cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 106 results. Next

A078334 Primes in A005728, which counts the terms in the Farey sequence of order n.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 23, 29, 43, 47, 59, 73, 97, 103, 151, 173, 181, 271, 397, 433, 491, 883, 941, 1087, 1103, 1163, 1193, 1229, 1427, 1471, 1697, 2143, 2273, 2657, 2903, 3533, 3677, 4073, 4129, 4201, 4259, 4637, 5023, 5107, 5953, 6163, 6599, 7177, 7237
Offset: 1

Views

Author

Cino Hilliard, Nov 21 2002

Keywords

Comments

Guy, in his Example 8, citing Leo Moser as his source, noted that the first 9 values of A005728(n) = 1 + Sum_{i=1..n} phi(i) = 1 + Sum_{i=1..n} A000010(i) are all primes, but that the pattern breaks down at A005728(10) = 33 = 3*11. As Guy warns, in several paraphrases of the same law, "Capricious coincidences cause careless conjectures." That is, for 1 <= n <= 9 we have A005728(n) = A078334(n), but for n > 9 we sometimes (n = {11, 12, 13, 15, 17, 18, 22, ...}) have A005728(n) prime, but other times (n = {10, 14, 16, 19, 20, 21, ...}) have A005728(n) composite. [Jonathan Vos Post, Sep 06 2010]

Examples

			The Farey sequence of order 6 is {0, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1}, which has 13 terms, so 13 is in the sequence.
		

References

  • H. Rademacher, Lectures on Elementary Number Theory, 1964. pp. 5-11.

Crossrefs

Programs

  • Mathematica
    fc[n_] := 1+Sum[EulerPhi[k], {k, 1, n}]; Select[fc/@Range[200], PrimeQ]

Extensions

Offset corrected by Amiram Eldar, Mar 01 2020

A061560 Lengths of Farey-series (A005728) which are not primes.

Original entry on oeis.org

1, 33, 65, 81, 121, 129, 141, 201, 213, 231, 243, 279, 309, 325, 345, 361, 385, 451, 475, 531, 543, 585, 605, 629, 651, 697, 713, 755, 775, 807, 831, 901, 965, 1001, 1029, 1261, 1309, 1329, 1395, 1495, 1565, 1589, 1661, 1737, 1773, 1833, 1857, 1935, 1967
Offset: 1

Views

Author

Frank Ellermann, May 17 2001

Keywords

Examples

			a(3) = 65 = 5*13 is not a prime, A055197(3-1) = 14, A005728(14) = 65.
		

Crossrefs

Programs

  • Mathematica
    seq = {1}; sum = 1; Do[sum += EulerPhi[k]; If[!PrimeQ[sum], AppendTo[seq, sum]], {k, 1, 80}]; seq (* Amiram Eldar, Mar 01 2020 *)

Formula

a(n) = A005728(A055197(n-1)) for n > 1, a(1) = A005728(0).

Extensions

More terms from Vladeta Jovovic, Jun 03 2001
Offset corrected by Amiram Eldar, Mar 01 2020

A366079 Perfect squares in A005728.

Original entry on oeis.org

1, 81, 121, 361, 1352569, 2140369, 6416089, 9186961, 30261001, 108056025, 820765201, 2331248089, 170938421809, 8189950752481, 8870860603201, 33527956250889, 136943052939289, 149526943190641, 4953581020385761, 509672946670475329, 578899033007097609, 2043000477545048329
Offset: 1

Views

Author

Stuart E Anderson, Sep 28 2023

Keywords

Examples

			a(3) = 361 because A005728(34) = 361 and 361 is 19 squared.
		

Crossrefs

Programs

  • PARI
    f(n)=1+sum(k=1, n, eulerphi(k)); \\ A005728
    select(x->issquare(x), apply(f, [0..10^5])) \\ Michel Marcus, Sep 28 2023

Extensions

a(11)-a(12) from Michel Marcus, Sep 28 2023
a(13)-a(22) from Hugo Pfoertner, Sep 28 2023

A003215 Hex (or centered hexagonal) numbers: 3*n*(n+1)+1 (crystal ball sequence for hexagonal lattice).

Original entry on oeis.org

1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, 3367, 3571, 3781, 3997, 4219, 4447, 4681, 4921, 5167, 5419, 5677, 5941, 6211, 6487, 6769
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Crystal ball sequence for A_2 lattice. - Michael Somos, Jun 03 2012
Sixth spoke of hexagonal spiral (cf. A056105-A056109).
Number of ordered integer triples (a,b,c), -n <= a,b,c <= n, such that a+b+c=0. - Benoit Cloitre, Jun 14 2003
Also the number of partitions of 6n into at most 3 parts, A001399(6n). - R. K. Guy, Oct 20 2003
Also, a(n) is the number of partitions of 6(n+1) into exactly 3 distinct parts. - William J. Keith, Jul 01 2004
Number of dots in a centered hexagonal figure with n+1 dots on each side.
Values of second Bessel polynomial y_2(n) (see A001498).
First differences of cubes (A000578). - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
Final digits of Hex numbers (hex(n) mod 10) are periodic with palindromic period of length 5 {1, 7, 9, 7, 1}. Last two digits of Hex numbers (hex(n) mod 100) are periodic with palindromic period of length 100. - Alexander Adamchuk, Aug 11 2006
All divisors of a(n) are congruent to 1, modulo 6. Proof: If p is an odd prime different from 3 then 3n^2 + 3n + 1 = 0 (mod p) implies 9(2n + 1)^2 = -3 (mod p), whence p = 1 (mod 6). - Nick Hobson, Nov 13 2006
For n>=1, a(n) is the side of Outer Napoleon Triangle whose reference triangle is a right triangle with legs (3a(n))^(1/2) and 3n(a(n))^(1/2). - Tom Schicker (tschicke(AT)email.smith.edu), Apr 25 2007
Number of triples (a,b,c) where 0<=(a,b)<=n and c=n (at least once the term n). E.g., for n = 1: (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1), so a(1)=7. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 20 2007
Equals the triangular numbers convolved with [1, 4, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
From Terry Stickels, Dec 07 2009: (Start)
Also the maximum number of viewable cubes from any one static point while viewing a cube stack of identical cubes of varying magnitude.
For example, viewing a 2 X 2 X 2 stack will yield 7 maximum viewable cubes.
If the stack is 3 X 3 X 3, the maximum number of viewable cubes from any one static position is 19, and so on.
The number of cubes in the stack must always be the same number for width, length, height (at true regular cubic stack) and the maximum number of visible cubes can always be found by taking any cubic number and subtracting the number of the cube that is one less.
Examples: 125 - 64 = 61, 64 - 27 = 37, 27 - 8 = 19. (End)
The sequence of digital roots of the a(n) is period 3: repeat [1,7,1]. - Ant King, Jun 17 2012
The average of the first n (n>0) centered hexagonal numbers is the n-th square. - Philippe Deléham, Feb 04 2013
A002024 is the following array A read along antidiagonals:
1, 2, 3, 4, 5, 6, ...
2, 3, 4, 5, 6, 7, ...
3, 4, 5, 6, 7, 8, ...
4, 5, 6, 7, 8, 9, ...
5, 6, 7, 8, 9, 10, ...
6, 7, 8, 9, 10, 11, ...
and a(n) is the hook sum Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). - R. J. Mathar, Jun 30 2013
a(n) is the sum of the terms in the n+1 X n+1 matrices minus those in n X n matrices in an array formed by considering A158405 an array (the beginning terms in each row are 1,3,5,7,9,11,...). - J. M. Bergot, Jul 05 2013
The formula also equals the product of the three distinct combinations of two consecutive numbers: n^2, (n+1)^2, and n*(n+1). - J. M. Bergot, Mar 28 2014
The sides of any triangle ABC are divided into 2n + 1 equal segments by 2n points: A_1, A_2, ..., A_2n in side a, and also on the sides b and c cyclically. If A'B'C' is the triangle delimited by AA_n, BB_n and CC_n cevians, we have (ABC)/(A'B'C') = a(n) (see Java applet link). - Ignacio Larrosa Cañestro, Jan 02 2015
a(n) is the maximal number of parts into which (n+1) triangles can intersect one another. - Ivan N. Ianakiev, Feb 18 2015
((2^m-1)n)^t mod a(n) = ((2^m-1)(n+1))^t mod a(n) = ((2^m-1)(2n+1))^t mod a(n), where m any positive integer, and t = 0(mod 6). - Alzhekeyev Ascar M, Oct 07 2016
((2^m-1)n)^t mod a(n) = ((2^m-1)(n+1))^t mod a(n) = a(n) - (((2^m-1)(2n+1))^t mod a(n)), where m any positive integer, and t = 3(mod 6). - Alzhekeyev Ascar M, Oct 07 2016
(3n+1)^(a(n)-1) mod a(n) = (3n+2)^(a(n)-1) mod a(n) = 1. If a(n) not prime, then always strong pseudoprime. - Alzhekeyev Ascar M, Oct 07 2016
Every positive integer is the sum of 8 hex numbers (zero included), at most 3 of which are greater than 1. - Mauro Fiorentini, Jan 01 2018
Area enclosed by the segment of Archimedean spiral between n*Pi/2 and (n+1)*Pi/2 in Pi^3/48 units. - Carmine Suriano, Apr 10 2018
This sequence contains all numbers k such that 12*k - 3 is a square. - Klaus Purath, Oct 19 2021
The continued fraction expansion of sqrt(3*a(n)) is [3n+1; {1, 1, 2n, 1, 1, 6n+2}]. For n = 0, this collapses to [1; {1, 2}]. - Magus K. Chu, Sep 12 2022

Examples

			G.f. = 1 + 7*x + 19*x^2 + 37*x^3 + 61*x^4 + 91*x^5 + 127*x^6 + 169*x^7 + 217*x^8 + ...
From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms:
.
.                                 o o o o
.                   o o o        o o o o o
.         o o      o o o o      o o o o o o
.   o    o o o    o o o o o    o o o o o o o
.         o o      o o o o      o o o o o o
.                   o o o        o o o o o
.                                 o o o o
.
.   1      7          19             37
.
(End)
From _Klaus Purath_, Dec 03 2021: (Start)
(1) a(19) is not a prime number, because besides a(19) = a(9) + P(29), a(19) = a(15) + P(20) = a(2) + P(33) is also true.
(2) a(25) is prime, because except for a(25) = a(12) + P(38) there is no other equation of this pattern. (End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A080853, and column k=2 of A047969.
See also A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A287326(A000124(n), 1).
Cf. A008292.
Cf. A154105.

Programs

Formula

a(n) = 3*n*(n+1) + 1, n >= 0 (see the name).
a(n) = (n+1)^3 - n^3 = a(-1-n).
G.f.: (1 + 4*x + x^2) / (1 - x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = 6*A000217(n) + 1.
a(n) = a(n-1) + 6*n = 2a(n-1) - a(n-2) + 6 = 3*a(n-1) - 3*a(n-2) + a(n-3) = A056105(n) + 5n = A056106(n) + 4*n = A056107(n) + 3*n = A056108(n) + 2*n = A056108(n) + n.
n-th partial arithmetic mean is n^2. - Amarnath Murthy, May 27 2003
a(n) = 1 + Sum_{j=0..n} (6*j). E.g., a(2)=19 because 1+ 6*0 + 6*1 + 6*2 = 19. - Xavier Acloque, Oct 06 2003
The sum of the first n hexagonal numbers is n^3. That is, Sum_{n>=1} (3*n*(n-1) + 1) = n^3. - Edward Weed (eweed(AT)gdrs.com), Oct 23 2003
a(n) = right term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 0 0 / 2 1 0 / 3 3 1]. M^n * [1 1 1] = [1 2n+1 a(n)]. E.g., a(4) = 61, right term in M^4 * [1 1 1], since M^4 * [1 1 1] = [1 9 61] = [1 2n+1 a(4)]. - Gary W. Adamson, Dec 22 2004
Row sums of triangle A130298. - Gary W. Adamson, Jun 07 2007
a(n) = 3*n^2 + 3*n + 1. Proof: 1) If n occurs once, it may be in 3 positions; for the two other ones, n terms are independently possible, then we have 3*n^2 different triples. 2) If the term n occurs twice, the third one may be placed in 3 positions and have n possible values, then we have 3*n more different triples. 3) The term n may occurs 3 times in one way only that gives the formula. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 20 2007
Binomial transform of [1, 6, 6, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 6, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = (n-1)*A000166(n) + (n-2)*A000166(n-1) = (n-1)floor(n!*e^(-1)+1) + (n-2)*floor((n-1)!*e^(-1)+1) (with offset 0). - Gary Detlefs, Dec 06 2009
a(n) = A028896(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = integral( (sin((n+1/2)x)/sin(x/2))^3, x=0..Pi)/Pi. - Yalcin Aktar, Dec 03 2011
Sum_{n>=0} 1/a(n) = Pi/sqrt(3)*tanh(Pi/(2*sqrt(3))) = 1.305284153013581... - Ant King, Jun 17 2012
a(n) = A000290(n) + A000217(2n+1). - Ivan N. Ianakiev, Sep 24 2013
a(n) = A002378(n+1) + A056220(n) = A005408(n) + 2*A005449(n) = 6*A000217(n) + 1. - Ivan N. Ianakiev, Sep 26 2013
a(n) = 6*A000124(n) - 5. - Ivan N. Ianakiev, Oct 13 2013
a(n) = A239426(n+1) / A239449(n+1) = A215630(2*n+1,n+1). - Reinhard Zumkeller, Mar 19 2014
a(n) = A243201(n) / A002061(n + 1). - Mathew Englander, Jun 03 2014
a(n) = A101321(6,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (1 + 6*x + 3*x^2)*exp(x). - Ilya Gutkovskiy, Jul 28 2016
a(n) = (A001844(n) + A016754(n))/2. - Bruce J. Nicholson, Aug 06 2017
a(n) = A045943(2n+1). - Miquel Cerda, Jan 22 2018
a(n) = 3*Integral_{x=n..n+1} x^2 dx. - Carmine Suriano, Apr 10 2018
a(n) = A287326(A000124(n), 1). - Kolosov Petro, Oct 22 2018
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 10*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 2/e. (End)
G.f.: polylog(-3, x)*(1-x)/x. See the Simon Plouffe formula above, and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 08 2021
a(n) = T(n-1)^2 - 2*T(n)^2 + T(n+1)^2, n >= 1, T = triangular number A000217. - Klaus Purath, Oct 11 2021
a(n) = 1 + 2*Sum_{j=n..2n} j. - Klaus Purath, Oct 19 2021
a(n) = A069099(n+1) - A000217(n). - Klaus Purath, Nov 03 2021
From Leo Tavares, Dec 03 2021: (Start)
a(n) = A005448(n) + A140091(n);
a(n) = A001844(n) + A002378(n);
a(n) = A005891(n) + A000217(n);
a(n) = A000290(n) + A000384(n+1);
a(n) = A060544(n-1) + 3*A000217(n);
a(n) = A060544(n-1) + A045943(n).
a(2*n+1) = A154105(n).
(End)

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A003114 Number of partitions of n into parts 5k+1 or 5k+4.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 41, 46, 54, 61, 70, 79, 91, 102, 117, 131, 149, 167, 189, 211, 239, 266, 299, 333, 374, 415, 465, 515, 575, 637, 709, 783, 871, 961, 1065, 1174, 1299, 1429, 1579, 1735, 1913, 2100, 2311, 2533, 2785
Offset: 0

Views

Author

Keywords

Comments

Expansion of Rogers-Ramanujan function G(x) in powers of x.
Same as number of partitions into distinct parts where the difference between successive parts is >= 2.
As a formal power series, the limit of polynomials S(n,x): S(n,x)=sum(T(i,x),0<=i<=n); T(i,x)=S(i-2,x).x^i; T(0,x)=1,T(1,x)=x; S(n,1)=A000045(n+1), the Fibonacci sequence. - Claude Lenormand (claude.lenormand(AT)free.fr), Feb 04 2001
The Rogers-Ramanujan identity is 1 + Sum_{n >= 1} t^(n^2)/((1-t)*(1-t^2)*...*(1-t^n)) = Product_{n >= 1} 1/((1-t^(5*n-1))*(1-t^(5*n-4))).
Coefficients in expansion of permanent of infinite tridiagonal matrix:
1 1 0 0 0 0 0 0 ...
x 1 1 0 0 0 0 0 ...
0 x^2 1 1 0 0 0 ...
0 0 x^3 1 1 0 0 ...
0 0 0 x^4 1 1 0 ...
................... - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that the smallest part is greater than or equal to number of parts. - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that if k is the largest part, then each of {1, 2, ..., k-1} occur at least twice. Example: a(9)=5 because we have [3, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Feb 27 2006
Also number of partitions of n such that if k is the largest part, then k occurs at least k times. Example: a(9)=5 because we have [3, 3, 3], [2, 2, 2, 2, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Apr 16 2006
a(n) = number of NW partitions of n, for n >= 1; see A237981.
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[1](x). - N. J. A. Sloane, Nov 22 2015
Convolution of A109700 and A109697. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
G.f. = 1/q + q^59 + q^119 + q^179 + 2*q^239 + 2*q^299 + 3*q^359 + 3*q^419 + ...
From _Joerg Arndt_, Dec 27 2012: (Start)
The a(16)=17 partitions of 16 where all parts are 1 or 4 (mod 5) are
  [ 1]  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
  [ 2]  [ 4 1 1 1 1 1 1 1 1 1 1 1 1 ]
  [ 3]  [ 4 4 1 1 1 1 1 1 1 1 ]
  [ 4]  [ 4 4 4 1 1 1 1 ]
  [ 5]  [ 4 4 4 4 ]
  [ 6]  [ 6 1 1 1 1 1 1 1 1 1 1 ]
  [ 7]  [ 6 4 1 1 1 1 1 1 ]
  [ 8]  [ 6 4 4 1 1 ]
  [ 9]  [ 6 6 1 1 1 1 ]
  [10]  [ 6 6 4 ]
  [11]  [ 9 1 1 1 1 1 1 1 ]
  [12]  [ 9 4 1 1 1 ]
  [13]  [ 9 6 1 ]
  [14]  [ 11 1 1 1 1 1 ]
  [15]  [ 11 4 1 ]
  [16]  [ 14 1 1 ]
  [17]  [ 16 ]
The a(16)=17 partitions of 16 where successive parts differ by at least 2 are
  [ 1]  [ 7 5 3 1 ]
  [ 2]  [ 8 5 3 ]
  [ 3]  [ 8 6 2 ]
  [ 4]  [ 9 5 2 ]
  [ 5]  [ 9 6 1 ]
  [ 6]  [ 9 7 ]
  [ 7]  [ 10 4 2 ]
  [ 8]  [ 10 5 1 ]
  [ 9]  [ 10 6 ]
  [10]  [ 11 4 1 ]
  [11]  [ 11 5 ]
  [12]  [ 12 3 1 ]
  [13]  [ 12 4 ]
  [14]  [ 13 3 ]
  [15]  [ 14 2 ]
  [16]  [ 15 1 ]
  [17]  [ 16 ]
(End)
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109, 238.
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(e), p. 591.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 107.
  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 90-92.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 290-291.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A188216 (least part k occurs at least k times).
For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.
Row sums of A268187.

Programs

  • Haskell
    a003114 = p a047209_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jan 05 2011
    
  • Haskell
    a003114 = p 1 where
       p _ 0 = 1
       p k m = if k > m then 0 else p (k + 2) (m - k) + p (k + 1) m
    -- Reinhard Zumkeller, Feb 19 2013
  • Maple
    g:=sum(x^(k^2)/product(1-x^j,j=1..k),k=0..10): gser:=series(g,x=0,65): seq(coeff(gser,x,n),n=0..60); # Emeric Deutsch, Feb 27 2006
  • Mathematica
    CoefficientList[ Series[Sum[x^k^2/Product[1 - x^j, {j, 1, k}], {k, 0, 10}], {x, 0, 65}], x][[1 ;; 61]] (* Jean-François Alcover, Apr 08 2011, after Emeric Deutsch *)
    Table[Count[IntegerPartitions[n], p_ /; Min[p] >= Length[p]], {n, 0, 24}] (* Clark Kimberling, Feb 13 2014 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 0, 0, -1, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    nmax = 60; kmax = nmax/5;
    s = Flatten[{Range[0, kmax]*5 + 1}~Join~{Range[0, kmax]*5 + 4}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
  • PARI
    {a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1), n))}; /* Michael Somos, Oct 15 2008 */
    

Formula

G.f.: Sum_{k>=0} x^(k^2)/(Product_{i=1..k} 1-x^i).
The g.f. above is the special case D=2 of sum(n>=0, x^(D*n*(n+1)/2 - (D-1)*n) / prod(k=1..n, 1-x^k) ), the g.f. for partitions into distinct part where the difference between successive parts is >= D. - Joerg Arndt, Mar 31 2014
G.f.: 1 + sum(i=1, oo, x^(5i+1)/prod(j=1 or 4 mod 5 and j<=5i+1, 1-x^j) + x^(5i+4)/prod(j=1 or 4 mod 5 and j<=5i+4, 1-x^j)). - Jon Perry, Jul 06 2004
G.f.: (Product_{k>0} 1 + x^(2*k)) * (Sum_{k>=0} x^(k^2) / (Product_{i=1..k} 1 - x^(4*i))). - Michael Somos, Oct 19 2006
Euler transform of period 5 sequence [ 1, 0, 0, 1, 0, ...]. - Michael Somos, Oct 15 2008
Expansion of f(-x^5) / f(-x^1, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, May 17 2015
Expansion of f(-x^2, -x^3) / f(-x) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 13 2015
a(n) ~ phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * 5^(1/2) * n^(3/4)) * (1 - (3*sqrt(15)/(16*Pi) + Pi/(60*sqrt(15))) / sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 23 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284150(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

A007489 a(n) = Sum_{k=1..n} k!.

Original entry on oeis.org

0, 1, 3, 9, 33, 153, 873, 5913, 46233, 409113, 4037913, 43954713, 522956313, 6749977113, 93928268313, 1401602636313, 22324392524313, 378011820620313, 6780385526348313, 128425485935180313, 2561327494111820313, 53652269665821260313, 1177652997443428940313
Offset: 0

Views

Author

Keywords

Comments

Equals row sums of triangle A143122 starting (1, 3, 9, 33, ...). - Gary W. Adamson, Jul 26 2008
a(n) for n>=4 is never a perfect square. - Alexander R. Povolotsky, Oct 16 2008
Number of cycles that can be written in the form (j,j+1,j+2,...), in all permutations of {1,2,...,n}. Example: a(3)=9 because in (1)(2)(3), (1)(23), (12)(3), (13)(2), (123), (132) we have 3+2+2+1+1+0=9 such cycles. - Emeric Deutsch, Jul 14 2009
Conjectured to be the length of the shortest word over {1,...,n} that contains each of the n! permutations as a factor (cf. A180632) [see Johnston]. - N. J. A. Sloane, May 25 2013
The above conjecture has been disproven for n>=6. See A180632 and the Houston 2014 reference. - Dmitry Kamenetsky, Mar 07 2016
a(n) is also the number of compositions of n if cardinal values do not matter but ordinal rankings do. Since cardinal values do not matter, a sequence of k summands summing to n can be represented as (s(1),...,s(k)), where the s's are positive integers and the numbers in parentheses are the initial ordinal rankings. The number of compositions of these summands are equal to k!, with k ranging from 1 to n. - Gregory L. Simay, Jul 31 2016
When the numbers denote finite permutations (as row numbers of A055089) these are the circular shifts to the left. Compare array A211370 for circular shifts to the left in a broader sense. Compare sequence A001563 for circular shifts to the right. - Tilman Piesk, Apr 29 2017
Since a(n) = (1!+2!+3!+...+n!) = 3(1+3!/3+4!/3+...+n!/3) is a multiple of 3 for n>2, the only prime in this sequence is a(2) = 3. - Eric W. Weisstein, Jul 15 2017
Generalization of 2nd comment: a(n) for n>=4 is never a perfect power (A007916) (Chentzov link). - Bernard Schott, Jan 26 2023

Examples

			a(4) = 1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 = 33. - _Michael B. Porter_, Aug 03 2016
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Section B44, Springer 2010.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A003422(n+1) - 1.
Column k=0 of A120695.

Programs

Formula

a(n) = Sum_{k=1..n} P(n, k)/C(n, k). - Ross La Haye, Sep 21 2004
a(n) = 3*A056199(n) for n>=2. - Philippe Deléham, Feb 10 2007
a(n) = !(n+1)-1=A003422(n+1)-1. - Artur Jasinski, Nov 08 2007 [corrected by Werner Schulte, Oct 20 2021]
Starting (1, 3, 9, 33, 153, ...), = row sums of triangle A137593 - Gary W. Adamson, Jan 28 2008
a(n) = a(n-1) + n! for n >= 1. - Jaroslav Krizek, Jun 16 2009
E.g.f. A(x) satisfies to the differential equation A'(x)=A(x)+x/(1-x)^2+1. - Vladimir Kruchinin, Jan 22 2011
a(0)=0, a(1)=1, a(n) = (n+1)*a(n-1)-n*a(n-2). - Sergei N. Gladkovskii, Jul 05 2012
G.f.: W(0)*x/(2-2*x) , where W(k) = 1 + 1/( 1 - x*(k+2)/( x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
G.f.: x /(1-x)/Q(0),m=+2, where Q(k) = 1 - 2*x*(2*k+1) - m*x^2*(k+1)*(2*k+1)/( 1 - 2*x*(2*k+2) - m*x^2*(k+1)*(2*k+3)/Q(k+1) ) ; (continued fraction). - Sergei N. Gladkovskii, Sep 24 2013
E.g.f.: exp(x-1)*(Ei(1) - Ei(1-x)) - exp(x) + 1/(1 - x), where Ei(x) is the exponential integral. - Ilya Gutkovskiy, Nov 27 2016
a(n) = sqrt(a(n-1)*a(n+1)-a(n-2)*n*n!), n >= 2. - Gary Detlefs, Oct 26 2020
a(n) ~ n!. - Ridouane Oudra, Jun 11 2025

A002088 Sum of totient function: a(n) = Sum_{k=1..n} phi(k), cf. A000010.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 12, 18, 22, 28, 32, 42, 46, 58, 64, 72, 80, 96, 102, 120, 128, 140, 150, 172, 180, 200, 212, 230, 242, 270, 278, 308, 324, 344, 360, 384, 396, 432, 450, 474, 490, 530, 542, 584, 604, 628, 650, 696, 712, 754, 774, 806, 830, 882, 900, 940, 964
Offset: 0

Views

Author

Keywords

Comments

Number of elements in the set {(x,y): 1 <= x <= y <= n, 1=gcd(x,y)}. - Michael Somos, Jun 13 1999
Sum_{k=1..n} phi(k) gives the number of distinct arithmetic progressions which contain an infinite number of primes and whose difference does not exceed n. E.g., {1k+1}, {2k+1}, {3k+1, 3k+2}, {4k+1, 4k+3}, {5k+1, ..5k+4} means 10 sequences. - Labos Elemer, May 02 2001
The quotient A024916(n)/a(n) = SummatorySigma/SummatoryTotient as n increases seems to approach Pi^4/36 = zeta(2)^2 = A098198 ~2.705808084277845. - Labos Elemer, Sep 20 2004 (corrected by Peter Pein, Apr 28 2009)
Also the number of rationals p/q in (0,1] with denominators q<=n. - Franz Vrabec, Jan 29 2005
a(n) is the number of initial segments of Beatty sequences for real numbers > 1, cut off when the next term in the sequence would be >= n. For example, the sequence 1,2 is included for n=3 and n=4, but not for n >= 5 because the next term of the Beatty sequence must be 3 or 4. Problem suggested by David W. Wilson. - Franklin T. Adams-Watters, Oct 19 2006
Number of complex numbers satisfying any one of {x^1=1, x^2=1, x^3=1, x^4=1, x^5=1, ..., x^n=1}. - Paul Smith (math.idiot(AT)gmail.com), Mar 19 2007
a(n+2) equals the number of Sturmian words of length n which are 'special', prefix of two Sturmian words of length n+1. - Fred Lunnon, Sep 05 2010
For n > 1: A020652(a(n)) = 1 and A038567(a(n)) = n; for n > 0: A214803(a(n)) = 1. - Reinhard Zumkeller, Jul 29 2012
Also number of elements in the set {(x,y): 1 <= x + y <= n, x >= 0, y > 0, with x and y relatively prime integers}. Thus, the number of reduced rational numbers x/y with x nonnegative, y positive, and x + y <= n. (For n >= 1, 0 <= x/y <= n - 1, clearly including each integer in this interval.) - Rick L. Shepherd, Apr 08 2014
This function, the partial sums of phi = A000010, is sometimes denoted by (uppercase) Phi. - M. F. Hasler, Apr 18 2015
From Roger Ford, Jan 16 2016: (Start)
For n >= 1: a(n) is the number of perfect arched semi-meander solutions with n arches. To be perfect the number of arch groupings must equal the number of arches with a length of 1 in the current generation and every preceding generation.
Example: p is the number of arches with length 1 (/\), g is the number of arch groups (-), n is number of arches in the top half of a semi-meander solution
/\
/\ //\\
//\\-/\-///\\\- n=6 p=3 g=3 Each preceding arch configuration
/\ /\ is formed by attaching the arch
/\-//\\-//\\- n=5 p=3 g=3 end in the first position and the
/\ arch end in the last position.
//\\
///\\\-/\- n=4 p=2 g=2
/\
//\\-/\- n=3 p=2 g=2
/\-/\- n=2 p=2 g=2
/\- n=1 p=1 g=1. (End)
a(n) is the number of distinct lists of binary words of length n that are balanced (Sturmian). - Dan Rockwell, Will Wodrich, Aaliyah Fiala, and Bob Burton, May 30 2019
2013 IMO Problem 6 shows that a(n) is the number of ways to arrange the numbers 0, 1, ..., n on a circle such that for any numbers 0 <= a < b < c < d <= n, the chord joining a and d does not intersect with the chord intersecting b and c, with rotation counted as same. - Yifan Xie, Aug 26 2025

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 6*x^4 + 10*x^5 + 12*x^6 + 18*x^7 + 22*x^8 + 28*x^9 + ...
		

References

  • A. Beiler, Recreations in the Theory of Numbers, Dover Publications, 1966, Chap. XVI.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 138.
  • M. N. Huxley, The Distribution of Prime Numbers, Oxford Univ. Press, 1972, p. 6.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section I.21.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 94, Problem 11.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 111.

Crossrefs

Programs

  • GAP
    List([1..60],n->Sum([1..n],i->Phi(i))); # Muniru A Asiru, Jul 31 2018
    
  • Haskell
    a002088 n = a002088_list !! n
    a002088_list = scanl (+) 0 a000010_list -- Reinhard Zumkeller, Jul 29 2012
    
  • Magma
    [&+[EulerPhi(i): i in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Aug 01 2018
    
  • Maple
    with(numtheory): A002088:=n->add(phi(i),i=1..n): seq(A002088(n), n=0..70);
  • Mathematica
    Table[Plus @@ EulerPhi[Range[n]], {n, 0, 57}] (* Alonso del Arte, May 30 2006 *)
    Accumulate[EulerPhi[Range[0,60]]] (* Harvey P. Dale, Aug 27 2011 *)
  • PARI
    a(n)=sum(k=1,n,eulerphi(k)) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    a(n)=my(s=1); forsquarefree(k=1,n,s+=(n\k[1])^2*moebius(k)); s/2 \\ Charles R Greathouse IV, Oct 15 2021
    
  • PARI
    first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]]=s+=eulerphi(k)); v \\ Charles R Greathouse IV, Oct 15 2021
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A002088(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(2*A002088(k1)-1)
            j, k1 = j2, n//j2
        return (n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 24 2021
  • Sage
    [sum(euler_phi(k) for k in (1..n)) for n in (0..60)] # G. C. Greubel, Nov 25 2018
    

Formula

a(n) = (3*n^2)/(Pi^2) + O(n log n).
More precisely, a(n) = (3/Pi^2)*n^2 + O(n*(log(n))^(2/3)*(log(log(n)))^(4/3)), (A. Walfisz 1963). - Benoit Cloitre, Feb 02 2003
a(n) = (1/2)*Sum_{k>=1} mu(k)*floor(n/k)*floor(1+n/k). - Benoit Cloitre, Apr 11 2003
a(n) = A000217(n) - A063985(n) = A018805(n) - A015614(n). - Reinhard Zumkeller, Jan 21 2013
A slightly simpler version of Cloitre's formula is a(n) = 1/2 + Sum_{k=1..oo} floor(n/k)^2*mu(k)/2. - Bill Gosper, Jul 25 2020
The quotient A024916(n)/a(n) = SummatorySigma/SummatoryTotient as n increases seems to approach (Pi^4)/36 = Zeta(2)^2 = 2.705808084277845. See also A067282. - Labos Elemer, Sep 21 2004
A024916(n)/a(n) = zeta(2)^2 + O(log(n)/n). This follows from asymptotic formulas for the sequences. - Franklin T. Adams-Watters, Oct 19 2006
Row sums of triangle A134542. - Gary W. Adamson, Oct 31 2007
G.f.: (Sum_{n>=1} mu(n)*x^n/(1-x^n)^2)/(1-x), where mu(n) = A008683(n). - Mamuka Jibladze, Apr 06 2015
a(n) = A005728(n) - 1, for n >= 0. - Wolfdieter Lang, Nov 22 2016
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (M(floor(n/k)) - M(floor(n/(k+1)))) + Sum_{k=1..floor(n/(1+floor(sqrt(n))))} mu(k) * floor(n/k) * floor(1+n/k))/2, where M(k) is the Mertens function (A002321) and mu(k) is the Moebius function (A008683). - Daniel Suteu, Nov 23 2018
a(n) = A015614(n)+1. - R. J. Mathar, Apr 26 2023
a(n) = A000217(n) - Sum{k=2..n} a(floor(n/k)). From summing over Id = 1 (Dirichlet convolution) phi. - Jason Xu, Jul 31 2024
a(n) = Sum_{k=1..n} k*A002321(floor(n/k)). - Ridouane Oudra, Jul 03 2025

Extensions

Additional comments from Len Smiley

A000978 Wagstaff numbers: numbers k such that (2^k + 1)/3 is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321, 986191, 4031399
Offset: 1

Views

Author

Keywords

Comments

It is easy to see that the definition implies that k must be an odd prime. - N. J. A. Sloane, Oct 06 2006
The terms from a(32) on only give probable primes as of 2018. Caldwell lists the largest certified primes. - Jens Kruse Andersen, Jan 10 2018
Prime numbers of the form 1+Sum_{i=1..m} 2^(2i-1). - Artur Jasinski, Feb 09 2007
There is a new conjecture stating that a Wagstaff number is prime under the following condition (based on DiGraph cycles under the LLT): Let p be a prime integer > 3, N(p) = 2^p+1 and W(p) = N(p)/3, S(0) = 3/2 (or 1/4) and S(i+1) = S(i)^2 - 2 (mod N(p)). Then W(p) is prime iff S(p-1) == S(0) (mod W(p)). - Tony Reix, Sep 03 2007
As a member of the DUR team (Diepeveen, Underwood, Reix), and thanks to the LLR tool built by Jean Penne, I've found a new and big Wagstaff PRP: (2^4031399+1)/3 is Vrba-Reix PRP! This Wagstaff number has 1,213,572 digits and today is the 3rd biggest PRP ever found. I've done a second verification on a Nehalem core with the PFGW tool. - Tony Reix, Feb 20 2010
13347311 and 13372531 were found to be terms of this sequence (maybe not the next ones) by Ryan Propper in September 2013. - Max Alekseyev, Oct 07 2013
The next term is larger than 10 million. - Gord Palameta, Mar 22 2019
Ryan Propper found another likely term, 15135397, though it only corresponds to a probable prime. - Charles R Greathouse IV, Jul 01 2021

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. S. Wagstaff, Jr., personal communication.

Crossrefs

Cf. A107036 (indices of prime Jacobsthal numbers).

Programs

  • Haskell
    a000978 n = a000978_list !! (n-1)
    a000978_list = filter ((== 1) . a010051 . a001045) a065091_list
    -- Reinhard Zumkeller, Mar 24 2013
    
  • Mathematica
    Select[Range[5000], PrimeQ[(2^# + 1)/3] &] (* Michael De Vlieger, Jan 10 2018 *)
    Select[Prime[Range[2,500]],PrimeQ[(2^#+1)/3]&] (* Harvey P. Dale, Jun 13 2022 *)
  • PARI
    forprime(p=2,5000,if(ispseudoprime(2^p\/3),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • Python
    from gmpy2 import divexact
    from sympy import prime, isprime
    A000978 = [p for p in (prime(n) for n in range(2,10**2)) if isprime(divexact(2**p+1,3))] # Chai Wah Wu, Sep 04 2014

Formula

a(n) = A107036(n) for n>1. - Alexander Adamchuk, Feb 10 2007

Extensions

a(30) from Kamil Duszenko (kdusz(AT)wp.pl), Feb 03 2003; a(30) was proved prime by Francois Morain with FastECPP. - Tony Reix, Sep 03 2007
a(31)-a(39) from Robert G. Wilson v, Apr 11 2005
a(40) from Vincent Diepeveen (diep(AT)xs4all.nl) added by Alexander Adamchuk, Jun 19 2008
a(41) from Tony Reix, Feb 20 2010

A018805 Number of elements in the set {(x,y): 1 <= x,y <= n, gcd(x,y)=1}.

Original entry on oeis.org

1, 3, 7, 11, 19, 23, 35, 43, 55, 63, 83, 91, 115, 127, 143, 159, 191, 203, 239, 255, 279, 299, 343, 359, 399, 423, 459, 483, 539, 555, 615, 647, 687, 719, 767, 791, 863, 899, 947, 979, 1059, 1083, 1167, 1207, 1255, 1299, 1391, 1423, 1507, 1547, 1611, 1659, 1763
Offset: 1

Views

Author

Keywords

Comments

Number of positive rational numbers of height at most n, where the height of p/q is max(p, q) when p and q are relatively prime positive integers. - Charles R Greathouse IV, Jul 05 2012
The number of ordered pairs (i,j) with 1<=i<=n, 1<=j<=n, gcd(i,j)=d is a(floor(n/d)). - N. J. A. Sloane, Jul 29 2012
Equals partial sums of A140434 (1, 2, 4, 4, 8, 4, 12, 8, ...) and row sums of triangle A143469. - Gary W. Adamson, Aug 17 2008
Number of distinct solutions to k*x+h=0, where 1 <= k,h <= n. - Giovanni Resta, Jan 08 2013
a(n) is the number of rational numbers which can be constructed from the set of integers between 1 and n, without combination of multiplication and division. a(3) = 7 because {1, 2, 3} can only create {1/3, 1/2, 2/3, 1, 3/2, 2, 3}. - Bernard Schott, Jul 07 2019

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 110-112.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954. See Theorem 332.

Crossrefs

Cf. A177853 (partial sums).
The main diagonal of A331781, also of A333295.

Programs

  • Haskell
    a018805 n = length [()| x <- [1..n], y <- [1..n], gcd x y == 1]
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Magma
    /* based on the first formula */ A018805:=func< n | 2*&+[ EulerPhi(k): k in [1..n] ]-1 >; [ A018805(n): n in [1..60] ]; // Klaus Brockhaus, Jan 27 2011
    
  • Magma
    /* based on the second formula */ A018805:=func< n | n eq 1 select 1 else n^2-&+[ $$(n div j): j in [2..n] ] >; [ A018805(n): n in [1..60] ]; // Klaus Brockhaus, Feb 07 2011
    
  • Maple
    N:= 1000; # to get the first N entries
    P:= Array(1..N,numtheory:-phi);
    A:= map(t -> 2*round(t)-1, Statistics:-CumulativeSum(P));
    convert(A,list); # Robert Israel, Jul 16 2014
  • Mathematica
    FoldList[ Plus, 1, 2 Array[ EulerPhi, 60, 2 ] ] (* Olivier Gérard, Aug 15 1997 *)
    Accumulate[2*EulerPhi[Range[60]]]-1 (* Harvey P. Dale, Oct 21 2013 *)
  • PARI
    a(n)=sum(k=1,n,moebius(k)*(n\k)^2)
    
  • PARI
    A018805(n)=2 *sum(j=1, n, eulerphi(j)) - 1;
    for(n=1, 99, print1(A018805(n), ", ")); /* show terms */
    
  • PARI
    a(n)=my(s); forsquarefree(k=1,n, s+=moebius(k)*(n\k[1])^2); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import sieve
    def A018805(n): return 2*sum(t for t in sieve.totientrange(1,n+1)) - 1 # Chai Wah Wu, Mar 23 2021
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A018805(n): # based on second formula
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A018805(k1)
            j, k1 = j2, n//j2
        return n*(n-1)-c+j # Chai Wah Wu, Mar 24 2021

Formula

a(n) = 2*(Sum_{j=1..n} phi(j)) - 1.
a(n) = n^2 - Sum_{j=2..n} a(floor(n/j)).
a(n) = 2*A015614(n) + 1. - Reinhard Zumkeller, Apr 08 2006
a(n) = 2*A002088(n) - 1. - Hugo van der Sanden, Nov 22 2008
a(n) ~ (1/zeta(2)) * n^2 = (6/Pi^2) * n^2 as n goes to infinity (zeta is the Riemann zeta function, A013661, and the constant 6/Pi^2 is 0.607927..., A059956). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 18 2001
a(n) ~ 6*n^2/Pi^2 + O(n*log n). - N. J. A. Sloane, May 31 2020
a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^2. - Benoit Cloitre, May 11 2003
a(n) = A000290(n) - A100613(n) = A015614(n) + A002088(n). - Reinhard Zumkeller, Jan 21 2013
a(n) = A242114(floor(n/k),1), 1<=k<=n; particularly a(n) = A242114(n,1). - Reinhard Zumkeller, May 04 2014
a(n) = 2 * A005728(n) - 3. - David H Post, Dec 20 2016
a(n) ~ 6*n^2/Pi^2, cf. A059956. [Hardy and Wright] - M. F. Hasler, Jan 20 2017
G.f.: (1/(1 - x)) * (-x + 2 * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^2). - Ilya Gutkovskiy, Feb 14 2020

Extensions

More terms from Reinhard Zumkeller, Apr 08 2006
Link to Moree's paper corrected by Peter Luschny, Aug 08 2009

A005169 Number of fountains of n coins.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 135, 234, 406, 704, 1222, 2120, 3679, 6385, 11081, 19232, 33379, 57933, 100550, 174519, 302903, 525734, 912493, 1583775, 2748893, 4771144, 8281088, 14373165, 24946955, 43299485, 75153286, 130440740, 226401112, 392955956, 682038999, 1183789679, 2054659669, 3566196321, 6189714276
Offset: 0

Views

Author

Keywords

Comments

A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row.
Also the number of Dyck paths for which the sum of the heights of the vertices that terminate an upstep (i.e., peaks and doublerises) is n. Example: a(4)=3 because we have UDUUDD, UUDDUD and UDUDUDUD. - Emeric Deutsch, Mar 22 2008
Also the number of ordered trees with path length n (follows from previous comment via a standard bijection). - Emeric Deutsch, Mar 22 2008
Probably first studied by Jim Propp (unpublished).
Number of compositions of n with c(1) = 1 and c(i+1) <= c(i) + 1. (Slide each row right 1/2 step relative to the row below, and count the columns.) - Franklin T. Adams-Watters, Nov 24 2009
With the additional requirement for weak unimodality one obtains A001524. - Joerg Arndt, Dec 09 2012

Examples

			An example of a fountain with 19 coins:
... O . O O
.. O O O O O O . O
. O O O O O O O O O
From _Peter Bala_, Dec 26 2012: (Start)
F(1/10) = Sum_{n >= 0} a(n)/10^n has the simple continued fraction expansion 1 + 1/(8 + 1/(1 + 1/(8 + 1/(1 + 1/(98 + 1/(1 + 1/(98 + 1/(1 + 1/(998 + 1/(1 + 1/(998 + 1/(1 + ...)))))))))))).
F(-1/10) = Sum_{n >= 0} (-1)^n*a(n)/10^n has the simple continued fraction expansion 1/(1 + 1/(9 + 1/(1 + 1/(9 + 1/(99 + 1/(1 + 1/(99 + 1/(999 + 1/(1 + 1/(999 + 1/(9999 + 1/(1 + ...)))))))))))).
(End)
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001524, A192728, A192729, A192730, A111317, A143951, A285903, A226999 (inverse Euler transform), A291148 (convolution inverse).
First column of A168396. - Franklin T. Adams-Watters, Nov 24 2009
Diagonal of A185646.
Row sums of A047998. Column sums of A138158. - Emeric Deutsch, Mar 22 2008

Programs

  • Haskell
    a005169 0 = 1
    a005169 n = a168396 n 1  -- Reinhard Zumkeller, Sep 13 2013; corrected by R. J. Mathar, Sep 16 2013
  • Maple
    P[0]:=1: for n to 40 do P[n]:=sort(expand(t*(sum(P[j]*P[n-j-1]*t^(n-j-1),j= 0..n-1)))) end do: F:=sort(sum(P[k],k=0..40)): seq(coeff(F,t,j),j=0..36); # Emeric Deutsch, Mar 22 2008
    # second Maple program:
    A005169_G:= proc(x,NK); Digits:=250; Q2:=1;
            for k from NK by -1 to 0 do  Q1:=1-x^k/Q2; Q2:=Q1; od;
            Q3:=Q2; S:=1-Q3;
    end:
    series(A005169_G(x, 20), x, 21); # Sergei N. Gladkovskii, Dec 18 2011
  • Mathematica
    m = 36; p[0] = 1; p[n_] := p[n] = Expand[t*Sum[p[j]*p[n-j-1]*t^(n-j-1), {j, 0, n-1}]]; f[t_] = Sum[p[k], {k, 0, m}]; CoefficientList[Series[f[t], {t, 0, m}], t] (* Jean-François Alcover, Jun 21 2011, after Emeric Deutsch *)
    max = 43; Series[1-Fold[Function[1-x^#2/#1], 1, Range[max, 0, -1]], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Sep 16 2014 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j], {j, 1, Min[i+1, n]}]];
    c[n_] :=  b[n, 0] - b[n-1, 0];
    c /@ Range[0, 50] // Accumulate  (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz in A289080 *)
  • PARI
    /* using the g.f. from p. L1278 of the Glasser, Privman, Svrakic paper */
    N=30;  x='x+O('x^N);
    P(k)=sum(n=0,N, (-1)^n*x^(n*(n+1+k))/prod(j=1,n,1-x^j));
    G=1+x*P(1)/( (1-x)*P(1)-x^2*P(2) );
    Vec(G) /* Joerg Arndt, Feb 10 2011 */
    
  • PARI
    /* As a continued fraction: */
    {a(n)=local(A=1+x,CF);CF=1+x;for(k=0,n,CF=1/(1-x^(n-k+1)*CF+x*O(x^n));A=CF);polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    /* By the Rogers-Ramanujan continued fraction identity: */
    {a(n)=local(A=1+x,P,Q);
    P=sum(m=0,sqrtint(n),(-1)^m*x^(m*(m+1))/prod(k=1,m,1-x^k));
    Q=sum(m=0,sqrtint(n),(-1)^m*x^(m^2)/prod(k=1,m,1-x^k));
    A=P/(Q+x*O(x^n));polcoeff(A,n)}  /* Paul D. Hanna */
    

Formula

A005169(n) = f(n, 1), where f(n, p) = 0 if p > n, 1 if p = n, Sum(1 <= q <= p+1; f(n-p, q)) if p < n. f=A168396.
G.f.: F(t) = Sum_{k>=0} P[k], where P[0]=1, P[n] = t*Sum_{j= 0..n-1} P[j]*P[n-j-1]*t^(n-j-1) for n >= 1. - Emeric Deutsch, Mar 22 2008
G.f.: 1/(1-x/(1-x^2/(1-x^3/(1-x^4/(1-x^5/(...)))))) [given on the first page of the Odlyzko/Wilf reference]. - Joerg Arndt, Mar 08 2011
G.f.: 1/G(0), where G(k)= 1 - x^(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013
G.f.: A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product_{k=1..n} (1-x^k),
Q(x) = Sum_{n>=0} (-1)^n* x^(n^2) / Product_{k=1..n} (1-x^k),
due to the Rogers-Ramanujan continued fraction identity. - Paul D. Hanna, Jul 08 2011
From Peter Bala, Dec 26 2012: (Start)
Let F(x) denote the o.g.f. of this sequence. For positive integer n >= 3, the real number F(1/n) has the simple continued fraction expansion 1 + 1/(n-2 + 1/(1 + 1/(n-2 + 1/(1 + 1/(n^2-2 + 1/(1 + 1/(n^2-2 + 1/(1 + ...)))))))), while for n >= 2, F(-1/n) has the simple continued fraction expansion 1/(1 + 1/(n-1 + 1/(1 + 1/(n-1 + 1/(n^2-1 + 1/(1 + 1/(n^2-1 + 1/(n^3-1 + 1/(1 + ...))))))))). Examples are given below. Cf. A111317 and A143951.
(End)
a(n) = c * x^(-n) + O((5/3)^n), where c = 0.312363324596741... and x = A347901 = 0.576148769142756... is the lowest root of the equation Q(x) = 0, Q(x) see above (Odlyzko & Wilf 1988). - Vaclav Kotesovec, Jul 18 2013, updated Sep 24 2020
G.f.: G(0), where G(k)= 1 - x^(k+1)/(x^(k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
G.f.: 1 - 1/x + 1/(x*W(0)), where W(k)= 1 - x^(2*k+2)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013

Extensions

More terms from David W. Wilson, Apr 30 2001
Previous Showing 11-20 of 106 results. Next