R(n+1,x) = [(2*n+1)*x - 1]*R(n,x) + 2*x*(1 - x)*R'(n,x) shows that the row polynomials R(n,x) have only real zeros (apply Corollary 1.2 of [Liu and Wang]).
Worpitzky-type identity: Sum_{k = 1..n} T(n,k)*binomial(x+k-1,n-1) = (2*x+1)^(n-1).
The nonzero alternating row sums are (-1)^(n-1)*A002436(n). (End)
exp(x)*(d/dx)^n [exp(x)/(1 - exp(2*x))] = R(n+1,exp(2*x))/ (1 - exp(2*x))^(n+1).
Compare with Example 12.3.1. in [Boros and Moll]. - Peter Bala, Nov 07 2008
The n-th row polynomial R(n,x) = Sum_{k = 0..n} A145901(n,k)*x^k*(1 - x)^(n-k) = Sum_{k = 0..n} A145901(n,k)*(x - 1)^(n-k). - Peter Bala, Jul 22 2014
Assuming an offset 0, the n-th row polynomial = (x - 1)^n * log(x) * Integral_{u = 0..inf} (2*floor(u) + 1)^n * x^(-u) du, provided x > 1. - Peter Bala, Feb 06 2015
The finite sums of consecutive odd integer powers is derived from this number triangle: Sum_{k=1..n}(2k-1)^m = Sum_{j=1..m+1}binomial(n+m+1-j,m+1)*T(m+1,j). - Tony Foster III, Feb 09 2018

A008544 Triple factorial numbers: Product_{k=0..n-1} (3*k+2).

Original entry on oeis.org

1, 2, 10, 80, 880, 12320, 209440, 4188800, 96342400, 2504902400, 72642169600, 2324549427200, 81359229952000, 3091650738176000, 126757680265216000, 5577337931669504000, 262134882788466688000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n-1), n >= 1, enumerates increasing plane (aka ordered) trees with n vertices (one of them a root labeled 1) where each vertex with outdegree r >= 0 comes in r+1 types (like an (r+1)-ary vertex). See the increasing tree comments under A004747. - Wolfdieter Lang, Oct 12 2007
An example for the case of 3 vertices is shown below. For the enumeration of non-plane trees of this type see A029768. - Peter Bala, Aug 30 2011
a(n) is the product of the positive integers k <= 3*n that have k modulo 3 = 2. - Peter Luschny, Jun 23 2011
See A094638 for connections to differential operators. - Tom Copeland, Sep 20 2011
Partial products of A016789. - Reinhard Zumkeller, Sep 20 2013
The Mathar conjecture is true. Generally from the factorial form, the last term is the "extra" product beyond the prior term, from k=n-1 and 3k+2 evaluates to 3*(n-1)+2 = 3n-1, yielding a(n) = a(n-1)*(3n-1) (eqn1). Similarly, a(n) = a(n-2)*(3n-1)*(3(n-2)+2) = a(n-2)*(3n-1)*(3n-4) (eqn2) and a(n) = a(n-3)*(3n-1)*(3n-4)*(3*(n-2)+2) = a(n-3)*(3n-1)*(3n-4)*(3n-7) (eqn3). We equate (eqn2) and (eqn3) to get a(n-2)*(3n-1)*(3n-4) = a(n-3)*(3n-1)*(3n-4)*(3n-7) or a(n-2)+(7-3n)*a(n-3) = 0 (eqn4). From (eqn1) we have a(n)+(1-3n)*a(n-1) = 0 (eqn5). Combining (eqn4) and (eqn5) yields a(n)+(1-3n)*a(n-1)+a(n-2)+(7-3n)*a(n-3) = 0. - Bill McEachen, Jan 01 2016
a(n-1), n>=1, is the dimension of the n-th component of the operad encoding the multilinearization of the following identity in nonassociative algebras: s*(a,a,b)-(s+t)*(a,b,a)+t*(b,a,a)=0, for any given pair of scalars (s,t). Here (a,b,c) is the associator (ab)c-a(bc). This is proved in the referenced article on associator dependent algebras by Bremner and me. - Vladimir Dotsenko, Mar 22 2022

Examples

			a(2) = 10 from the described trees with 3 vertices: there are three trees with a root vertex (label 1) with outdegree r=2 (like the three 3-stars each with one different ray missing) and the four trees with a root (r=1 and label 1) a vertex with (r=1) and a leaf (r=0). Assigning labels 2 and 3 yields 2*3+4=10 such trees.
a(2) = 10. The 10 possible plane increasing trees on 3 vertices, where vertices of outdegree 1 come in 2 colors (denoted a or b) and vertices of outdegree 2 come in 3 colors (a, b or c), are:
.
   1a    1b    1a    1b        1a       1b       1c
   |     |     |     |        / \      / \      / \
   2a    2b    2b    2a      2   3    2   3    2   3
   |     |     |     |
   3     3     3     3         1a       1b       1c
                              / \      / \      / \
                             3   2    3   2    3   2
		

Crossrefs

a(n) = A004747(n+1, 1) (first column of triangle). Cf. A051141.
Cf. A225470, A290596 (first columns).
Subsequence of A007661.

Programs

  • Haskell
    a008544 n = a008544_list !! n
    a008544_list = scanl (*) 1 a016789_list
    -- Reinhard Zumkeller, Sep 20 2013
    
  • Magma
    [Round((Gamma(2*n-5/3)/Gamma(n-5/6)*Gamma(2/3)/Gamma(5/6) )/ Sqrt(3)*3^n/4^(n-1)): n in [1..20]]; // Vincenzo Librandi, Feb 21 2015
    
  • Magma
    [Round(3^n*Gamma(n+2/3)/Gamma(2/3)): n in [0..20]]; // G. C. Greubel, Mar 31 2019
  • Maple
    a := n -> mul(3*k-1, k = 1..n);
    A008544 := n -> mul(k, k = select(k-> k mod 3 = 2, [$1 .. 3*n])): seq(A008544(n), n = 0 .. 16); # Peter Luschny, Jun 23 2011
  • Mathematica
    k = 3; b[1]=2; b[n_]:= b[n] = b[n-1]+k; a[0]=1; a[1]=2; a[n_]:= a[n] = a[n-1]*b[n]; Table[a[n], {n,0,20}] (* Roger L. Bagula, Sep 17 2008 *)
    Product[3 k + 2, {k, 0, # - 1}] & /@ Range[0, 16] (* Michael De Vlieger, Jan 02 2016 *)
    Table[3^n*Pochhammer[2/3, n], {n,0,20}] (* G. C. Greubel, Mar 31 2019 *)
  • Maxima
    a(n):=((n)!*sum(binomial(k,n-k)*binomial(n+k,k)*3^(-n+k)*(-1)^(n-k),k,floor(n/2),n)); /* Vladimir Kruchinin, Sep 28 2013 */
    
  • PARI
    a(n) = prod(k=0,n-1, 3*k+2 );
    
  • PARI
    vector(20, n, n--; round(3^n*gamma(n+2/3)/gamma(2/3))) \\ G. C. Greubel, Mar 31 2019
    
  • Sage
    @CachedFunction
    def A008544(n): return 1 if n == 0 else (3*n-1)*A008544(n-1)
    [A008544(n) for n in (0..16)]  # Peter Luschny, May 20 2013
    
  • Sage
    [3^n*rising_factorial(2/3, n) for n in (0..20)] # G. C. Greubel, Mar 31 2019
    

Formula

a(n) = Product_{k=0..n-1} (3*k+2) = A007661(3*n-1) (with A007661(-1) = 1).
E.g.f.: (1-3*x)^(-2/3).
a(n) = 2*A034000(n), n >= 1, a(0) = 1.
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(2/3)^-1*n^(1/6)*3^n*e^-n*n^n*{1 - 1/36*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
a(n) = (Gamma(2*n-5/3)/Gamma(n-5/6)*Gamma(2/3)/Gamma(5/6))/sqrt(3)*3^n/4^(n-1). - Jeremy L. Martin, Mar 31 2002 (typo fixed by Vincenzo Librandi, Feb 21 2015)
From Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003: (Start)
a(n) = A084939(n)/A000142(n)*A000079(n).
a(n) = 3^n*Pochhammer(2/3, n) = 3^n*Gamma(n+2/3)/Gamma(2/3). (End)
Let T = A094638 and c(t) = column vector(1, t, t^2, t^3, t^4, t^5,...), then A008544 = unsigned [ T * c(-3) ] and the list partition transform A133314 of [1,T * c(-3)] gives [1,T * c(3)] with all odd terms negated, which equals a signed version of A007559; i.e., LPT[(1,signed A008544)] = signed A007559. Also LPT[A007559] = (1,-A008544) and e.g.f. [1,T * c(t)] = (1-x*t)^(-1/t) for t = 3 or -3. Analogous results hold for the double factorial, quadruple factorial and so on. - Tom Copeland, Dec 22 2007
G.f.: 1/(1-2x/(1-3x/(1-5x/(1-6x/(1-8x/(1-9x/(1-11x/(1-12x/(1-...))))))))) (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-1)^n*Sum_{k=0..n} 3^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(3*k+2)/(1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k+2)/(x*(3*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
D-finite with recurrence: a(n) = (9*(n-2)*(n-1)+2)*a(n-2) + 4*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 09 2013
a(n) = n!*Sum_{k=floor(n/2)..n} binomial(k,n-k)*binomial(n+k,k)*3^(-n+k)*(-1)^(n-k). - Vladimir Kruchinin, Sep 28 2013
Recurrence equation: a(n) = 3*a(n-1) + (3*n - 4)^2*a(n-2) with a(0) = 1 and a(1) = 2. A024396 satisfies the same recurrence (but with different initial conditions). This observation leads to a continued fraction expansion for the constant A193534 due to Euler. - Peter Bala, Feb 20 2015
a(n) = A225470(n, 0), n >= 0. - Wolfdieter Lang, May 29 2017
G.f.: Hypergeometric2F0(1, 2/3; -; 3*x). - G. C. Greubel, Mar 31 2019
D-finite with recurrence: a(n) + (-3*n+1)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
G.f.: 1/(1-2*x-6*x^2/(1-8*x-30*x^2/(1-14*x-72*x^2/(1-20*x-132*x^2/(1-...))))) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 28 2020
G.f.: 1/G(0), where G(k) = 1 - (6*k+2)*x - 3*(k+1)*(3*k+2)*x^2/G(k+1). - Nikolaos Pantelidis, Feb 28 2020
Sum_{n>=0} 1/a(n) = 1 + (e/3)^(1/3) * (Gamma(2/3) - Gamma(2/3, 1/3)). - Amiram Eldar, Mar 01 2022

A002866 a(0) = 1; for n > 0, a(n) = 2^(n-1)*n!.

Original entry on oeis.org

1, 1, 4, 24, 192, 1920, 23040, 322560, 5160960, 92897280, 1857945600, 40874803200, 980995276800, 25505877196800, 714164561510400, 21424936845312000, 685597979049984000, 23310331287699456000, 839171926357180416000, 31888533201572855808000, 1275541328062914232320000
Offset: 0

Views

Author

Keywords

Comments

Consider the set of n-1 odd numbers from 3 to 2n-1, i.e., {3, 5, ..., 2n-1}. There are 2^(n-1) subsets from {} to {3, 5, 7, ..., 2n-1}; a(n) = the sum of the products of terms of all the subsets. (Product for empty set = 1.) a(4) = 1 + 3 + 5 + 7 + 3*5 + 3*7 + 5*7 + 3*5*7 = 192. - Amarnath Murthy, Sep 06 2002
Also, a(n-1) is the number of ways to lace a shoe that has n pairs of eyelets such that there is a straight (horizontal) connection between all adjacent eyelet pairs. - Hugo Pfoertner, Jan 27 2003
This is also the denominator of the integral of ((1-x^2)^(n-1/2))/(Pi/4) where x ranges from 0 to 1. The numerator is (2*x)!/(x!*2^x). In both cases n starts at 1. E.g., the denominator when n=3 is 24 and the numerator is 15. - Al Hakanson (hawkuu(AT)excite.com), Oct 17 2003
Number of ways to use the elements of {1,...,n} once each to form a sequence of nonempty lists. - Bob Proctor, Apr 18 2005
Row sums of A131222. - Paul Barry, Jun 18 2007
Number of rotational symmetries of an n-cube. The number of all symmetries of an n-cube is A000165. See Egan for signed cycle notation, other notes, tables and animation. - Jonathan Vos Post, Nov 28 2007
1, 4, 24, 192, 1920, ... is the exponential (or binomial) convolution of 1, 1, 3, 15, 105, ... and 1, 3, 15, 105, 945 (A001147). - David Callan, Jul 25 2008
The n-th term of this sequence is the number of regions into which n-dimensional space is partitioned by the 2n hyperplanes of the form x_i=x_j and x_i=-x_j (for 1 <= i < j <= n). - Edward Scheinerman (ers(AT)jhu.edu), May 04 2008
a(n) is the number of ways to seat n churchgoers into pews and then linearly order the nonempty pews. - Geoffrey Critzer, Mar 16 2009
Equals the row sums of A156992. - Geoffrey Critzer, Mar 05 2010
From Gary W. Adamson, May 17 2010: (Start)
Next term in the series = (1, 3, 5, 7, ...) dot (1, 1, 4, 24, ...);
e.g., a(5) = 1920 = (1, 3, 5, 7, 9) dot (1, 1, 4, 24, 192) = (1 + 3 + 20 + 168 + 1728). (End)
a(n) is the number of ways to represent the permutations of {1,2,...,n} in cycle notation, taking into account that we can permute the order of all cycles and also have k ways to write a length-k cycle.
For positive n, a(n) equals the permanent of the n X n matrix with consecutive integers 1 to n along the main diagonal, consecutive integers 2 to n along the subdiagonal, and 1's everywhere else. - John M. Campbell, Jul 10 2011
From Dennis P. Walsh, Nov 26 2011: (Start)
Number of ways to arrange n books on consecutive bookshelves.
To derive a(n) = n!2^(n-1), we note that there are n! ways to arrange the books in a row. Then there are 2^(n-1) ways to place the arranged books on consecutive shelves since there are 2^(n-1) ordered partitions of n. Hence a(n) = n!2^(n-1).
Also, a(n) is the number of ways to stack n different alphabet blocks in contiguous stacks.
Furthermore, a(n) is the number of labeled, rooted forests that have (i) each root labeled larger than any nonroot, (ii) each root having exactly one child node, (iii) n non-root nodes, and (iv) each node in the forest with at most one child node.
Example: a(3)=24 since there are 24 arrangements of books b1, b2, and b3 on consecutive shelves, namely, |b1 b2 b3|, |b1 b3 b2|, |b2 b1 b3|, |b2 b3 b1|, |b3 b1 b2|, |b3 b2 b1|, |b1 b2||b3|, |b2 b1| |b3|, |b1 b3||b2|, |b3 b1||b2|, |b2 b3||b1|, |b3 b2||b1|, |b1||b2 b3|,|b1||b3 b2|, |b2||b1 b3|, |b2||b3 b1|, |b3||b1 b2|, |b3||b2 b1|, |b1||b2||b3|, |b1||b3||b2|, |b2||b1||b3|, |b2||b3||b1|, |b3||b1||b2|, and |b3||b2||b1|.
(End)
For n > 3, a(n) is the order of the Coxeter group (also called Weyl group) of type D_n. - Tom Edgar, Nov 05 2013

Examples

			For the shoe lacing: with the notation introduced in A078602 the a(3-1) = 4 "straight" lacings for 3 pairs of eyelets are: 125346, 125436, 134526, 143526. Their mirror images 134256, 143256, 152346, 152436 are not counted.
a(3) = 24 because the 24 rotations of a three-dimensional cube fall into four distinct classes:
(i) the identity, which leaves everything fixed;
(ii) 9 rotations which leave the centers of two faces fixed, comprising rotations of 90, 180 and 270 degrees for each of 3 pairs of faces;
(iii) 6 rotations which leave the centers of two edges fixed, comprising rotations of 180 degrees for each of 6 pairs of edges;
(iv) 8 rotations which leave two vertices fixed, comprising rotations of 120 and 240 degrees for each of 4 pairs of vertices. For an n-cube, rotations can be more complex. For example, in 4 dimensions a rotation can either act in a single plane, such as the x-y plane, while leaving any vectors orthogonal to that plane unchanged, or it can act in two orthogonal planes, performing rotations in both and leaving no vectors fixed. In higher dimensions, there will be room for more planes and more choices as to the number of planes in which a given rotation acts.
		

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6, p. 257.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.26)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections give A002671 and A274304.
Appears in A167584 (n >= 1); equals the row sums of A167594 (n >= 1). - Johannes W. Meijer, Nov 12 2009

Programs

  • FORTRAN
    See Pfoertner link.
    
  • Magma
    [1] cat [2^(n-1)*Factorial(n): n in [1..25]]; // G. C. Greubel, Jun 13 2019
    
  • Maple
    A002866 := n-> `if`(n=0,1,2^(n-1)*n!):
    with(combstruct); SeqSeqL := [S, {S=Sequence(U,card >= 1), U=Sequence(Z,card >=1)},labeled];
    seq(ceil(count(Subset(n))*count(Permutation(n))/2),n=0..17); # Zerinvary Lajos, Oct 16 2006
    G(x):=(1-x)/(1-2*x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..17); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    Join[{1},Table[2^(n-1) n!,{n,25}]] (* Harvey P. Dale, Sep 27 2013 *)
    a[n_] := (-1)^n Hypergeometric2F1Regularized[1, -n, 2 - n, 2];
    Table[a[n], {n, 0, 20}]  (* Peter Luschny, Apr 26 2024 *)
  • PARI
    a(n)=if(n,n!<<(n-1),1) \\ Charles R Greathouse IV, Jan 13 2012
    
  • PARI
    a(n) = if(n == 0, 1, 2^(n-1)*n!);
    vector(25, n, a(n-1)) \\ Altug Alkan, Oct 18 2015
    
  • Sage
    [1] + [2^(n-1)*factorial(n) for n in (1..25)] # G. C. Greubel, Jun 13 2019

Formula

E.g.f.: (1 - x)/(1 - 2*x). - Paul Barry, May 26 2003, corrected Jun 18 2007
a(n) = n! * A011782(n).
For n >= 1, a(n) = Sum_{i=0..m/2} (-1)^i * binomial(n, i) * (n-2*i)^n. - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
a(n) ~ 2^(1/2) * Pi^(1/2) * n^(3/2) * 2^n * e^(-n) * n^n*{1 + 13/12*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
E.g.f. is B(A(x)), where B(x) = 1/(1 - x) and A(x) = x/(1 - x). - Geoffrey Critzer, Mar 16 2009
a(n) = Sum_{k=1..n} A156992(n,k). - Dennis P. Walsh, Nov 26 2011
a(n+1) = Sum_{k=0..n} A132393(n,k)*2^(n+k), n>0. - Philippe Deléham, Nov 28 2011
G.f.: 1 + x/(1 - 4*x/(1 - 2*x/(1 - 6*x/(1 - 4*x/(1 - 8*x/(1 - 6*x/(1 - 10*x/(1 - ... (continued fraction). - Philippe Deléham, Nov 29 2011
a(n) = 2*n*a(n-1) for n >= 2. - Dennis P. Walsh, Nov 29 2011
G.f.: (1 + 1/G(0))/2, where G(k) = 1 + 2*x*k - 2*x*(k + 1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 02 2012
G.f.: 1 + x/Q(0), m=4, where Q(k) = 1 - m*x*(2*k + 1) - m*x^2*(2*k + 1)*(2*k + 2)/(1 - m*x*(2*k + 2) - m*x^2*(2*k + 2)*(2*k + 3)/Q(k+1)) ; (continued fraction). - Sergei N. Gladkovskii, Sep 23 2013
G.f.: 1 + x/(G(0) - x), where G(k) = 1 + x*(k+1) - 4*x*(k + 1)/(1 - x*(k + 2)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
a(n) = Sum_{k=0..n} L(n,k)*k!; L(n,k) are the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = round(Sum_{k >= 1} log(k)^n/k^(3/2))/4, for n >= 1, which is related to the n-th derivative of zeta(x) evaluated at x = 3/2. - Richard R. Forberg, Jan 02 2015
a(n) = n!*hypergeom([-n+1], [], -1) for n>=1. - Peter Luschny, Apr 08 2015
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n >= 0} 1/a(n) = 2*sqrt(e) - 1.
Sum_{n >= 0} (-1)^n/a(n) = 2/sqrt(e) - 1. (End)

A027868 Number of trailing zeros in n!; highest power of 5 dividing n!.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 18, 18, 18, 18, 18, 19
Offset: 0

Views

Author

Keywords

Comments

Also the highest power of 10 dividing n! (different from A054899). - Hieronymus Fischer, Jun 18 2007
Alternatively, a(n) equals the expansion of the base-5 representation A007091(n) of n (i.e., where successive positions from right to left stand for 5^n or A000351(n)) under a scale of notation whose successive positions from right to left stand for (5^n - 1)/4 or A003463(n); for instance, n = 7392 has base-5 expression 2*5^5 + 1*5^4 + 4*5^3 + 0*5^2 + 3*5^1 + 2*5^0, so that a(7392) = 2*781 + 1*156 + 4*31 + 0*6 + 3*1 + 2*0 = 1845. - Lekraj Beedassy, Nov 03 2010
Partial sums of A112765. - Hieronymus Fischer, Jun 06 2012
Also the number of trailing zeros in A000165(n) = (2*n)!!. - Stefano Spezia, Aug 18 2024

Examples

			a(100)  = 24.
a(10^3) = 249.
a(10^4) = 2499.
a(10^5) = 24999.
a(10^6) = 249998.
a(10^7) = 2499999.
a(10^8) = 24999999.
a(10^9) = 249999998.
a(10^n) = 10^n/4 - 3 for 10 <= n <= 15 except for a(10^14) = 10^14/4 - 2. - _M. F. Hasler_, Dec 27 2019
		

References

  • M. Gardner, "Factorial Oddities." Ch. 4 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, 1978, pp. 50-65.

Crossrefs

See A000966 for the missing numbers. See A011371 and A054861 for analogs involving powers of 2 and 3.
Cf. also A000142, A004154.

Programs

  • Haskell
    a027868 n = sum $ takeWhile (> 0) $ map (n `div`) $ tail a000351_list
    -- Reinhard Zumkeller, Oct 31 2012
    
  • Magma
    [Valuation(Factorial(n), 5): n in [0..80]]; // Bruno Berselli, Oct 11 2021
  • Maple
    0, seq(add(floor(n/5^i),i=1..floor(log[5](n))), n=1..100); # Robert Israel, Nov 13 2014
  • Mathematica
    Table[t = 0; p = 5; While[s = Floor[n/p]; t = t + s; s > 0, p *= 5]; t, {n, 0, 100} ]
    Table[ IntegerExponent[n!], {n, 0, 80}] (* Robert G. Wilson v *)
    zOF[n_Integer?Positive]:=Module[{maxpow=0},While[5^maxpow<=n,maxpow++];Plus@@Table[Quotient[n,5^i],{i,maxpow-1}]]; Attributes[zOF]={Listable}; Join[{0},zOF[ Range[100]]] (* Harvey P. Dale, Apr 11 2022 *)
  • PARI
    a(n)={my(s);while(n\=5,s+=n);s} \\ Charles R Greathouse IV, Nov 08 2012, edited by M. F. Hasler, Dec 27 2019
    
  • PARI
    a(n)=valuation(n!,5) \\ Charles R Greathouse IV, Nov 08 2012
    
  • PARI
    apply( A027868(n)=(n-sumdigits(n,5))\4, [0..99]) \\ M. F. Hasler, Dec 27 2019
    
  • Python
    from sympy import multiplicity
    A027868, p5 = [0,0,0,0,0], 0
    for n in range(5,10**3,5):
        p5 += multiplicity(5,n)
        A027868.extend([p5]*5) # Chai Wah Wu, Sep 05 2014
    
  • Python
    def A027868(n): return 0 if n<5 else n//5 + A027868(n//5) # David Radcliffe, Jun 26 2016
    
  • Python
    from sympy.ntheory.factor_ import digits
    def A027868(n): return n-sum(digits(n,5)[1:])>>2 # Chai Wah Wu, Oct 18 2024
    

Formula

a(n) = Sum_{i>=1} floor(n/5^i).
a(n) = (n - A053824(n))/4.
From Hieronymus Fischer, Jun 25 2007 and Aug 13 2007, edited by M. F. Hasler, Dec 27 2019: (Start)
G.f.: g(x) = Sum_{k>0} x^(5^k)/(1-x^(5^k))/(1-x).
a(n) = Sum_{k=5..n} Sum_{j|k, j>=5} (floor(log_5(j)) - floor(log_5(j-1))).
G.f.: g(x) = L[b(k)](x)/(1-x) where L[b(k)](x) = Sum_{k>=0} b(k)*x^k/(1-x^k) is a Lambert series with b(k) = 1, if k>1 is a power of 5, else b(k) = 0.
G.f.: g(x) = Sum_{k>0} c(k)*x^k/(1-x), where c(k) = Sum_{j>1, j|k} floor(log_5(j)) - floor(log_5(j - 1)).
Recurrence:
a(n) = floor(n/5) + a(floor(n/5));
a(5*n) = n + a(n);
a(n*5^m) = n*(5^m-1)/4 + a(n).
a(k*5^m) = k*(5^m-1)/4, for 0 <= k < 5, m >= 0.
Asymptotic behavior:
a(n) = n/4 + O(log(n)),
a(n+1) - a(n) = O(log(n)), which follows from the inequalities below.
a(n) <= (n-1)/4; equality holds for powers of 5.
a(n) >= n/4 - 1 - floor(log_5(n)); equality holds for n = 5^m-1, m > 0.
lim inf (n/4 - a(n)) = 1/4, for n -> oo.
lim sup (n/4 - log_5(n) - a(n)) = 0, for n -> oo.
lim sup (a(n+1) - a(n) - log_5(n)) = 0, for n -> oo.
(End)
a(n) <= A027869(n). - Reinhard Zumkeller, Jan 27 2008
10^a(n) = A000142(n) / A004154(n). - Reinhard Zumkeller, Nov 24 2012
a(n) = Sum_{k=1..floor(n/2)} floor(log_5(n/k)). - Ammar Khatab, Feb 01 2025

Extensions

Examples added by Hieronymus Fischer, Jun 06 2012

A000698 A problem of configurations: a(0) = 1; for n>0, a(n) = (2n-1)!! - Sum_{k=1..n-1} (2k-1)!! a(n-k). Also the number of shellings of an n-cube, divided by 2^n n!.

Original entry on oeis.org

1, 1, 2, 10, 74, 706, 8162, 110410, 1708394, 29752066, 576037442, 12277827850, 285764591114, 7213364729026, 196316804255522, 5731249477826890, 178676789473121834, 5925085744543837186, 208256802758892355202, 7734158085942678174730
Offset: 0

Views

Author

Keywords

Comments

Also number of nonisomorphic unlabeled connected Feynman diagrams of order 2n-2 for the electron propagator of quantum electrodynamics (QED), including vanishing diagrams. [Corrected by Charles R Greathouse IV, Jan 24 2014][Clarified by Robert Coquereaux, Sep 14 2014]
a(n+1) is the moment of order 2*n for the probability density function rho(x) = (1/sqrt(2*Pi))*exp(x^2/2)/[(u(x))^2+Pi/2], with u(x) = Integral_{t=0..x} exp(t*t/2) dt, on the real interval -infinity..infinity. - Groux Roland, Jan 13 2009
Starting (1, 2, 10, 74, ...) = INVERTi transform of A001147: (1, 3, 15, 105, ...). - Gary W. Adamson, Oct 21 2009
The Cvitanovic et al. paper relates this sequence to A005411 and A005413. - Robert Munafo, Jan 24 2010
Hankel transform of a(n+1) is A168467. - Paul Barry, Nov 26 2009
a(n) = number of labeled Dyck (n-1)-paths (A000108) in which each vertex that terminates an upstep is labeled with an integer i in [0,h], where h is the height of the vertex . For example UDUD contributes 4 labeled paths--0D0D, 0D1D, 1D0D, 1D1D where upsteps are replaced by their labels--and UUDD contributes 6 labeled paths to a(3)=10. The Deléham (Mar 24 2007) formula below counts these labeled paths by number of "0" labels. - David Callan, Aug 23 2011
a(n) is the number of indecomposable perfect matchings on [2n]. A perfect matching on [2n] is decomposable if a nonempty subset of the edges forms a perfect matching on [2k] for some kDavid Callan, Nov 29 2012
From Robert Coquereaux, Sep 12 2014: (Start)
QED diagrams are graphs with two kinds of edges (lines): a (non-oriented), f (oriented), and only one kind of (internal) vertex: aff. They may have internal and external (i.e., pendant) lines. The order is the number of (internal) vertices. Vanishing diagrams: QED diagrams containing loops of type f with an odd number of vertices are set to 0 (Furry theorem). Proper diagrams: connected QED diagrams that remain connected when an arbitrary internal line is cut.
The number of Feynman diagrams of order 2n for the electron propagator (2-point function of QED), vanishing or not, proper or not, of order 2n, starting from n = 0, is given by 1, 2, 10, 74, 706, 8162, ..., i.e., this sequence A000698, with the first term (equal to 1) dropped. Call Sf the associated g.f.
The number of non-vanishing Feynman diagrams, for the same 2-point function, is given by 1, 1, 4, 25, 208, 2146, ..., i.e., by the sequence A005411, with a first term of order 0, equal to 1, added. Call S the associated g.f.
If one does not remove the vanishing diagram, but, at the same time, considers only those graphs that are proper, one obtains the Feynman diagrams (vanishing and non-vanishing) for the self-energy function of QED, 0, 1, 3, 21, 207, 2529, ..., i.e., the sequence A115974 with a first term of order 0, equal to 0, added. A115974 is twice A167872. Call Sigmaf the associated g.f.
If one removes the vanishing diagrams and, at the same time, considers only those graphs that are proper, one obtains the Feynman diagrams for the self-energy function of QED given by 0, 1, 3, 18, 153, 1638, ..., i.e., by the sequence A005412, with a first term of order 0, equal to 0, added. Call Sigma the associated g.f.
Then Sf = 1/(1-Sigmaf) and S = 1/(1-Sigma). (End)
For n>0 sum over all Dyck paths of semilength n-1 of products over all peaks p of (x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p. - Alois P. Heinz, May 22 2015
Also, counts certain isomorphism classes of closed normal linear lambda terms. [N. Zeilberger, 2015]. - N. J. A. Sloane, Sep 18 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
For n >= 2, a(n) is the number of coalescent histories for a pair consisting of a matching lodgepole gene tree and species tree with 2n-1 leaves. - Noah A Rosenberg, Jun 21 2022

Examples

			G.f. = 1 + x + 2*x^2 + 10*x^3 + 74*x^4 + 706*x^5 + 8162*x^6 + 110410*x^7 + ...
		

References

  • Dubois C., Giorgetti A., Genestier R. (2016) Tests and Proofs for Enumerative Combinatorics. In: Aichernig B., Furia C. (eds) Tests and Proofs. TAP 2016. Lecture Notes in Computer Science, vol 9762. Springer.
  • R. W. Robinson, Counting irreducible Feynman diagrams exactly and asymptotically, Abstracts Amer. Math. Soc., 2002, #975-05-270.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
Column k=1 of A258219, A258222.
Row sums of A322398.

Programs

  • Maple
    A006882 := proc(n) option remember; if n <= 1 then 1 else n*procname(n-2); fi; end;
    A000698:=proc(n) option remember; global df; local k; if n=0 then RETURN(1); fi; A006882(2*n-1) - add(A006882(2*k-1)*A000698(n-k),k=1..n-1); end;
    A000698 := proc(n::integer) local resul,fac,pows,c,c1,p,i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p,pows)) ; c1 := op(1,c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i,c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end; # R. J. Mathar, Apr 24 2006
    # alternative Maple program:
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> `if`(n=0, 1, b(2*n-2, 0, false)):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 23 2015
    a_list := proc(len) local n, A; if len=1 then return [1] fi: A := Array(-1..len-2); A[-1] := 1; A[0] := 1; for n to len-2 do A[n] := (2*n-1)*A[n-1]+add(A[j]*A[n-j-1], j=0..n-1) od: convert(A, list) end: a_list(20); # Peter Luschny, Jul 18 2017
  • Mathematica
    a[n_] := a[n] = (2n - 1)!! - Sum[ a[n - k](2k - 1)!!, {k, n-1}]; Array[a, 18, 0] (* Ignacio D. Peixoto, Jun 23 2006 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 2 - 1 / Sum[ (2 k - 1)!! x^k, {k, 0, n}], {x, 0, n}]]; (* Michael Somos, Nov 16 2011 *)
    a[n_]:= SeriesCoefficient[1+x(1/x+(E^((1/2)/x) Sqrt[2/\[Pi]] Sqrt[-(1/x)])/Erfc[Sqrt[-(1/x)]/Sqrt[2]]), {x,0,n}, Assumptions -> x >0](* Robert Coquereaux, Sep 14 2014 *)
    max = 20; g = t/Fold[1 - ((t + #2)*z)/#1 &, 1, Range[max, 1, -1]]; T[n_, k_] := SeriesCoefficient[g, {z, 0, n}, {t, 0, k}]; a[0] = 1; a[n_] := Sum[T[n-1, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 31 2016, after Philippe Deléham *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 - 1 / sum( k=0, n, x^k * (2*k)! /(2^k * k!), x * O(x^n)), n))}; /* Michael Somos, Feb 08 2011 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 3) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */
    
  • Python
    from sympy import factorial2, cacheit
    @cacheit
    def a(n): return 1 if n == 0 else factorial2(2*n - 1) - sum(factorial2(2*k - 1)*a(n - k) for k in range(1, n))
    [a(n) for n in range(51)]  # Indranil Ghosh, Jul 18 2017

Formula

G.f.: 2 - 1/(1 + Sum_{n>=1} (2*n-1)!! * x^n ).
a(n+1) = Sum_{k=0..n} A089949(n, k)*2^k. - Philippe Deléham, Aug 15 2005
a(n+1) = Sum_{k=0..n} A053979(n,k). - Philippe Deléham, Mar 24 2007
From Paul Barry, Nov 26 2009: (Start)
G.f.: 1+x/(1-2x/(1-3x/(1-4x/(1-5x/(1-6x/(1-... (continued fraction).
G.f.: 1+x/(1-2x-6x^2/(1-7x-20x^2/(1-11x-42x^2/(1-15x-72x^2/(1-19x-110x^2/(1-... (continued fraction). (End)
G.f.: 1 + x * B(x) * C(x) where B(x) is the g.f. for A001147 and C(x) is the g.f. for A005416. - Michael Somos, Feb 08 2011
G.f.: 1+x/W(0); where W(k)=1+x+x*2k-x*(2k+3)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2011
From Peter Bala, Dec 22 2011: (Start)
Recurrence relation: a(n+1) = (2*n-1)*a(n) + Sum_{k = 1..n} a(k)*a(n+1-k) for n >= 0 and a(1) = 1.
The o.g.f. B(x) = Sum_{n>=1} a(n)*x^(2*n-1) = x + 2*x^3 + 10*x^5 + 74*x^7 + ... satisfies the Riccati differential equation y'(x) = -1/x^2 + (1/x^3)*y(x) - (1/x^2)*y(x)^2 with initial condition y(0) = 0 (cf. A005412). The solution is B(x) = 1/z(x) + 1/x, where z(x) = -Sum_{n>=0} A001147(n) * x^(2*n+1) = -(x + x^3 + 3*x^5 + 15*x^7 + ...). The function b(x) = -B(1/x) satisfies b'(x) = -1 - (x + b(x))*b(x). Hence the differential operator (D^2 + x*D + 1), where D = d/dx, factorizes as (D - a(x))*(D - b(x)), where a(x) = -(x + b(x)), as conjectured by [Edgar, Problem 4.32]. For a refinement of this sequence see A053979. (End)
From Sergei N. Gladkovskii, Aug 19 2012, Oct 24 2012, Mar 19 2013, May 20 2013, May 29 2013, Aug 04 2013, Aug 05 2013: (Start)
Continued fractions:
G.f.: 2 - G(0) where G(k) = 1 - (k+1)*x/G(k+1).
G.f.: 2 - U(0) where U(k) = 1 - (2*k+1)*x/(1 - (2*k+2)*x/U(k+1)).
G.f.: 2 - U(0) where U(k) = 1 - (4*k+1)*x - (2*k+1)*(2*k+2)*x^2/U(k+1).
G.f.: 1/Q(0) where Q(k) = 1 - x*(2*k+2)/(1 - x*(2*k+3)/Q(k+1)).
G.f.: 1 + x/Q(0) where Q(k) = 1 - x*(k+2)/Q(k+1).
G.f.: 2 - G(0)/2 where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k+2)/ G(k+1))).
G.f.: 1 + x*G(0) where G(k) = 1 - x*(k+2)/(x*(k+2) - 1/G(k+1)).
G.f.: 2 - 1/B(x) where B(x) is the g.f. of A001147.
G.f.: 1 + x/(1-2*x*B(x)) where B(x) is the g.f. of A167872. (End)
a(n) ~ 2^(n+1/2) * n^n / exp(n). - Vaclav Kotesovec, Mar 10 2014
G.f.: 1 + x*(1/x + (sqrt(2/Pi) * exp(1/(2*x)) * sqrt(-1/x))/Erfc(sqrt(-1/x)/sqrt(2))) where Erfc(z) = 1 - Erf(z) is the complementary error function, and Erf(z) is the integral of the Gaussian distribution. This generating function is obtained from the generating functional of (4-dimensional) QED, evaluated in dimension 0 for the 2-point function, without the modification implementing Furry theorem. - Robert Coquereaux, Sep 14 2014
From Peter Bala, May 23 2017: (Start)
G.f. A(x) = 1 + x/(1 + x - 3*x/(1 + 3*x - 5*x/(1 + 5*x - 7*x/(1 + 7*x - ...)))).
A(x) = 1 + x/(1 + x - 3*x/(1 - 2*x/(1 - 5*x/(1 - 4*x/(1 - 7*x/(1 - 6*x/(1 - ...))))))). (End)

Extensions

Formula corrected by Ignacio D. Peixoto, Jun 23 2006
More terms from Sean A. Irvine, Feb 27 2011

A128084 Triangle, read by rows of n^2+1 terms, of coefficients of q in the q-analog of the even double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 5, 7, 8, 8, 7, 5, 3, 1, 1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1, 1, 5, 14, 30, 54, 86, 125, 169, 215, 259, 297, 325, 340, 340, 325, 297, 259, 215, 169, 125, 86, 54, 30, 14, 5, 1, 1, 6, 20, 50, 104, 190, 315, 484, 699, 958, 1255, 1580, 1919
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128080 for the triangle of coefficients of q in the q-analog of the odd double factorials.
Row maxima ~ 2^n*n!/(sigma * sqrt(2*Pi)), sigma^2 = (4*n^3 + 6*n^2 - n)/36 = variance of Coxeter group B_n (see also A161858). - Mikhail Gaichenkov, Feb 08 2023

Examples

			The row sums form A000165, the even double factorial numbers:
  [1, 2, 8, 48, 384, 3840, 46080, 645120, ..., (2n)!!, ...].
Triangle begins:
 1;
 1, 1;
 1, 2,  2,  2,  1;
 1, 3,  5,  7,  8,  8,   7,   5,   3,   1;
 1, 4,  9, 16, 24, 32,  39,  44,  46,  44,  39,  32,  24,  16,   9,   4,   1;
 ...
		

Crossrefs

Cf. A000165 ((2n)!!); A128085 (central terms); A128086 (diagonal), A128087 (row squared sums); A128080, A002522 (row lengths).
The growth series for the affine Coxeter groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858.

Programs

  • Mathematica
    t[n_, k_] := If[k < 0 || k > n^2, 0, If[n == 0, 1, Coefficient[ Series[ Product[ (1 - q^(2*j))/(1 - q), {j, 1, n}], {q, 0, n^2}], q, k]]]; Table[t[n, k], {n, 0, 6}, {k, 0, n^2}] // Flatten (* Jean-François Alcover, Mar 06 2013, translated from Pari *)
  • PARI
    {T(n,k) = if(k<0||k>n^2,0, if(n==0,1, polcoeff( prod(j=1,n,(1-q^(2*j))/(1-q)), k,q) ))}
    for(n=0,8,for(k=0,n^2,print1(T(n,k),", "));print(""))
    
  • PARI
    row(n)=Vec(prod(j=1, n, (1-x^(2*j))/(1-x))) \\ Andrew Howroyd, Mar 21 2025

A374848 Obverse convolution A000045**A000045; see Comments.

Original entry on oeis.org

0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2024

Keywords

Comments

The obverse convolution of sequences
s = (s(0), s(1), ...) and t = (t(0), t(1), ...)
is introduced here as the sequence s**t given by
s**t(n) = (s(0)+t(n)) * (s(1)+t(n-1)) * ... * (s(n)+t(0)).
Swapping * and + in the representation s(0)*t(n) + s(1)*t(n-1) + ... + s(n)*t(0)
of ordinary convolution yields s**t.
If x is an indeterminate or real (or complex) variable, then for every sequence t of real (or complex) numbers, s**t is a sequence of polynomials p(n) in x, and the zeros of p(n) are the numbers -t(0), -t(1), ..., -t(n).
Following are abbreviations in the guide below for triples (s, t, s**t):
F = (0,1,1,2,3,5,...) = A000045, Fibonacci numbers
L = (2,1,3,4,7,11,...) = A000032, Lucas numbers
P = (2,3,5,7,11,...) = A000040, primes
T = (1,3,6,10,15,...) = A000217, triangular numbers
C = (1,2,6,20,70, ...) = A000984, central binomial coefficients
LW = (1,3,4,6,8,9,...) = A000201, lower Wythoff sequence
UW = (2,5,7,10,13,...) = A001950, upper Wythoff sequence
[ ] = floor
In the guide below, sequences s**t are identified with index numbers Axxxxxx; in some cases, s**t and Axxxxxx differ in one or two initial terms.
Table 1. s = A000012 = (1,1,1,1...) = (1);
t = A000012; 1 s**t = A000079; 2^(n+1)
t = A000027; n s**t = A000142; (n+1)!
t = A000040, P s**t = A054640
t = A000040, P (1/3) s**t = A374852
t = A000079, 2^n s**t = A028361
t = A000079, 2^n (1/3) s**t = A028362
t = A000045, F s**t = A082480
t = A000032, L s**t = A374890
t = A000201, LW s**t = A374860
t = A001950, UW s**t = A374864
t = A005408, 2*n+1 s**t = A000165, 2^n*n!
t = A016777, 3*n+1 s**t = A008544
t = A016789, 3*n+2 s**t = A032031
t = A000142, n! s**t = A217757
t = A000051, 2^n+1 s**t = A139486
t = A000225, 2^n-1 s**t = A006125
t = A032766, [3*n/2] s**t = A111394
t = A034472, 3^n+1 s**t = A153280
t = A024023, 3^n-1 s**t = A047656
t = A000217, T s**t = A128814
t = A000984, C s**t = A374891
t = A279019, n^2-n s**t = A130032
t = A004526, 1+[n/2] s**t = A010551
t = A002264, 1+[n/3] s**t = A264557
t = A002265, 1+[n/4] s**t = A264635
Sequences (c)**L, for c=2..4: A374656 to A374661
Sequences (c)**F, for c=2..6: A374662, A374662, A374982 to A374855
The obverse convolutions listed in Table 1 are, trivially, divisibility sequences. Likewise, if s = (-1,-1,-1,...) instead of s = (1,1,1,...), then s**t is a divisibility sequence for every choice of t; e.g. if s = (-1,-1,-1,...) and t = A279019, then s**t = A130031.
Table 2. s = A000027 = (0,1,2,3,4,5,...) = (n);
t = A000027, n s**t = A007778, n^(n+1)
t = A000290, n^2 s**t = A374881
t = A000040, P s**t = A374853
t = A000045, F s**t = A374857
t = A000032, L s**t = A374858
t = A000079, 2^n s**t = A374859
t = A000201, LW s**t = A374861
t = A005408, 2*n+1 s**t = A000407, (2*n+1)! / n!
t = A016777, 3*n+1 s**t = A113551
t = A016789, 3*n+2 s**t = A374866
t = A000142, n! s**t = A374871
t = A032766, [3*n/2] s**t = A374879
t = A000217, T s**t = A374892
t = A000984, C s**t = A374893
t = A038608, n*(-1)^n s**t = A374894
Table 3. s = A000290 = (0,1,4,9,16,...) = (n^2);
t = A000290, n^2 s**t = A323540
t = A002522, n^2+1 s**t = A374884
t = A000217, T s**t = A374885
t = A000578, n^3 s**t = A374886
t = A000079, 2^n s**t = A374887
t = A000225, 2^n-1 s**t = A374888
t = A005408, 2*n+1 s**t = A374889
t = A000045, F s**t = A374890
Table 4. s = t;
s = t = A000012, 1 s**s = A000079; 2^(n+1)
s = t = A000027, n s**s = A007778, n^(n+1)
s = t = A000290, n^2 s**s = A323540
s = t = A000045, F s**s = this sequence
s = t = A000032, L s**s = A374850
s = t = A000079, 2^n s**s = A369673
s = t = A000244, 3^n s**s = A369674
s = t = A000040, P s**s = A374851
s = t = A000201, LW s**s = A374862
s = t = A005408, 2*n+1 s**s = A062971
s = t = A016777, 3*n+1 s**s = A374877
s = t = A016789, 3*n+2 s**s = A374878
s = t = A032766, [3*n/2] s**s = A374880
s = t = A000217, T s**s = A375050
s = t = A005563, n^2-1 s**s = A375051
s = t = A279019, n^2-n s**s = A375056
s = t = A002398, n^2+n s**s = A375058
s = t = A002061, n^2+n+1 s**s = A375059
If n = 2*k+1, then s**s(n) is a square; specifically,
s**s(n) = ((s(0)+s(n))*(s(1)+s(n-1))*...*(s(k)+s(k+1)))^2.
If n = 2*k, then s**s(n) has the form 2*s(k)*m^2, where m is an integer.
Table 5. Others
s = A000201, LW t = A001950, UW s**t = A374863
s = A000045, F t = A000032, L s**t = A374865
s = A005843, 2*n t = A005408, 2*n+1 s**t = A085528, (2*n+1)^(n+1)
s = A016777, 3*n+1 t = A016789, 3*n+2 s**t = A091482
s = A005408, 2*n+1 t = A000045, F s**t = A374867
s = A005408, 2*n+1 t = A000032, L s**t = A374868
s = A005408, 2*n+1 t = A000079, 2^n s**t = A374869
s = A000027, n t = A000142, n! s**t = A374871
s = A005408, 2*n+1 t = A000142, n! s**t = A374872
s = A000079, 2^n t = A000142, n! s**t = A374874
s = A000142, n! t = A000045, F s**t = A374875
s = A000142, n! t = A000032, L s**t = A374876
s = A005408, 2*n+1 t = A016777, 3*n+1 s**t = A352601
s = A005408, 2*n+1 t = A016789, 3*n+2 s**t = A064352
Table 6. Arrays of coefficients of s(x)**t(x), where s(x) and t(x) are polynomials
s(x) t(x) s(x)**t(x)
n x A132393
n^2 x A269944
x+1 x+1 A038220
x+2 x+2 A038244
x x+3 A038220
nx x+1 A094638
1 x^2+x+1 A336996
n^2 x x+1 A375041
n^2 x 2x+1 A375042
n^2 x x+2 A375043
2^n x x+1 A375044
2^n 2x+1 A375045
2^n x+2 A375046
x+1 F(n) A375047
x+1 x+F(n) A375048
x+F(n) x+F(n) A375049

Examples

			a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
  • PARI
    a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024

Formula

a(n) ~ c * phi^(3*n^2/4 + n) / 5^((n+1)/2), where c = QPochhammer(-1, 1/phi^2)^2/2 if n is even and c = phi^(1/4) * QPochhammer(-phi, 1/phi^2)^2 / (phi + 1)^2 if n is odd, and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 01 2024
Previous Showing 21-30 of 231 results. Next