cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 1353 results. Next

A005329 a(n) = Product_{i=1..n} (2^i - 1). Also called 2-factorial numbers.

Original entry on oeis.org

1, 1, 3, 21, 315, 9765, 615195, 78129765, 19923090075, 10180699028325, 10414855105976475, 21319208401933844325, 87302158405919092510875, 715091979502883286756577125, 11715351900195736886933003038875, 383876935713713710574133710574817125
Offset: 0

Views

Author

Keywords

Comments

Conjecture: this sequence is the inverse binomial transform of A075272 or, equivalently, the inverse binomial transform of the BinomialMean transform of A075271. - John W. Layman, Sep 12 2002
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
Number of upper triangular n X n (0,1)-matrices with no zero rows. - Vladeta Jovovic, Mar 10 2008
Equals the q-Fibonacci series for q = (-2), and the series prefaced with a 1: (1, 1, 1, 3, 21, ...) dot (1, -2, 4, -8, ...) if n is even, and (-1, 2, -4, 8, ...) if n is odd. For example, a(3) = 21 = (1, 1, 1, 3) dot (-1, 2, -4, 8) = (-1, 2, -4, 24) and a(4) = 315 = (1, 1, 1, 3, 21) dot (1, -2, 4, -8 16) = (1, -2, 4, -24, 336). - Gary W. Adamson, Apr 17 2009
Number of chambers in an A_n(K) building where K=GF(2) is the field of two elements. This is also the number of maximal flags in an n-dimensional vector space over a field of two elements. - Marcos Spreafico, Mar 22 2012
Given probability p = 1/2^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, A114604(n)/A006125(n+2) = 1-a(n)/A006125(n+1) is the probability that the outcome has occurred up to and including the n-th iteration. The limiting ratio is 1-A048651 ~ 0.7112119. These observations are a more formal and generalized statement of Joshua Zucker's Dec 14, 2005 comment. - Bob Selcoe, Mar 02 2016
Also the number of dominating sets in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Empirical: Letting Q denote the Hall-Littlewood Q basis of the symmetric functions over the field of fractions of the univariate polynomial ring in t over the field of rational numbers, and letting h denote the complete homogeneous basis, a(n) is equal to the absolute value of 2^A000292(n) times the coefficient of h_{1^(n*(n+1)/2)} in Q_{(n, n-1, ..., 1)} with t evaluated at 1/2. - John M. Campbell, Apr 30 2018
The series f(x) = Sum_{n>=0} x^(2^n-1)/a(n) satisfies f'(x) = f(x^2), f(0) = 1. - Lucas Larsen, Jan 05 2022

Examples

			G.f. = 1 + x + 3*x^2 + 21*x^3 + 315*x^4 + 9765*x^5 + 615195*x^6 + 78129765*x^7 + ...
		

References

  • Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadeland, and William B. Jones, Handbook of continued fractions for special functions, Springer, New York, 2008. (see 19.2.1)
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.
  • Mark Ronan, Lectures on Buildings (Perspectives in Mathematics; Vol. 7), Academic Press Inc., 1989.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A048651, A079555, A152476 (inverse binomial transform).
Column q=2 of A069777.

Programs

  • GAP
    List([0..15],n->Product([1..n],i->2^i-1)); # Muniru A Asiru, May 18 2018
  • Magma
    [1] cat [&*[ 2^k-1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
    
  • Maple
    A005329 := proc(n) option remember; if n<=1 then 1 else (2^n-1)*procname(n-1); end if; end proc: seq(A005329(n), n=0..15);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (2^n-1)*a[n-1]; a /@ Range[0,14] (* Jean-François Alcover, Apr 22 2011 *)
    FoldList[Times, 1, 2^Range[15] - 1] (* Harvey P. Dale, Dec 21 2011 *)
    Table[QFactorial[n, 2], {n, 0, 14}] (* Arkadiusz Wesolowski, Oct 30 2012 *)
    QFactorial[Range[0, 10], 2] (* Eric W. Weisstein, Jul 14 2017 *)
    a[ n_] := If[ n < 0, 0, (-1)^n QPochhammer[ 2, 2, n]]; (* Michael Somos, Jan 28 2018 *)
  • PARI
    a(n)=polcoeff(sum(m=0,n,2^(m*(m+1)/2)*x^m/prod(k=0,m,1+2^k*x+x*O(x^n))),n) \\ Paul D. Hanna, Sep 17 2009
    
  • PARI
    Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D
    a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+sum(k=1,n,x^k/k!*Dx(k,x*A+x*O(x^n) ))); polcoeff(A,n) \\ Paul D. Hanna, Apr 21 2012
    
  • PARI
    {a(n) = if( n<0, 0, prod(k=1, n, 2^k - 1))}; /* Michael Somos, Jan 28 2018 */
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sum(k=0, n+1, (-1)^k * 2^(k*(k+1)/2) * prod(j=1, k, (2^(n+1-j) - 1) / (2^j - 1))))}; /* Michael Somos, Jan 28 2018 */
    

Formula

a(n)/2^(n*(n+1)/2) -> c = 0.2887880950866024212788997219294585937270... (see A048651, A048652).
From Paul D. Hanna, Sep 17 2009: (Start)
G.f.: Sum_{n>=0} 2^(n*(n+1)/2) * x^n / (Product_{k=0..n} (1+2^k*x)).
Compare to: 1 = Sum_{n>=0} 2^(n*(n+1)/2) * x^n/(Product_{k=1..n+1} (1+2^k*x)). (End)
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n/n! * d^n/dx^n x*A(x). - Paul D. Hanna, Apr 21 2012
a(n) = 2^(binomial(n+1,2))*(1/2; 1/2){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
a(n) = Product_{i=1..n} A000225(i). - Michel Marcus, Dec 27 2015
From Peter Bala, Nov 10 2017: (Start)
O.g.f. as a continued fraction of Stieltjes' type: A(x) = 1/(1 - x/(1 - 2*x/(1 - 6*x/(1 - 12*x/(1 - 28*x/(1 - 56*x/(1 - ... -(2^n - 2^floor(n/2))*x/(1 - ... )))))))) (follows from Heine's continued fraction for the ratio of two q-hypergeometric series at q = 2. See Cuyt et al. 19.2.1).
A(x) = 1/(1 + x - 2*x/(1 - (2 - 1)^2*x/(1 + x - 2^3*x/(1 - (2^2 - 1)^2*x/(1 + x - 2^5*x/(1 - (2^3 - 1)^2*x/(1 + x - 2^7*x/(1 - (2^4 - 1)^2*x/(1 + x - ... ))))))))). (End)
0 = a(n)*(a(n+1) - a(n+2)) + 2*a(n+1)^2 for all n>=0. - Michael Somos, Feb 23 2019
From Amiram Eldar, Feb 19 2022: (Start)
Sum_{n>=0} 1/a(n) = A079555.
Sum_{n>=0} (-1)^n/a(n) = A048651. (End)

Extensions

Better definition from Leslie Ann Goldberg (leslie(AT)dcs.warwick.ac.uk), Dec 11 1999

A006095 Gaussian binomial coefficient [n, 2] for q = 2.

Original entry on oeis.org

0, 0, 1, 7, 35, 155, 651, 2667, 10795, 43435, 174251, 698027, 2794155, 11180715, 44731051, 178940587, 715795115, 2863245995, 11453115051, 45812722347, 183251413675, 733006703275, 2932028910251, 11728119835307, 46912487729835
Offset: 0

Views

Author

Keywords

Comments

Number of 4-block coverings of an n-set where every element of the set is covered by exactly 3 blocks (if offset is 3), so a(n) = (1/4!)*(4^n-6*2^n+8). - Vladeta Jovovic, Feb 20 2001
Number of non-coprime pairs of polynomials (f,g) with binary coefficients where both f and g have degree n+1 and nonzero constant term. - Luca Mariot and Enrico Formenti, Sep 26 2016
Number of triplets found from the integers 1 to 2^n-1 by converting to binary and performing an XOR operation on the corresponding bits of each pair. Defining addition in this carryless way (0+0=1+1=0, 0+1=1+0=1), each triplet (A,B,C) has the property A+B=C, A+C=B and B+C=A. For example, n=3 gives the 7 triplets (1,2,3), (1,4,5), (1,6,7), (2,4,6), (2,5,7), (3,4,7) and (3,5,6). Each integer appears in the set of triplets 2^(n-1)-1 times, for example 3 for n=3. - Ian Duff, Oct 05 2019
Number of 2-dimensional vector subspaces of (Z_2)^n, so also number of Klein subgroups of the group (C_2)^n. - Robert FERREOL, Jul 28 2021

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

First differences: A006516.
Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), this sequence (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Maple
    a:= n-> add((4^(n-1-j) - 2^(n-1-j))/2, j=0..n-1):
    seq(a(n), n=0..24); # Zerinvary Lajos, Jan 04 2007
    A006095 := -z^2/(z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation. [adapted to offset 0 by Peter Luschny, Jul 20 2021]
    a := n -> (2^n - 2)*(2^n - 1)/6:
    seq(a(n), n = 0..24); # Peter Luschny, Jul 20 2021
  • Mathematica
    Join[{a=0,b=0},Table[c=6*b-8*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
    CoefficientList[Series[x^2/((1-x)(1-2x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{7,-14,8},{0,0,1},30] (* Harvey P. Dale, Jul 22 2011 *)
    (* Next, using elementary symmetric functions *)
    f[k_] := 2^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 32}]    (* A203235 *)
    Table[a[n]/2, {n, 2, 32}]  (* A006095 *)
    (* Clark Kimberling, Dec 31 2011 *)
    Table[QBinomial[n, 2, 2], {n, 0, 24}] (* Arkadiusz Wesolowski, Nov 12 2015 *)
  • PARI
    a(n) = (2^n - 1)*(2^(n-1) - 1)/3 \\ Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    concat([0, 0], Vec(x^2/((1-x)*(1-2*x)*(1-4*x)) + O(x^50))) \\ Altug Alkan, Nov 12 2015
  • Sage
    [gaussian_binomial(n,2,2) for n in range(0,25)] # Zerinvary Lajos, May 24 2009
    

Formula

G.f.: x^2/((1-x)(1-2x)(1-4x)).
a(n) = (2^n - 1)*(2^(n-1) - 1)/3 = 4^n/6 - 2^(n-1) + 1/3.
Row sums of triangle A130324. - Gary W. Adamson, May 24 2007
a(n) = Stirling2(n+1,3) + Stirling2(n+1,4). - Zerinvary Lajos, Oct 04 2007; corrected by R. J. Mathar, Mar 19 2011
a(n) = A139250(2^(n-1) - 1), n >= 1. - Omar E. Pol, Mar 03 2011
a(n) = 4*a(n-1) + 2^(n-1) - 1, n >= 2. - Vincenzo Librandi, Mar 19 2011
a(0) = 0, a(1) = 0, a(2) = 1, a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). - Harvey P. Dale, Jul 22 2011
a(n) = Sum_{k=0..n-2} 2^k*C(2*n-k-2, k), n >= 2. - Johannes W. Meijer, Aug 19 2013
a(n) = Sum_{i=0..n-2, j=i..n-2} 2^{i+j} = 2^0 * (2^0 + 2^1 + ... + 2^(n-2)) + 2^1 * (2^1 + 2^2 + ... + 2^(n-2)) + ... + 2^(n-2) * 2^(n-2), n>1. - J. M. Bergot, May 08 2017
a(n) = a(n-1) + A000217(A000225(n-1)), n > 0. - Ivan N. Ianakiev, Dec 11 2017
E.g.f.: (2*exp(x)-3*exp(2*x)+exp(4*x))/6. - Paul Weisenhorn, Aug 22 2021
From Peter Bala, Jul 01 2025: (Start)
G.f. assuming an offset of 0: exp( Sum_{n >= 1} b(3*n)/b(n)*x^n/n ) = 1 + 7*x + 35*x^2 + ..., where b(n) = A000225(n) = 2^n - 1.
The following are examples of telescoping series:
Sum_{n >= 2} 2^n/a(n) = 6, follows from 1 - (1/6)*Sum_{k = 2..n} 2^k/a(k) = 1/(2^n - 1).
Sum_{n >= 2} 2^n/(a(n)*a(n+2)) = 6/49, follows from 1 - (49/6)*Sum_{k = 2..n} 2^k/(a(k)*a(k+2)) = 1/A006096(n+2);
Sum_{n >= 2} 4^n/(a(n)*a(n+2)) = 26/49, follows from 13 - (49/2)*Sum_{k = 2..n} 4^k/(a(k)*a(k+2)) = A086224(n)/A006096(n+2);
Sum_{n >= 2} 8^n/(a(n)*a(n+2)) = 129/49, follows from 43 - (49/3)*Sum_{k = 2..n} 8^k/(a(k)*a(k+2)) = A171479(n+1)/A006096(n+2). (End)

A243071 Permutation of nonnegative integers: a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A064989(2n+1)).

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 15, 4, 5, 14, 31, 12, 63, 30, 13, 8, 127, 10, 255, 28, 29, 62, 511, 24, 11, 126, 9, 60, 1023, 26, 2047, 16, 61, 254, 27, 20, 4095, 510, 125, 56, 8191, 58, 16383, 124, 25, 1022, 32767, 48, 23, 22, 253, 252, 65535, 18, 59, 120, 509, 2046, 131071
Offset: 1

Views

Author

Antti Karttunen, Jun 20 2014

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.
See also the comments at A163511, which is the inverse permutation to this one.

Crossrefs

Inverse: A163511.
Cf. A000040, A000225, A007814, A054429, A064989, A064216, A122111, A209229, A245611 (= (a(2n-1)-1)/2, for n > 1), A245612, A292383, A292385, A297171 (Möbius transform).
Cf. A007283 (known positions where a(n)=n), A364256 [= gcd(n,a(n))], A364288 [= n-a(n)], A364289 [where a(n)>=n], A364290 [where a(n)A364291 [where a(n)<=n], A364497 [where n|a(n)].
Cf. A156552 (variant with inverted binary code), A253566, A332215, A332811, A334859 (other variants).

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A243071(n) = if(n<=2, n-1, if(!(n%2), 2*A243071(n/2), 1+(2*A243071(A064989(n))))); \\ Antti Karttunen, Jul 18 2020
    
  • PARI
    A243071(n) = if(n<=2, n-1, my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p*p2*(2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); ((3<<#binary(res\2))-res-1)); \\ (Combining programs given in A156552 and A054429) - Antti Karttunen, Jul 28 2023
    
  • Python
    from functools import reduce
    from sympy import factorint, prevprime
    from operator import mul
    def a064989(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, (1 if i==2 else prevprime(i)**f[i] for i in f))
    def a(n): return n - 1 if n<3 else 2*a(n//2) if n%2==0 else 1 + 2*a(a064989(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; With memoizing definec-macro from Antti Karttunen's IntSeq-library.
    (definec (A243071 n) (cond ((<= n 2) (- n 1)) ((even? n) (* 2 (A243071 (/ n 2)))) (else (+ 1 (* 2 (A243071 (A064989 n)))))))
    

Formula

a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A064989(2n+1)).
For n >= 1, a(A000040(n)) = A000225(n).
For n >= 1, a(2n+1) = 1 + 2*a(A064216(n+1)).
From Antti Karttunen, Jul 18 2020: (Start)
a(n) = A245611(A048673(n)).
a(n) = A253566(A122111(n)).
a(n) = A334859(A225546(n)).
For n >= 2, a(n) = A054429(A156552(n)).
a(n) = A292383(n) + A292385(n) = A292383(n) OR A292385(n).
For n > 1, A007814(a(n)) = A007814(n) - A209229(n). [This map preserves the 2-adic valuation of n, except when n is a power of two, in which cases it is decremented by one.]
(End)

A225620 Indices of partitions in the table of compositions of A228351.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 24, 26, 28, 30, 31, 32, 36, 40, 42, 48, 52, 56, 58, 60, 62, 63, 64, 72, 80, 84, 96, 100, 104, 106, 112, 116, 120, 122, 124, 126, 127, 128, 136, 144, 160, 164, 168, 170, 192, 200, 208, 212, 224, 228, 232, 234, 240, 244, 248, 250, 252, 254, 255
Offset: 1

Views

Author

Omar E. Pol, Aug 03 2013

Keywords

Comments

Also triangle read by rows in which T(n,k) is the decimal representation of a binary number whose mirror represents the k-th partition of n according with the list of juxtaposed reverse-lexicographically ordered partitions of the positive integers (A026792).
In order to construct this sequence as a triangle we use the following rules:
- In the list of A026792 we replace each part of size j of the k-th partition of n by concatenation of j - 1 zeros and only one 1.
- Then replace this new set of parts by the concatenation of its parts.
- Then replace this string by its mirror version which is a binary number.
T(n,k) is the decimal value of this binary number, which represents the k-th partition of n (see example).
The partitions of n are represented by a subsequence with A000041(n) integers starting with 2^(n-1) and ending with 2^n - 1, n >= 1. The odd numbers of the sequence are in A000225.
First differs from A065609 at a(23).
Conjecture: this sequence is a sorted version of b(n) where b(2^k) = 2^k for k >= 0, b(n) = A080100(n)*(2*b(A053645(n)) + 1) otherwise. - Mikhail Kurkov, Oct 21 2023

Examples

			T(6,8) = 58 because 58 in base 2 is 111010 whose mirror is 010111 which is the concatenation of 01, 01, 1, 1, whose number of digits are 2, 2, 1, 1, which are also the 8th partition of 6.
Illustration of initial terms:
The sequence represents a table of partitions (see below):
--------------------------------------------------------
.            Binary                        Partitions
n  k  T(n,k) number  Mirror   Diagram       (A026792)
.                                          1 2 3 4 5 6
--------------------------------------------------------
.                             _
1  1     1       1    1        |           1,
.                             _ _
1  1     2      10    01      _  |           2,
2  2     3      11    11       | |         1,1,
.                             _ _ _
3  1     4     100    001     _ _  |           3,
3  2     6     110    011     _  | |         2,1,
3  3     7     111    111      | | |       1,1,1,
.                             _ _ _ _
4  1     8    1000    0001    _ _    |           4,
4  2    10    1010    0101    _ _|_  |         2,2,
4  3    12    1100    0011    _ _  | |         3,1,
4  4    14    1110    0111    _  | | |       2,1,1,
4  5    15    1111    1111     | | | |     1,1,1,1,
.                             _ _ _ _ _
5  1    16   10000    00001   _ _ _    |           5,
5  2    20   10100    00101   _ _ _|_  |         3,2,
5  3    24   11000    00011   _ _    | |         4,1,
5  4    26   11010    01011   _ _|_  | |       2,2,1,
5  5    28   11100    00111   _ _  | | |       3,1,1,
5  6    30   11110    01111   _  | | | |     2,1,1,1,
5  7    31   11111    11111    | | | | |   1,1,1,1,1,
.                             _ _ _ _ _ _
6  1    32  100000    000001  _ _ _      |           6
6  2    36  100100    001001  _ _ _|_    |         3,3,
6  3    40  101000    000101  _ _    |   |         4,2,
6  4    42  101010    010101  _ _|_ _|_  |       2,2,2,
6  5    48  110000    000011  _ _ _    | |         5,1,
6  6    52  110100    001011  _ _ _|_  | |       3,2,1,
6  7    56  111000    000111  _ _    | | |       4,1,1,
6  8    58  111010    010111  _ _|_  | | |     2,2,1,1,
6  9    60  111100    001111  _ _  | | | |     3,1,1,1,
6  10   62  111110    011111  _  | | | | |   2,1,1,1,1,
6  11   63  111111    111111   | | | | | | 1,1,1,1,1,1,
.
Triangle begins:
  1;
  2,   3;
  4,   6,  7;
  8,  10, 12, 14, 15;
  16, 20, 24, 26, 28, 30, 31;
  32, 36, 40, 42, 48, 52, 56, 58, 60, 62, 63;
  ...
From _Gus Wiseman_, Apr 01 2020: (Start)
Using the encoding of A066099, this sequence ranks all finite nonempty multisets, as follows.
   1: {1}
   2: {2}
   3: {1,1}
   4: {3}
   6: {1,2}
   7: {1,1,1}
   8: {4}
  10: {2,2}
  12: {1,3}
  14: {1,1,2}
  15: {1,1,1,1}
  16: {5}
  20: {2,3}
  24: {1,4}
  26: {1,2,2}
  28: {1,1,3}
  30: {1,1,1,2}
  31: {1,1,1,1,1}
(End)
		

Crossrefs

Column 1 is A000079. Row n has length A000041(n). Right border gives A000225.
The case covering an initial interval is A333379 or A333380.
All of the following pertain to compositions in the order of A066099.
- The weakly increasing version is this sequence.
- The weakly decreasing version is A114994.
- The strictly increasing version is A333255.
- The strictly decreasing version is A333256.
- The unequal version is A233564.
- The equal version is A272919.
- The case covering an initial interval is A333217.
- Initial intervals are ranked by A164894.
- Reversed initial intervals are ranked by A246534.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],LessEqual@@stc[#]&] (* Gus Wiseman, Apr 01 2020 *)

Formula

Conjecture: a(A000070(m) - k) = 2^m - A228354(k) for m > 0, 0 < k <= A000041(m). - Mikhail Kurkov, Oct 20 2023

A000392 Stirling numbers of second kind S(n,3).

Original entry on oeis.org

0, 0, 0, 1, 6, 25, 90, 301, 966, 3025, 9330, 28501, 86526, 261625, 788970, 2375101, 7141686, 21457825, 64439010, 193448101, 580606446, 1742343625, 5228079450, 15686335501, 47063200806, 141197991025, 423610750290, 1270865805301
Offset: 0

Views

Author

Keywords

Comments

Number of palindromic structures using exactly three different symbols; Mobius transform: A056279. - Marks R. Nester
Number of ways of placing n labeled balls into k=3 indistinguishable boxes. - Thomas Wieder, Nov 30 2004
With two leading zeros, this is the second binomial transform of cosh(x)-1 and the binomial transform of A000225 (with extra leading zero). - Paul Barry, May 13 2003
Let [m] denote the first m positive integers. Then a(n) is the number of functions f from [n] to [n+1] that satisfy (i) f(x) > x for all x, (ii) f(x) = n+1 for exactly 3 elements and (iii) f(f(x)) = n+1 for the remaining n-3 elements of [n]. For example, a(4)=6 since there are exactly 6 functions from {1,2,3,4} to {1,2,3,4,5} such that f(x) > x, f(x) = 5 for 3 elements and f(f(x)) = 5 for the remaining element. The functions are f1 = {(1,5), (2,5), (3,4), (4,5)}, f2 = {(1,5), (2,3), (3,5), (4,5)}, f3 = {(1,5), (2,4), (3,5), (4,5)}, f4 = {(1,2), (2,5), (3,5), (4,5)}, f5 = {(1,3), (2,5), (3,5), (4,5)}, f6 = {(1,4), (2,5), (3,5), (4,5)}. - Dennis P. Walsh, Feb 20 2007
Conjecture. Let S(1)={1} and, for n > 1, let S(n) be the smallest set containing x, 2x and 3x for each element x in S(n-1). Then a(n+2) is the sum of the elements in S(n). (It is easy to prove that the number of elements in S(n) is the n-th triangular number given by A001952.) See A122554 for a sequence defined in this way. - John W. Layman, Nov 21 2007; corrected (a(n) to a(n+2) due to offset change) by Fred Daniel Kline, Oct 02 2014
Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which x and y are disjoint and for which x is not a subset of y and y is not a subset of x. Wieder calls these "disjoint strict 2-combinations". - Ross La Haye, Jan 11 2008; corrected by Ross La Haye, Oct 29 2008
Also, let P(A) be the power set of an n-element set A. Then a(n+2) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x. - Ross La Haye, Jan 11 2008
3 * a(n+1) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = a(k+1) for k = 0, 1, ..., n. - Michael Somos, Apr 29 2012
John W. Layman's conjecture that a(n+2) is the sum of elements in S(n) follows from the identification of S(n) with the first n rows of A036561, whose row sums are A001047. - Fred Daniel Kline, Oct 02 2014
From M. Sinan Kul, Sep 08 2016: (Start)
Let m be equal to the product of n-1 distinct primes. Then a(n) is equal to the number of distinct fractions >=1 that may be created by dividing a divisor of m by another divisor. For example for m = 2*3*5 = 30, we would have the following 6 fractions: 6/5, 3/2, 5/3, 5/2, 10/3, 15/2.
Here finding the number of fractions would be equivalent to distributing n-1 balls (distinct primes) to two bins (numerator and denominator) with no empty bins which can be found by Stirling numbers of the second kind. So another definition for a(n) is a(n) = Sum_{i=2..n-1} Stirling2(i,2)*binomial(n-1,i).
Also for n > 0, a(n) = (d(m^2)+1)/2 - d(m) where m is equal to the product of n-1 distinct primes. Example for a(5): m = 2*3*5*7 = 210 (product of four distinct primes) so a(5) = (d(210^2)+1)/2 - d(210) = 41 - 16 = 25. (End)
6*a(n) is the number of ternary strings of length n that contain at least one of each of the 3 symbols on which they are defined. For example, for n=4, the strings are the 12 permutations of 0012, the 12 permutations of 0112, and the 12 permutations of 0122. - Enrique Navarrete, Aug 23 2021
A simpler form of La Haye's first comment is: a(n+1) is the number of ways we can form disjoint unions of two nonempty subsets of [n] (see example below). Cf. A001047 for the requirement that the union contains n. - Enrique Navarrete, Aug 24 2021
As partial sums of the Nicomachus triangle's rows and the differences of the powers of 3 and 2 (A001047), each iteration corresponds to two figurate variations of the Sierpinski triangle (3^n) with cross-correlation to the Nicomachus triangle, see illustrations in links. The Sierpinski half-hexagons of (A001047) stack and conform to the footprint of 2^n - 1 triangular numbers. The 3^n Sierpinski triangle minus its 2^n bottom row, also correlates to the Nicomachus triangle according to each Sierpinski triangular sub-row. - John Elias, Oct 04 2021

Examples

			a(4) = 6. Let denote Z[i] the i-th labeled element = "ball". Then one has for n=4 six different ways to fill sets = "boxes" with the labeled elements:
Set(Set(Z[3], Z[4]), Set(Z[1]), Set(Z[2])), Set(Set(Z[3], Z[1]), Set(Z[4]), Set(Z[2])), Set(Set(Z[4], Z[1]), Set(Z[3]), Set(Z[2])), Set(Set(Z[4]), Set(Z[1]), Set(Z[3], Z[2])), Set(Set(Z[3]), Set(Z[1], Z[2]), Set(Z[4])), Set(Set(Z[3]), Set(Z[1]), Set(Z[4], Z[2])).
G.f. = x^3 + 6*x^4 + 25*x^5 + 90*x^6 + 301*x^7 + 966*x^8 + 3025*x^9 + ...
For example, for n=3, a(4)=6 since the disjoint unions are: {1}U{2}, {1}U{3}, {1}U{2,3}, {2}U{3}, {2}U{1,3}, and {1,2}U{3}. - _Enrique Navarrete_, Aug 24 2021
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..400], n->Stirling2(n,3)); # Muniru A Asiru, Feb 04 2018
  • Maple
    A000392 := n -> 9/2*3^n-4*2^n+1/2;  [ seq(9/2*3^n-4*2^n+1/2,n=0..30) ]; # Thomas Wieder
    A000392:=-1/(z-1)/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    StirlingS2[Range[0,30],3] (* Harvey P. Dale, Dec 29 2011 *)
  • PARI
    {a(n) = 3^(n-1) / 2 - 2^(n-1) + 1/2};
    
  • Sage
    [stirling_number2(i,3) for i in (0..40)] # Zerinvary Lajos, Jun 26 2008
    

Formula

G.f.: x^3/((1-x)*(1-2*x)*(1-3*x)).
E.g.f.: ((exp(x) - 1)^3) / 3!.
Recurrence: a(n+3) = 6*a(n+2) - 11*a(n+1) + 6*a(n), a(3) = 1, a(4) = 6, a(5) = 25. - Thomas Wieder, Nov 30 2004
With offset 0, this is 9*3^n/2 - 4*2^n + 1/2, the partial sums of 3*3^n - 2*2^n = A001047(n+1). - Paul Barry, Jun 26 2003
a(n) = (1 + 3^(n-1) - 2^n)/2, n > 0. - Dennis P. Walsh, Feb 20 2007
For n >= 3, a(n) = 3*a(n-1) + 2^(n-2) - 1. - Geoffrey Critzer, Mar 03 2009
a(n) = 5*a(n-1) - 6*a(n-2) + 1, for n > 3. - Vincenzo Librandi Nov 25 2010
a(n) = det(|s(i+3,j+2)|, 1 <= i,j <= n-3), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013
G.f.: x^3 + 12*x^4/(G(0)-12*x), where G(k) = x + 1 + 9*(3*x+1)*3^k - 8*(2*x+1)*2^k - x*(9*3^k+1-8*2^k)*(81*3^k+1-32*2^k)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 01 2014
a(n + 2) = (1 - 2^(2 + n) + 3^(1 + n))/2 for n > 0. - Fred Daniel Kline, Oct 02 2014
For n > 0, a(n) = (1/2) * Sum_{k=1..n-1} Sum_{i=1..n-1} C(n-k-1,i) * C(n-1,k). - Wesley Ivan Hurt, Sep 22 2017
a(n) = Sum_{k=0..n-3} 2^(k-1)*(3^(n-2-k) - 1). - J. M. Bergot, Feb 05 2018

Extensions

Offset changed by N. J. A. Sloane, Feb 08 2008

A035327 Write n in binary, interchange 0's and 1's, convert back to decimal.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46
Offset: 0

Views

Author

Keywords

Comments

For n>0: largest m<=n such that no carry occurs when adding m to n in binary arithmetic: A003817(n+1) = a(n) + n = a(n) XOR n. - Reinhard Zumkeller, Nov 14 2009
a(0) could be considered to be 0 (it was set so from 2004 to 2008) if the binary representation of zero was chosen to be the empty string. - Jason Kimberley, Sep 19 2011
For n > 0: A240857(n,a(n)) = 0. - Reinhard Zumkeller, Apr 14 2014
This is a base-2 analog of A048379. Another variant, without converting back to decimal, is given in A256078. - M. F. Hasler, Mar 22 2015
For n >= 2, a(n) is the least nonnegative k that must be added to n+1 to make a power of 2. Hence in a single-elimination tennis tournament with n entrants, a(n-1) is the number of players given a bye in round one, so that the number of players remaining at the start of round two is a power of 2. For example, if 39 players register, a(38)=25 players receive a round-one bye leaving 14 to play, so that round two will have 25+(14/2)=32 players. - Mathew Englander, Jan 20 2024

Examples

			8 = 1000 -> 0111 = 111 = 7.
		

Crossrefs

a(n) = A003817(n) - n, for n>0.
Cf. A240857.

Programs

  • Haskell
    a035327 n = if n <= 1 then 1 - n else 2 * a035327 n' + 1 - b
                where (n',b) = divMod n 2
    -- Reinhard Zumkeller, Feb 21 2014
    
  • Julia
    using IntegerSequences
    A035327List(len) = [Bits("NAND", n, n) for n in 0:len]
    println(A035327List(100))  # Peter Luschny, Sep 25 2021
  • Magma
    A035327:=func; // Jason Kimberley, Sep 19 2011
    
  • Maple
    seq(2^(1 + ilog2(max(n, 1))) - 1 - n, n = 0..81); # Emeric Deutsch, Oct 19 2008
    A035327 := n -> `if`(n=0, 1, Bits:-Nand(n, n)):
    seq(A035327(n), n=0..81); # Peter Luschny, Sep 23 2019
  • Mathematica
    Table[BaseForm[FromDigits[(IntegerDigits[i, 2]/.{0->1, 1->0}), 2], 10], {i, 0, 90}]
    Table[BitXor[n, 2^IntegerPart[Log[2, n] + 1] - 1], {n, 100}] (* Alonso del Arte, Jan 14 2006 *)
    Join[{1},Table[2^BitLength[n]-n-1,{n,100}]] (* Paolo Xausa, Oct 13 2023 *)
    Table[FromDigits[IntegerDigits[n,2]/.{0->1,1->0},2],{n,0,90}] (* Harvey P. Dale, May 03 2025 *)
  • PARI
    a(n)=sum(k=1,n,if(bitxor(n,k)>n,1,0)) \\ Paul D. Hanna, Jan 21 2006
    
  • PARI
    a(n) = bitxor(n, 2^(1+logint(max(n,1), 2))-1) \\ Rémy Sigrist, Jan 04 2019
    
  • PARI
    a(n)=if(n, bitneg(n, exponent(n)+1), 1) \\ Charles R Greathouse IV, Apr 13 2020
    
  • Python
    def a(n): return int(''.join('1' if i == '0' else '0' for i in bin(n)[2:]), 2) # Indranil Ghosh, Apr 29 2017
    
  • Python
    def a(n): return 1 if n == 0 else n^((1 << n.bit_length()) - 1)
    print([a(n) for n in range(100)]) # Michael S. Branicky, Sep 28 2021
    
  • Python
    def A035327(n): return (~n)^(-1<Chai Wah Wu, Dec 20 2022
    
  • SageMath
    def a(n):
        if n == 0:
            return 1
        return sum([(1 - b) << s for (s, b) in enumerate(n.bits())])
    [a(n) for n in srange(82)]  # Peter Luschny, Aug 31 2019
    

Formula

a(n) = 2^k - n - 1, where 2^(k-1) <= n < 2^k.
a(n+1) = (a(n)+n) mod (n+1); a(0) = 1. - Reinhard Zumkeller, Jul 22 2002
G.f.: 1 + 1/(1-x)*Sum_{k>=0} 2^k*x^2^(k+1)/(1+x^2^k). - Ralf Stephan, May 06 2003
a(0) = 0, a(2n+1) = 2*a(n), a(2n) = 2*a(n) + 1. - Philippe Deléham, Feb 29 2004
a(n) = number of positive integers k < n such that n XOR k > n. a(n) = n - A006257(n). - Paul D. Hanna, Jan 21 2006
a(n) = 2^{1+floor(log[2](n))}-n-1 for n>=1; a(0)=1. - Emeric Deutsch, Oct 19 2008
a(n) = if n<2 then 1 - n else 2*a(floor(n/2)) + 1 - n mod 2. - Reinhard Zumkeller, Jan 20 2010
a(n) = abs(2*A053644(n) - n - 1). - Mathew Englander, Jan 22 2024

Extensions

More terms from Vit Planocka (planocka(AT)mistral.cz), Feb 01 2003
a(0) corrected by Paolo P. Lava, Oct 22 2007
Definition completed by M. F. Hasler, Mar 22 2015

A007582 a(n) = 2^(n-1)*(1+2^n).

Original entry on oeis.org

1, 3, 10, 36, 136, 528, 2080, 8256, 32896, 131328, 524800, 2098176, 8390656, 33558528, 134225920, 536887296, 2147516416, 8590000128, 34359869440, 137439215616, 549756338176, 2199024304128, 8796095119360, 35184376283136, 140737496743936, 562949970198528
Offset: 0

Views

Author

Keywords

Comments

Let G_n be the elementary Abelian group G_n = (C_2)^n for n >= 1: A006516 is the number of times the number -1 appears in the character table of G_n and A007582 is the number of times the number 1. Together the two sequences cover all the values in the table, i.e., A006516(n) + A007582(n) = 2^(2n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 01 2001
Number of walks of length 2n+1 between two adjacent vertices in the cycle graph C_8. Example: a(1)=3 because in the cycle ABCDEFGH we have three walks of length 3 between A and B: ABAB, ABCB and AHAB. - Emeric Deutsch, Apr 01 2004
Smallest number containing in its binary representation two equal non-overlapping subwords of length n: A097295(a(n))=n and A097295(m)Reinhard Zumkeller, Aug 04 2004
a(n)^2 + (A006516(n))^2 = a(2n). E.g., a(3) = 36, A006516(3) = 28, a(6) = 2080. 36^2 + 28^2 = 2080. - Gary W. Adamson, Jun 17 2006
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either x equals y or x does not equal y. - Ross La Haye, Jan 02 2008
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A). This is just a simpler statement of my previous comment for this sequence. - Ross La Haye, Jan 10 2008
For n>0: A000120(a(n))=2, A023414(a(n))=2*(n-1), A087117(a(n))=n-1. - Reinhard Zumkeller, Jun 23 2009
a(n+1) written in base 2: 11, 1010, 100100, 10001000, 1000010000, ..., i.e., number 1, n times 0, number 1, n times 0 (A163449(n)). - Jaroslav Krizek, Jul 27 2009
a(n) for n >= 1 is a bisection of A001445(n+1). - Jaroslav Krizek, Aug 14 2009
Related to A102573: letting T(q,r) be the coefficient of n^(r+1) in the polynomial 2^(q-n)/n times sum_{k=0..n} binomial(n,k)*k^q, then A007582(x)= sum_{k=0..x-1} T(x,k)*2^k. - John M. Campbell, Nov 16 2011
a(n) gives the number of pairs (r, s) such that 0 <= r <= s <= (2^n)-1 that satisfy AND(r, s, XOR(r, s)) = 0. - Ramasamy Chandramouli, Aug 30 2012
a(n) = A000217(2^n) = 2^(2n-1) + 2^(n-1) is the nearest triangular number above 2^(2n-1); cf. A006516, A233327. - Antti Karttunen, Feb 26 2014
Consider the quantum spin-1/2 chain with even number of sites L (physics, condensed matter theory). The spectrum of the Hamiltonian can be classified according to symmetries. If the only symmetry of the spin Hamiltonian is Parity, i.e., reflection with respect to the middle of the chain (see e.g. the transverse-field Ising model with open boundary conditions), then the dimension of the p=+1 parity sector is given by a(n) with n=L/2. - Marin Bukov, Mar 11 2016
a(n) is also the total number of words of length n, over an alphabet of four letters, of which one of them appears an even number of times. See the Lekraj Beedassy, Jul 22 2003, comment on A006516 (4-letter odd case), and the Balakrishnan reference there. For the 1- to 11-letter cases, see the crossrefs. - Wolfdieter Lang, Jul 17 2017
a(n) is the number of nonisomorphic spanning trees of the cyclic snake formed with n+1 copies of the cycle on 4 vertices. A cyclic snake is a connected graph whose block-cutpoint is a path and all its n blocks are isomorphic to the cycle C_m. - Christian Barrientos, Sep 05 2024
Also, with offset 1, the cogrowth sequence of the dihedral group with 16 elements, D8 = . - Sean A. Irvine, Nov 06 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006516.
Cf. A134308.
Cf. A102573.
The number of words of length n with m letters, one of them appearing an even number of times is for m = 1..11: A000035, A011782, A007051, A007582, A081186, A081187, A081188, A081189, A081190, A060531, A081192. - Wolfdieter Lang, Jul 17 2017

Programs

  • Magma
    [Binomial(2^n + 1, 2) : n in [0..30]]; // Wesley Ivan Hurt, Jul 03 2020
  • Maple
    seq(binomial(-2^n, 2), n=0..23); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[ Binomial[2^n + 1, 2], {n, 0, 23}] (* Robert G. Wilson v, Jul 30 2004 *)
    LinearRecurrence[{6,-8},{1,3},30] (* Harvey P. Dale, Apr 08 2013 *)
  • Maxima
    A007582(n):=2^(n-1)*(1+2^n)$ makelist(A007582(n),n,0,30); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    a(n)=if(n<0,0,2^(n-1)*(1+2^n))
    
  • PARI
    a(n)=sum(k=-n\4,n\4,binomial(2*n+1,n+1+4*k))
    

Formula

G.f.: (1-3*x)/((1-2*x)*(1-4*x)). C(1+2^n, 2) where C(n, 2) is n-th triangular number A000217.
Binomial transform of A007051. Inverse binomial transform of A081186. - Paul Barry, Apr 07 2003
E.g.f.: exp(3*x)*cosh(x). - Paul Barry, Apr 07 2003
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*3^(n-2*k). - Paul Barry, May 08 2003
a(n+1) = 4*a(n) - 2^n; see also A049775. a(n) = 2^(n-1)*A000051(n). - Philippe Deléham, Feb 20 2004
a(n) = 6*a(n-1) - 8*a(n-2). - Emeric Deutsch, Apr 01 2004
Row sums of triangle A134308. - Gary W. Adamson, Oct 19 2007
a(n) = StirlingS2(2^n + 1,2^n) = 1 + 2*StirlingS2(n+1,2) + 3*StirlingS2(n+1,3) + 3*StirlingS2(n+1,4) = StirlingS2(n+2,2) + 3(StirlingS2(n+1,3) + StirlingS2(n+1,4)). - Ross La Haye, Mar 01 2008
a(n) = StirlingS2(2^n + 1,2^n) = 1 + 2*StirlingS2(n+1,2) + 3*StirlingS2(n+1,3) + 3*StirlingS2(n+1,4) = StirlingS2(n+2,2) + 3(StirlingS2(n+1,3) + StirlingS2(n+1,4)). - Ross La Haye, Apr 02 2008
a(n) = A000079(n) + A006516(n). - Yosu Yurramendi, Aug 06 2008
a(n) = A028403(n+1) / 4. - Jaroslav Krizek, Jul 27 2009
a(n) = Sum_{k=-floor(n/4)..floor(n/4)} binomial(2*n,n+4*k)/2. - Mircea Merca, Jan 28 2012
G.f.: Q(0)/2 where Q(k) = 1 + 2^k/(1 - 2*x/(2*x + 2^k/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 10 2013
a(n) = Sum_{k=1..2^n} k. - Joerg Arndt, Sep 01 2013
a(n) = (1/3) * Sum_{k=2^n..2^(n+1)} k. - J. M. Bergot, Jan 26 2015
a(n+1) = 2*a(n) + 4^n. - Yuchun Ji, Mar 10 2017

A038712 Let k be the exponent of highest power of 2 dividing n (A007814); a(n) = 2^(k+1)-1.

Original entry on oeis.org

1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 63, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 127, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 63, 1, 3
Offset: 1

Views

Author

Henry Bottomley, May 02 2000

Keywords

Comments

n XOR n-1, i.e., nim-sum of a pair of consecutive numbers.
Denominator of quotient sigma(2*n)/sigma(n). - Labos Elemer, Nov 04 2003
a(n) = the Towers of Hanoi disc moved at the n-th move, using standard moves with discs labeled (1, 3, 7, 15, ...) starting from top (smallest = 1). - Gary W. Adamson, Oct 26 2009
Equals row sums of triangle A168312. - Gary W. Adamson, Nov 22 2009
In the binary expansion of n, delete everything left of the rightmost 1 bit, and set all bits to the right of it. - Ralf Stephan, Aug 22 2013
Every finite sequence of positive integers summing to n may be termwise dominated by a subsequence of the first n values in this sequence [see Bannister et al., 2013]. - David Eppstein, Aug 31 2013
Sum of powers of 2 dividing n. - Omar E. Pol, Aug 18 2019
Given the binary expansion of (n-1) as {b[k-1], b[k-2], ..., b[2], b[1], b[0]}, then the binary expansion of a(n) is {bitand(b[k-1], b[k-2], ..., b[2], b[1], b[0]), bitand(b[k-2], ..., b[2], b[1], b[0]), ..., bitand(b[2], b[1], b[0]), bitand(b[1], b[0]), b[0], 1}. Recursively stated - 0th bit (L.S.B) of a(n), a(n)[0] = 1, a(n)[i] = bitand(a(n)[i-1], (n-1)[i-1]), where n[i] = i-th bit in the binary expansion of n. - Chinmaya Dash, Jun 27 2020

Examples

			a(6) = 3 because 110 XOR 101 = 11 base 2 = 3.
From _Omar E. Pol_, Aug 18 2019: (Start)
Illustration of initial terms:
a(n) is also the area of the n-th region of an infinite diagram of compositions (ordered partitions) of the positive integers, where the length of the n-th horizontal line segment is equal to A001511(n) and the length of the n-th vertical line segment is equal to A006519(n), as shown below (first eight regions):
-----------------------------
n    a(n)    Diagram
-----------------------------
.            _ _ _ _
1     1     |_| | | |
2     3     |_ _| | |
3     1     |_|   | |
4     7     |_ _ _| |
5     1     |_| |   |
6     3     |_ _|   |
7     1     |_|     |
8    15     |_ _ _ _|
.
The above diagram represents the eight compositions of 4: [1,1,1,1],[2,1,1],[1,2,1],[3,1],[1,1,2],[2,2],[1,3],[4].
(End)
		

Crossrefs

A038713 translated from binary, diagonals of A003987 on either side of main diagonal.
Cf. A062383. Partial sums give A080277.
Bisection of A089312. Cf. A088837.
a(n)-1 is exponent of 2 in A089893(n).
Cf. A130093.
This is Guy Steele's sequence GS(6, 2) (see A135416).
Cf. A001620, A168312, A220466, A361019 (Dirichlet inverse).

Programs

  • C
    int a(int n) { return n ^ (n-1); } // Russ Cox, May 15 2007
    
  • Haskell
    import Data.Bits (xor)
    a038712 n = n `xor` (n - 1) :: Integer  -- Reinhard Zumkeller, Apr 23 2012
    
  • Maple
    nmax:=98: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 2^(p+1)-1 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 01 2013
    # second Maple program:
    a:= n-> Bits[Xor](n, n-1):
    seq(a(n), n=1..98);  # Alois P. Heinz, Feb 02 2023
  • Mathematica
    Table[Denominator[DivisorSigma[1, 2*n]/DivisorSigma[1, n]], {n, 1, 128}]
    Table[BitXor[(n + 1), n], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 19 2011 *)
  • PARI
    vector(66,n,bitxor(n-1,n)) \\ Joerg Arndt, Sep 01 2013; corrected by Michel Marcus, Aug 02 2018
    
  • PARI
    A038712(n) = ((1<<(1+valuation(n,2)))-1); \\ Antti Karttunen, Nov 24 2024
    
  • Python
    def A038712(n): return n^(n-1) # Chai Wah Wu, Jul 05 2022

Formula

a(n) = A110654(n-1) XOR A008619(n). - Reinhard Zumkeller, Feb 05 2007
a(n) = 2^A001511(n) - 1 = 2*A006519(n) - 1 = 2^(A007814(n)+1) - 1.
Multiplicative with a(2^e) = 2^(e+1)-1, a(p^e) = 1, p > 2. - Vladeta Jovovic, Nov 06 2001; corrected by Jianing Song, Aug 03 2018
Sum_{n>0} a(n)*x^n/(1+x^n) = Sum_{n>0} x^n/(1-x^n). Inverse Moebius transform of A048298. - Vladeta Jovovic, Jan 02 2003
From Ralf Stephan, Jun 15 2003: (Start)
G.f.: Sum_{k>=0} 2^k*x^2^k/(1 - x^2^k).
a(2*n+1) = 1, a(2*n) = 2*a(n)+1. (End)
Equals A130093 * [1, 2, 3, ...]. - Gary W. Adamson, May 13 2007
Sum_{i=1..n} (-1)^A000120(n-i)*a(i) = (-1)^(A000120(n)-1)*n. - Vladimir Shevelev, Mar 17 2009
Dirichlet g.f.: zeta(s)/(1 - 2^(1-s)). - R. J. Mathar, Mar 10 2011
a(n) = A086799(2*n) - 2*n. - Reinhard Zumkeller, Aug 07 2011
a((2*n-1)*2^p) = 2^(p+1)-1, p >= 0. - Johannes W. Meijer, Feb 01 2013
a(n) = A000225(A001511(n)). - Omar E. Pol, Aug 31 2013
a(n) = A000203(n)/A000593(n). - Ivan N. Ianakiev and Omar E. Pol, Dec 14 2017
L.g.f.: -log(Product_{k>=0} (1 - x^(2^k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 15 2018
a(n) = 2^(1 + (A183063(n)/A001227(n))) - 1. - Omar E. Pol, Nov 06 2018
a(n) = sigma(n)/(sigma(2*n) - 2*sigma(n)) = 3*sigma(n)/(sigma(4*n) - 4*sigma(n)) = 7*sigma(n)/(sigma(8*n) - 8*sigma(n)), where sigma(n) = A000203(n). - Peter Bala, Jun 10 2022
Sum_{k=1..n} a(k) ~ n*log_2(n) + (1/2 + (gamma - 1)/log(2))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 24 2022
a(n) = Sum_{d divides n} m(d)*phi(d), where m(n) = Sum_{d divides n} (-1)^(d+1)* mobius(d). - Peter Bala, Jan 23 2024

Extensions

Definition corrected by N. J. A. Sloane, Sep 07 2015 at the suggestion of Marc LeBrun
Name corrected by Wolfdieter Lang, Aug 30 2016

A007070 a(n) = 4*a(n-1) - 2*a(n-2) with a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 14, 48, 164, 560, 1912, 6528, 22288, 76096, 259808, 887040, 3028544, 10340096, 35303296, 120532992, 411525376, 1405035520, 4797091328, 16378294272, 55918994432, 190919389184, 651839567872, 2225519493120, 7598398836736, 25942556360704, 88573427769344, 302408598355968
Offset: 0

Views

Author

Keywords

Comments

Joe Keane (jgk(AT)jgk.org) observes that this sequence (beginning at 4) is "size of raises in pot-limit poker, one blind, maximum raising."
It appears that this sequence is the BinomialMean transform of A002315 - see A075271. - John W. Layman, Oct 02 2002
Number of (s(0), s(1), ..., s(2n+3)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+3, s(0) = 1, s(2n+3) = 4. - Herbert Kociemba, Jun 11 2004
a(n) = number of distinct matrix products in (A+B+C+D)^n where commutators [A,B]=[C,D]=0 but neither A nor B commutes with C or D. - Paul D. Hanna and Joshua Zucker, Feb 01 2006
The n-th term of the sequence is the entry (1,2) in the n-th power of the matrix M=[1,-1;-1,3]. - Simone Severini, Feb 15 2006
Hankel transform of this sequence is [1,-2,0,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
A204089 convolved with A000225, e.g., a(4) = 164 = (1*31 + 1*15 + 4*7 + 14*3 + 48*1) = (31 + 15 + 28 + 42 + 48). - Gary W. Adamson, Dec 23 2008
Equals INVERT transform of A000225: (1, 3, 7, 15, 31, ...). - Gary W. Adamson, May 03 2009
For n>=1, a(n-1) is the number of generalized compositions of n when there are 2^i-1 different types of the part i, (i=1,2,...). - Milan Janjic, Sep 24 2010
Binomial transform of A078057. - R. J. Mathar, Mar 28 2011
Pisano period lengths: 1, 1, 8, 1, 24, 8, 6, 1, 24, 24, 120, 8, 168, 6, 24, 1, 8, 24, 360, 24, ... . - R. J. Mathar, Aug 10 2012
a(n) is the diagonal of array A228405. - Richard R. Forberg, Sep 02 2013
From Wolfdieter Lang, Oct 01 2013: (Start)
a(n) appears together with A106731, both interspersed with zeros, in the representation of nonnegative powers of the algebraic number rho(8) = 2*cos(Pi/8) = A179260 of degree 4, which is the length ratio of the smallest diagonal and the side in the regular octagon.
The minimal polynomial for rho(8) is C(8,x) = x^4 - 4*x^2 + 2, hence rho(8)^n = A(n+1)*1 + A(n)*rho(8) + B(n+1)*rho(8)^2 + B(n)*rho(8)^3, n >= 0, with A(2*k) = 0, k >= 0, A(1) = 1, A(2*k+1) = A106731(k-1), k >= 1, and B(2*k) = 0, k >= 0, B(1) = 0, B(2*k+1) = a(k-1), k >= 1. See also the P. Steinbach reference given under A049310. (End)
The ratio a(n)/A006012(n) converges to 1+sqrt(2). - Karl V. Keller, Jr., May 16 2015
From Tom Copeland, Dec 04 2015: (Start)
An aerated version of this sequence is given by the o.g.f. = 1 / (1 - 4 x^2 + 2 x^4) = 1 / [x^4 a_4(1/x)] = 1 / determinant(I - x M) = exp[-log(1 -4 x + 2 x^4)], where M is the adjacency matrix for the simple Lie algebra B_4 given in A265185 with the characteristic polynomial a_4(x) = x^4 - 4 x^2 + 2 = 2 T_4(x/2) = A127672(4,x), where T denotes a Chebyshev polynomial of the first kind.
A133314 relates a(n) to the reciprocal of the e.g.f. 1 - 4 x + 4 x^2/2!. (End)
a(n) is the number of vertices of the Minkowski sum of n simplices with vertices e_(2*i+1), e_(2*i+2), e_(2*i+3), e_(2*i+4) for i=0,...,n-1, where e_i is a standard basis vector. - Alejandro H. Morales, Oct 03 2022

Examples

			a(3) = 48 = 3 * 4 + 4 + 1 + 1 = 3*a(2) + a(1) + a(0) + 1.
Example for the octagon rho(8) powers: rho(8)^4  = 2 + sqrt(2) = -2*1 + 4*rho(8)^2  = A(5)*1 + A(4)*rho(8) + B(5)*rho(8)^2 + B(4)*rho(8)^3, with a(5) = A106731(1) = -2, B(5) = a(1) = 4, A(4) = 0, B(4) = 0. - _Wolfdieter Lang_, Oct 01 2013
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A059474. - David W. Wilson, Aug 14 2006
Equals 2 * A003480, n>0.
Row sums of A140071.

Programs

  • Haskell
    a007070 n = a007070_list !! n
    a007070_list = 1 : 4 : (map (* 2) $ zipWith (-)
       (tail $ map (* 2) a007070_list) a007070_list)
    -- Reinhard Zumkeller, Jan 16 2012
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-8); S:=[ ((4+r)^(1+n)-(4-r)^(1+n))/((2^(1+n))*r): n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Vincenzo Librandi, Mar 27 2011
    
  • Magma
    [n le 2 select 3*n-2 else 4*Self(n-1)-2*Self(n-2): n in [1..23]];  // Bruno Berselli, Mar 28 2011
    
  • Maple
    A007070 :=proc(n) option remember; if n=0 then 1 elif n=1 then 4 else 4*procname(n-1)-2*procname(n-2); fi; end:
    seq(A007070(n), n=0..30); # Wesley Ivan Hurt, Dec 06 2015
  • Mathematica
    LinearRecurrence[{4,-2}, {1,4}, 30] (* Harvey P. Dale, Sep 16 2014 *)
  • PARI
    a(n)=polcoeff(1/(1-4*x+2*x^2)+x*O(x^n),n)
    
  • PARI
    a(n)=if(n<1,1,ceil((2+sqrt(2))*a(n-1)))
    
  • Sage
    [lucas_number1(n,4,2) for n in range(1, 24)]# Zerinvary Lajos, Apr 22 2009
    

Formula

G.f.: 1/(1 - 4*x + 2*x^2).
Preceded by 0, this is the binomial transform of the Pell numbers A000129. Its e.g.f. is then exp(2*x)*sinh(sqrt(2)*x)/sqrt(2). - Paul Barry, May 09 2003
a(n) = ((2+sqrt(2))^(n+1) - (2-sqrt(2))^(n+1))/sqrt(8). - Al Hakanson (hawkuu(AT)gmail.com), Dec 27 2008, corrected Mar 28 2011
a(n) = (2 - sqrt(2))^n*(1/2 - sqrt(2)/2) + (2 + sqrt(2))^n*(1/2 + sqrt(2)/2). - Paul Barry, May 09 2003
a(n) = ceiling((2 + sqrt(2))*a(n-1)). - Benoit Cloitre, Aug 15 2003
a(n) = U(n, sqrt(2))*sqrt(2)^n. - Paul Barry, Nov 19 2003
a(n) = (1/4)*Sum_{r=1..7} sin(r*Pi/8)*sin(r*Pi/2)*(2*cos(r*Pi/8))^(2*n+3). - Herbert Kociemba, Jun 11 2004
a(n) = center term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 1 2 1 / 1 1 1]. M^n * [1 1 1] = [A007052(n) a(n) A007052(n)]. E.g., a(3) = 48 since M^3 * [1 1 1] = [34 48 34], where 34 = A007052(3). - Gary W. Adamson, Dec 18 2004
This is the binomial mean transform of A002307. See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
a(2n) = Sum_{r=0..n} 2^(2n-1-r)*(4*binomial(2n-1,2r) + 3*binomial(2n-1,2r+1)) a(2n-1) = Sum_{r=0..n} 2^(2n-2-r)*(4*binomial(2n-2,2r) + 3*binomial(2n-2,2r+1)). - Jeffrey Liese, Oct 12 2006
a(n) = 3*a(n - 1) + a(n - 2) + a(n - 3) + ... + a(0) + 1. - Gary W. Adamson, Feb 18 2011
G.f.: 1/(1 - 4*x + 2*x^2) = 1/( x*(1 + U(0)) ) - 1/x where U(k)= 1 - 2^k/(1 - x/(x - 2^k/U(k+1) )); (continued fraction 3rd kind, 3-step). - Sergei N. Gladkovskii, Dec 05 2012
G.f.: A(x) = G(0)/(1-2*x) where G(k) = 1 + 2*x/(1 - 2*x - x*(1-2*x)/(x + (1-2*x)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 04 2013
G.f.: G(0)/(2*x) - 1/x, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - (1-x)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n-1) = Sum_{k=0..n} binomial(2*n, n+k)*(k|8) where (k|8) is the Kronecker symbol. - Greg Dresden, Oct 11 2022
E.g.f.: exp(2*x)*(cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, May 20 2024

A027941 a(n) = Fibonacci(2*n + 1) - 1.

Original entry on oeis.org

0, 1, 4, 12, 33, 88, 232, 609, 1596, 4180, 10945, 28656, 75024, 196417, 514228, 1346268, 3524577, 9227464, 24157816, 63245985, 165580140, 433494436, 1134903169, 2971215072, 7778742048, 20365011073, 53316291172, 139583862444, 365435296161, 956722026040
Offset: 0

Views

Author

Keywords

Comments

Also T(2n+1,n+1), T given by A027935. Also first row of Inverse Stolarsky array.
Third diagonal of array defined by T(i, 1)=T(1, j)=1, T(i, j)=Max(T(i-1, j)+T(i-1, j-1); T(i-1, j-1)+T(i, j-1)). - Benoit Cloitre, Aug 05 2003
Number of Schroeder paths of length 2(n+1) having exactly one up step starting at an even height (a Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1) (up steps), D=(1,-1) (down steps) and H=(2,0) (level steps) and never going below the x-axis). Schroeder paths are counted by the large Schroeder numbers (A006318). Example: a(1)=4 because among the six Schroeder paths of length 4 only the paths (U)HD, (U)UDD, H(U)D, (U)DH have exactly one U step that starts at an even height (shown between parentheses). - Emeric Deutsch, Dec 19 2004
Also: smallest number not writeable as the sum of fewer than n positive Fibonacci numbers. E.g., a(5)=88 because it is the smallest number that needs at least 5 Fibonacci numbers: 88 = 55 + 21 + 8 + 3 + 1. - Johan Claes, Apr 19 2005 [corrected for offset and clarification by Mike Speciner, Sep 19 2023] In general, a(n) is the sum of n positive Fibonacci numbers as a(n) = Sum_{i=1..n} A000045(2*i). See A001076 when negative Fibonacci numbers can be included in the sum. - Mike Speciner, Sep 24 2023
Except for first term, numbers a(n) that set a new record in the number of Fibonacci numbers needed to sum up to n. Position of records in sequence A007895. - Ralf Stephan, May 15 2005
Successive extremal petal bends beta(n) = a(n-2). See the Ring Lemma of Rodin and Sullivan in K. Stephenson, Introduction to Circle Packing (Cambridge U. P., 2005), pp. 73-74 and 318-321. - David W. Cantrell (DWCantrell(AT)sigmaxi.net)
a(n+1)= AAB^(n)(1), n>=1, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 4=`110`, 12=`1100`, 33=`11000`, 88=`110000`, ..., in Wythoff code. AA(1)=1=a(1) but for uniqueness reason 1=A(1) in Wythoff code. - N. J. A. Sloane, Jun 29 2008
Start with n. Each n generates a sublist {n-1,n-1,n-2,..,1}. Each element of each sublist also generates a sublist. Add numbers in all terms. For example, 3->{2,2,1} and both 2->{1,1}, so a(3) = 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1 = 12. - Jon Perry, Sep 01 2012
For n>0: smallest number such that the inner product of Zeckendorf binary representation and its reverse equals n: A216176(a(n)) = n, see also A189920. - Reinhard Zumkeller, Mar 10 2013
Also, numbers m such that 5*m*(m+2)+1 is a square. - Bruno Berselli, May 19 2014
Also, number of nonempty submultisets of multisets of weight n that span an initial interval of integers (see 2nd example). - Gus Wiseman, Feb 10 2015
From Robert K. Moniot, Oct 04 2020: (Start)
Including a(-1):=0, consecutive terms (a(n-1),a(n))=(u,v) or (v,u) give all points on the hyperbola u^2-u+v^2-v-4*u*v=0 with both coordinates nonnegative integers. Note that this follows from identifying (1,u+1,v+1) with the Markov triple (1,Fibonacci(2n-1),Fibonacci(2n+1)). See A001519 (comments by Robert G. Wilson, Oct 05 2005, and Wolfdieter Lang, Jan 30 2015).
Let T(n) denote the n-th triangular number. If i, j are any two successive elements of the above sequence then (T(i-1) + T(j-1))/T(i+j-1) = 3/5. (End)

Examples

			a(5) = 88 = 2*33 + 12 + 4 + 1 + 5. a(6) = 232 = 2*88 + 33 + 12 + 4 + 1 + 6. - _Jon Perry_, Sep 01 2012
a(4) = 33 counts all nonempty submultisets of the last row: [1][2][3][4], [11][12][13][14][22][23][24][33][34], [111][112][113][122][123][124][133][134][222][223][233][234], [1111][1112][1122][1123][1222][1223][1233][1234]. - _Gus Wiseman_, Feb 10 2015
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 12.

Crossrefs

Related to partial sums of Fibonacci(k*n) over n: A000071, A099919, A058038, A138134, A053606; this sequence is the case k=2.
Cf. A212336 for more sequences with g.f. of the type 1/(1 - k*x + k*x^2 - x^3).
Cf. A000225 (sublist connection).
Cf. A258993 (row sums, n > 0), A000967.

Programs

Formula

a(n) = Sum_{i=1..n} binomial(n+i, n-i). - Benoit Cloitre, Oct 15 2002
G.f.: Sum_{k>=1} x^k/(1-x)^(2*k+1). - Benoit Cloitre, Apr 21 2003
a(n) = Sum_{k=1..n} F(2*k), i.e., partial sums of A001906. - Benoit Cloitre, Oct 27 2003
a(n) = Sum_{k=0..n-1} U(k, 3/2) = Sum_{k=0..n-1} S(k, 3), with S(k, 3) = A001906(k+1). - Paul Barry, Nov 14 2003
G.f.: x/((1-x)*(1-3*x+x^2)) = x/(1-4*x+4*x^2-x^3).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3) with n>=2, a(-1)=0, a(0)=0, a(1)=1.
a(n) = 3*a(n-1) - a(n-2) + 1 with n>=1, a(-1)=0, a(0)=0.
a(n) = Sum_{k=1..n} F(k)*L(k), where L(k) = Lucas(k) = A000032(k) = F(k-1) + F(k+1). - Alexander Adamchuk, May 18 2007
a(n) = 2*a(n-1) + (Sum_{k=1..n-2} a(k)) + n. - Jon Perry, Sep 01 2012
Sum {n >= 1} 1/a(n) = 3 - phi, where phi = 1/2*(1 + sqrt(5)) is the golden ratio. The ratio of adjacent terms r(n) := a(n)/a(n-1) satisfies the recurrence r(n+1) = (4*r(n) - 1)/(r(n) + 1) for n >= 2. - Peter Bala, Dec 05 2013
a(n) = S(n, 3) - S(n-1, 3) - 1, n >= 0, with Chebyshev's S-polynomials (see A049310), where S(-1, x) = 0. - Wolfdieter Lang, Aug 28 2014
a(n) = -1 + (2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5)) + (1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5). - Colin Barker, Jun 03 2016
E.g.f.: (sqrt(5)*sinh(sqrt(5)*x/2) + 5*cosh(sqrt(5)*x/2))*exp(3*x/2)/5 - exp(x). - Ilya Gutkovskiy, Jun 03 2016
a(n) = Sum_{k=0..n} binomial(n+1,k+1)*Fibonacci(k). - Vladimir Kruchinin, Oct 14 2016
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k+i+1,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n)*a(n-2) = a(n-1)*(a(n-1) - 1) for n>1. - Robert K. Moniot, Aug 23 2020
a(n) = Sum_{k=1..n} C(2*n-k,k). - Wesley Ivan Hurt, Dec 22 2020
a(n) = Sum_{k = 1..2*n+2} (-1)^k*Fibonacci(k). - Peter Bala, Nov 14 2021
a(n) = (2*cosh((1 + 2*n)*arccsch(2)))/sqrt(5) - 1. - Peter Luschny, Nov 21 2021
a(n) = F(n + (n mod 2)) * L(n+1 - (n mod 2)), where L(n) = A000032(n) and F(n) = A000045(n) (Euler and Sadek, 2001). - Amiram Eldar, Jan 13 2022

Extensions

More terms from James Sellers, Sep 08 2000
Paul Barry's Nov 14 2003 formula, recurrences and g.f. corrected for offset 0 and index link for Chebyshev polynomials added by Wolfdieter Lang, Aug 28 2014
Previous Showing 101-110 of 1353 results. Next