cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 422 results. Next

A000891 a(n) = (2*n)!*(2*n+1)! / (n! * (n+1)!)^2.

Original entry on oeis.org

1, 3, 20, 175, 1764, 19404, 226512, 2760615, 34763300, 449141836, 5924217936, 79483257308, 1081724803600, 14901311070000, 207426250094400, 2913690606794775, 41255439318353700, 588272005095043500
Offset: 0

Views

Author

Keywords

Comments

Number of parallelogram polyominoes having n+1 columns and n+1 rows. - Emeric Deutsch, May 21 2003
Number of tilings of an hexagon.
a(n) is the number of non-crossing partitions of [2n+1] into n+1 blocks. For example, a[1] counts 13-2, 1-23, 12-3. - David Callan, Jul 25 2005
The number of returning walks of length 2n on the upper half of a square lattice, since a(n) = Sum_{k=0..2n} binomial(2n,k)*A126120(k)*A126869(n-k). - Andrew V. Sutherland, Mar 24 2008
For sequences counting walks in the upper half-plane starting from the origin and finishing at the lattice points (0,m) see A145600 (m = 1), A145601 (m = 2), A145602 (m = 3) and A145603 (m = 4). - Peter Bala, Oct 14 2008
The number of proper mergings of two n-chains. - Henri Mühle, Aug 17 2012
a(n) is number of pairs of non-intersecting lattice paths from (0,0) to (n+1,n+1) using (1,0) and (0,1) as steps. Here, non-intersecting means two paths do not share a vertex except the origin and the destination. For example, a(1) = 3 because we have three such pairs from (0,0) to (2,2): {NNEE,EENN}, {NNEE,ENEN}, {NENE,EENN}. - Ran Pan, Oct 01 2015
Also the number of ordered rooted trees with 2(n+1) nodes and n+1 leaves, i.e., half of the nodes are leaves. These trees are ranked by A358579. The unordered version is A185650. - Gus Wiseman, Nov 27 2022
The number of secondary GL(2) invariants constructed from n+1 two component vectors. This number was evaluated by using the Molien-Weyl formula to compute the Hilbert series of the ring of invariants. - Jaco van Zyl, Jun 30 2025

Examples

			G.f. = 1 + 3*x + 20*x^2 + 175*x^3 + 1764*x^4 + 19404*x^5 + ...
From _Gus Wiseman_, Nov 27 2022: (Start)
The a(2) = 20 ordered rooted trees with 6 nodes and 3 leaves:
  (((o)oo))  (((o)o)o)  (((o))oo)
  (((oo)o))  (((oo))o)  ((o)(o)o)
  (((ooo)))  ((o)(oo))  ((o)o(o))
  ((o(o)o))  ((o(o))o)  (o((o))o)
  ((o(oo)))  ((oo)(o))  (o(o)(o))
  ((oo(o)))  (o((o)o))  (oo((o)))
             (o((oo)))
             (o(o(o)))
(End)
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 94.

Crossrefs

Cf. A145600, A145601, A145602, A145603. - Peter Bala, Oct 14 2008
Equals half of A267981.
Counts the trees ranked by A358579.
A001263 counts ordered rooted trees by nodes and leaves.
A090181 counts ordered rooted trees by nodes and internals.

Programs

  • Haskell
    a000891 n = a001263 (2 * n - 1) n  -- Reinhard Zumkeller, Oct 10 2013
  • Magma
    [Factorial(2*n)*Factorial(2*n+1) / (Factorial(n) * Factorial(n+1))^2: n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
    
  • Maple
    with(combstruct): bin := {B=Union(Z,Prod(B,B))} :seq(1/2*binomial(2*i,i)*(count([B,bin,unlabeled],size=i)), i=1..18) ; # Zerinvary Lajos, Jun 06 2007
  • Mathematica
    a[ n_] := If[ n == -1, 0, Binomial[2 n + 1, n]^2 / (2 n + 1)]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (1 - Hypergeometric2F1[ -1/2, 1/2, 1, 16 x]) / (4 x), {x, 0, n}]; (* Michael Somos, May 28 2014 *)
    a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ BesselI[0, 2 x] BesselI[1, 2 x] / x, {x, 0, 2 n}]]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticE[ 16 x] / (Pi/2)) / (4 x), {x, 0, n}]; (* Michael Somos, Sep 18 2016 *)
    a[n_] := (2 n + 1) CatalanNumber[n]^2;
    Array[a, 20, 0] (* Peter Luschny, Mar 03 2020 *)
  • PARI
    {a(n) = binomial(2*n+1, n)^2 / (2*n + 1)}; /* Michael Somos, Jun 22 2005 */
    
  • PARI
    a(n) = matdet(matrix(n, n, i, j, binomial(n+j+1,i+1))) \\ Hugo Pfoertner, Oct 22 2022
    

Formula

-4*a(n) = A010370(n+1).
G.f.: (1 - E(16*x)/(Pi/2))/(4*x) where E() is the elliptic integral of the second kind. [edited by Olivier Gérard, Feb 16 2011]
G.f.: 3F2(1, 1/2, 3/2; 2,2; 16*x)= (1 - 2F1(-1/2, 1/2; 1; 16*x)) / (4*x). - Olivier Gérard, Feb 16 2011
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x) * BesselI(1, 2*x) / x. - Michael Somos, Jun 22 2005
a(n) = A001700(n)*A000108(n) = (1/2)*A000984(n+1)*A000108(n). - Zerinvary Lajos, Jun 06 2007
For n > 0, a(n) = (n+2)*A000356(n) starting (1, 5, 35, 294, ...). - Gary W. Adamson, Apr 08 2011
a(n) = A001263(2*n+1,n+1) = binomial(2*n+1,n+1)*binomial(2*n+1,n)/(2*n+1) (central members of odd numbered rows of Narayana triangle).
G.f.: If G_N(x) = 1 + Sum_{k=1..N} ((2*k)!*(2*k+1)!*x^k)/(k!*(k+1)!)^2, G_N(x) = 1 + 12*x/(G(0) - 12*x); G(k) = 16*x*k^2 + 32*x*k + k^2 + 4*k + 12*x + 4 - 4*x*(2*k+3)*(2*k+5)*(k+2)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
D-finite with recurrence (n+1)^2*a(n) - 4*(2*n-1)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
a(n) = A005558(2n). - Mark van Hoeij, Aug 20 2014
a(n) = A000894(n) / (n+1) = A248045(n+1) / A000142(n+1). - Reinhard Zumkeller, Sep 30 2014
From Ilya Gutkovskiy, Feb 01 2017: (Start)
E.g.f.: 2F2(1/2,3/2; 2,2; 16*x).
a(n) ~ 2^(4*n+1)/(Pi*n^2). (End)
a(n) = A005408(n)*(A000108(n))^2. - Ivan N. Ianakiev, Nov 13 2019
a(n) = det(M(n)) where M(n) is the n X n matrix with m(i,j) = binomial(n+j+1,i+1). - Benoit Cloitre, Oct 22 2022
a(n) = Integral_{x=0..16} x^n*W(x) dx, where W(x) = (16*EllipticE(1 - x/16) - x*EllipticK(1 - x/16))/(8*Pi^2*sqrt(x)), n=>0. W(x) diverges at x=0, monotonically decreases for x>0, and vanishes at x=16. EllipticE and EllipticK are elliptic functions. This integral representation as n-th moment of a positive function W(x) on the interval [0, 16] is unique. - Karol A. Penson, Dec 20 2023

Extensions

More terms from Andrew V. Sutherland, Mar 24 2008

A120452 Number of partitions of n-1 boys and one girl with no couple.

Original entry on oeis.org

1, 1, 3, 5, 9, 14, 23, 34, 52, 75, 109, 153, 216, 296, 407, 549, 739, 981, 1300, 1702, 2224, 2879, 3716, 4761, 6083, 7721, 9774, 12306, 15450, 19307, 24064, 29867, 36978, 45614, 56130, 68846, 84250, 102793, 125148, 151955, 184123, 222553, 268482
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jul 20 2006

Keywords

Comments

From Gus Wiseman, Jun 08 2021: (Start)
Also the number of:
- integer partitions of 2n with reverse-alternating sum 2;
- reversed integer partitions of 2n with alternating sum 2;
- integer partitions of 2n with exactly two odd parts, one of which is the greatest;
- odd-length integer partitions of 2n whose conjugate partition has exactly two odd parts.
Note that integer partitions of 2n with alternating or reverse-alternating sum 0 are counted by A000041, ranked by A000290.
(End)

Examples

			n=5:
If partitions have no pair "o*", then a(5)=9 ("o" means a boy, "*" means a girl): {o, o, o, o, *}, {o, o, *, oo}, {*, oo, oo}, {o, *, ooo}, {o, o, oo*}, {oo, oo*}, {*, oooo}, {o, ooo*}, {oooo*}.
From _Gus Wiseman_, Jun 08 2021: (Start)
The a(1) = 1 through a(6) = 14 partitions of 2n with reverse-alternating sum 2:
  (2)  (211)  (222)    (332)      (442)        (552)
              (321)    (431)      (541)        (651)
              (21111)  (22211)    (22222)      (33222)
                       (32111)    (32221)      (33321)
                       (2111111)  (33211)      (43221)
                                  (43111)      (44211)
                                  (2221111)    (54111)
                                  (3211111)    (2222211)
                                  (211111111)  (3222111)
                                               (3321111)
                                               (4311111)
                                               (222111111)
                                               (321111111)
                                               (21111111111)
For example, the partition (43221) has reverse-alternating sum 1 - 2 + 2 - 3 + 4 = 2, so is counted under a(6).
The a(1) = 1 through a(6) = 14 partitions of 2n with exactly two odd parts, one of which is the greatest:
  (11)  (31)  (33)   (53)    (55)     (75)
              (51)   (71)    (73)     (93)
              (321)  (332)   (91)     (111)
                     (521)   (532)    (543)
                     (3221)  (541)    (552)
                             (721)    (732)
                             (3322)   (741)
                             (5221)   (921)
                             (32221)  (5322)
                                      (5421)
                                      (7221)
                                      (33222)
                                      (52221)
                                      (322221)
(End)
		

Crossrefs

A diagonal of A103919.
A diagonal of A344612.
A000097 counts partitions of 2n with alternating sum 2.
A001700/A088218 appear to count compositions with reverse-alternating sum 2.
A058696 counts partitions of 2n, ranked by A300061.
A344610 counts partitions of 2n by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A344741 counts partitions of 2n with reverse-alternating sum -2.

Programs

  • Mathematica
    a[n_] := Total[PartitionsP[Range[0, n-3]]] + PartitionsP[n-1];
    Array[a, 50] (* Jean-François Alcover, Jun 05 2021 *)

Formula

a(n) = A000070(n-2) + A002865(n-1). - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 15 2006
a(n) = A000070(n-1) - A000041(n-2) = A000070(n-3) + A000041(n-1). - Max Alekseyev, Aug 23 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 - 37*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Oct 25 2016

Extensions

More terms from Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 15 2006
More terms from Max Alekseyev, Aug 23 2006

A020522 a(n) = 4^n - 2^n.

Original entry on oeis.org

0, 2, 12, 56, 240, 992, 4032, 16256, 65280, 261632, 1047552, 4192256, 16773120, 67100672, 268419072, 1073709056, 4294901760, 17179738112, 68719214592, 274877382656, 1099510579200, 4398044413952, 17592181850112, 70368735789056, 281474959933440
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length 2*n+2 between any two diametrically opposite vertices of the cycle graph C_8. - Herbert Kociemba, Jul 02 2004
If we consider a(4*k+2), then 2^4 == 3^4 == 3 (mod 13); 2^(4*k+2) + 3^(4*k+2) == 3^k*(4+9) == 3*0 == 0 (mod 13). So a(4*k+2) can never be prime. - Jose Brox, Dec 27 2005
If k is odd, then a(n*k) is divisible by a(n), since: a(n*k) = (2^n)^k + (3^n)^k = (2^n + 3^n)*((2^n)^(k-1) - (2^n)^(k-2) (3^n) + - ... + (3^n)^(k-1)). So the only possible primes in the sequence are a(0) and a(2^n) for n>=1. I've checked that a(2^n) is composite for 3 <= n <= 15. As with Fermat primes, a probabilistic argument suggests that there are only finitely many primes in the sequence. - Dean Hickerson, Dec 27 2005
Let x,y,z be elements from some power set P(n), i.e., the power set of a set of n elements. Define a function f(x,y,z) in the following manner: f(x,y,z) = 1 if x is a subset of y and y is a subset of z and x does not equal z; f(x,y,z) = 0 if x is not a subset of y or y is not a subset of z or x equals z. Now sum f(x,y,z) for all x,y,z of P(n). This gives a(n). - Ross La Haye, Dec 26 2005
Number of monic (irreducible) polynomials of degree 1 over GF(2^n). - Max Alekseyev, Jan 13 2006
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then a(n) = the number of (x,y) of B for which x does not equal y. - Ross La Haye, Jan 02 2008
For n>1: central terms of the triangle in A173787. - Reinhard Zumkeller, Feb 28 2010
Pronic numbers of the form: (2^n - 1)*2^n, which is the n-th Mersenne number times 2^n, see A000225 and A002378. - Fred Daniel Kline, Nov 30 2013
Indices where records of A037870 occur. - Philippe Beaudoin, Sep 03 2014
Half the total edge length for a minimum linear arrangement of a hypercube of dimension n. (See Harper's paper below for proof). - Eitan Frachtenberg, Apr 07 2017
Number of pairs in GF(2)^{n+1} whose dot product is 1. - Christopher Purcell, Dec 11 2021

Examples

			n=5: a(5) = 4^5 - 2^5 = 1024 - 32 = 992 -> '1111100000'.
		

Crossrefs

Ratio of successive terms of A028365.

Programs

Formula

From Herbert Kociemba, Jul 02 2004: (Start)
G.f.: 2*x/((-1 + 2*x)*(-1 + 4*x)).
a(n) = 6*a(n-1) - 8*a(n-2). (End)
E.g.f.: exp(4*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
From Reinhard Zumkeller, Feb 07 2006, Jaroslav Krizek, Aug 02 2009: (Start)
a(n) = A099393(n)-A000225(n+1) = A083420(n)-A099393(n).
In binary representation, n>0: n 1's followed by n 0's (A138147(n)).
A000120(a(n)) = n.
A023416(a(n)) = n.
A070939(a(n)) = 2*n.
2*a(n)+1 = A030101(A099393(n)). (End)
a(n) = A085812(n) - A001700(n). - John Molokach, Sep 28 2013
a(n) = 2*A006516(n) = A000079(n)*A000225(n) = A265736(A000225(n)). - Reinhard Zumkeller, Dec 15 2015
a(n) = (4^(n/2) - 4^(n/4))*(4^(n/2) + 4^(n/4)). - Bruno Berselli, Apr 09 2018
Sum_{n>0} 1/a(n) = E - 1, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022
a(n) = A000302(n) - A000079(n). - John Reimer Morales, Aug 04 2025

A114121 Expansion of (sqrt(1 - 4*x) + (1 - 2*x))/(2*(1 - 4*x)).

Original entry on oeis.org

1, 2, 7, 26, 99, 382, 1486, 5812, 22819, 89846, 354522, 1401292, 5546382, 21977516, 87167164, 345994216, 1374282019, 5461770406, 21717436834, 86392108636, 343801171354, 1368640564996, 5450095992964, 21708901408216, 86492546019214
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Second binomial transform of A032443 with interpolated zeros.
a(n) is the total number of lattice points, taken over all Dyck n-paths (A000108), that (i) lie on or above ground level and (ii) lie on or directly below a peak. For example with n = 2, UUDD has 1 peak contributing 3 lattice points--(2, 0), (2, 1) and (2, 2) when the path starts at the origin--and UDUD has 2 peaks, each contributing 2 lattice points and so a(2) = 3 + 4 = 7. - David Callan, Jul 14 2006
Hankel transform is binomial(n + 2, 2). - Paul Barry, Dec 04 2007
Image of (-1)^n under the Riordan array ((1/2)(1/(1 - 4x) + 1/sqrt(1 - 4x)), c(x) - 1), c(x) the g.f. of A000108. - Paul Barry, Jun 15 2008
From Gus Wiseman, Jun 21 2021: (Start)
Also the even bisection of A116406 = number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(3) = 26 compositions are:
(6) (33) (114) (1122) (11112) (111111)
(42) (123) (1131) (11121)
(51) (132) (1221) (11211)
(213) (2112) (12111)
(222) (2121) (21111)
(231) (2211)
(312) (3111)
(321)
(411)
(End)

Examples

			G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 99*x^4 + 382*x^5 + 1486*x^6 + 5812*x^7 + ...
		

Crossrefs

The case of alternating sum = 0 is A001700.
The case of alternating sum < 0 is A008549.
This is the even bisection of A116406.
The restriction to reversed partitions is A344611.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives the alternating sum of standard compositions.
A316524 is the alternating sum of the prime indices of n.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    seq(sum(binomial(2*n,2*k+irem(n,2)),k=0..floor((1/2)*n)),n=0..20)
    seq(binomial(2*n-1,n)+4^(n-1)-(1/4)*0^n,n=0..20)
  • Mathematica
    a[ n_] := SeriesCoefficient[((1 + 1/Sqrt[1 - 4 x])/2)^2, {x, 0, n}] (* Michael Somos, Dec 31 2013 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]>=0&]],{n,0,15,2}] (* Gus Wiseman, Jun 21 2021 *)

Formula

a(n) = Sum_{k=0..n} C(n, k)*2^(n-k-2)*(2^k + C(k, k/2))*(1 + (-1)^k).
a(n) = (A000984(n) + A081294(n))/2.
From Paul Barry, Jun 15 2008: (Start)
G.f.: (1 - 4*x + (1 - 2*x)*sqrt(1 - 4*x))/(2*(1 - 4*x)^(3/2)).
a(n) = Sum_{k=0..n} ( Sum_{j=0..n} C(2*n, n-k-j)*(-1)^j ). (End)
a(n) = Sum_{k=0..n} C(2*n, n-k)*(1 + (-1)^k)/2. - Paul Barry, Aug 06 2009
From Paul Barry, Sep 07 2009: (Start)
a(n) = C(2*n-1, n-1) + (4^n + 3*0^n)/4.
Integral representation a(n) = (1/(2*pi))*(Integral_{x=0..4} x^n/sqrt(x(4 - x))) + (4^n + 0^n)/4. (End)
a(n) = Sum_{k=0..floor(n/2)} C(2*n, 2*k + (n mod 2)). - Mircea Merca, Jun 21 2011
Conjecture: n*a(n) + 2*(3 - 4*n)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 07 2012
Conjecture verified using the differential equation (16*x^2-8*x+1)*g'(x) + (8*x-2)*g(x)-2*x=0 satisfied by the G.f. - Robert Israel, Jul 27 2020
a(n) = Sum_{i=0..n} (sum_{j=0..n} binomial(n, i+j)*binomial(n, j-i)). - Yalcin Aktar, Jan 07 2013.
G.f.: (1 + (1 - 4*x)^(-1/2))^2 / 4. Convolution square of A088218. - Michael Somos, Dec 31 2013
0 = (1 + 2*n)*b(n) - (5 + 4*n)*b(n+1) + (4 + 2*n)*b(n+2) if n > 0 where b(n) = a(n) / 4^n. - Michael Somos, Dec 31 2013
0 = b(n+3) * (2*b(n+2) - 7*b(n+1) + 5*b(n)) + b(n+2) * (-b(n+2) + 7*b(n+1) - 7*b(n)) + b(n+1) * (-b(n+1) + 2*b(n)) if n > 0 where b(n) = a(n) / 4^n. - Michael Somos, Dec 31 2013
For n > 0, a(n) = 2^(2n-1) - A008549(n). - Gus Wiseman, Jun 27 2021
a(n) = [x^n] 1/((1-2*x) * (1-x)^(n-1)). - Seiichi Manyama, Apr 10 2024

A002694 Binomial coefficients C(2n, n-2).

Original entry on oeis.org

1, 6, 28, 120, 495, 2002, 8008, 31824, 125970, 497420, 1961256, 7726160, 30421755, 119759850, 471435600, 1855967520, 7307872110, 28781143380, 113380261800, 446775310800, 1761039350070, 6943526580276, 27385657281648, 108043253365600
Offset: 2

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch or cross the line x-y=2. Example: For n=3 there are 6 paths EEENNN, EENENN, EENNEN, EENNNE, ENEENN and NEEENN. - Herbert Kociemba, May 23 2004
Number of dissections of a convex (n+3)-gon by noncrossing diagonals into several regions, exactly n-2 of which are triangular. Example: a(3)=6 because the convex hexagon ABCDEF is dissected by any of the diagonals AC, BD, CE, DF, EA, FB into regions containing exactly 1 triangle. - Emeric Deutsch, May 31 2004
Number of UUU's (triple rises), where U=(1,1), in all Dyck paths of semilength n+1. Example: a(3)=6 because we have UD(UUU)DDD, (UUU)DDDUD, (UUU)DUDDD, (UUU)DDUDD and (U[UU)U]DDDD, the triple rises being shown between parentheses. - Emeric Deutsch, Jun 03 2004
Inverse binomial transform of A026389. - Ross La Haye, Mar 05 2005
Sum of the jump-lengths of all full binary trees with n internal nodes. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump; the positive difference of the levels is called the jump distance; the sum of the jump distances in a given full binary tree is called the jump-length. - Emeric Deutsch, Jan 18 2007
a(n) = number of convex polyominoes (A005436) of perimeter 2n+4 that are directed but not parallelogram polyominoes, because the directed convex polyominoes are counted by the central binomial coefficient binomial(2n,n) and the subset of parallelogram polyominoes is counted by the Catalan number C(n+1) = binomial(2n+2,n+1)/(n+2) and a(n) = binomial(2n,n) - C(n+1). - David Callan, Nov 29 2007
a(n) = number of DUU's in all Dyck paths of semilength n+1. Example: a(3)=6 because we have UU(DUU)DDD, U(DUU)UDDD, U(DUU)DUDD, UDU(DUU)DD, U(DUU)DDUD, UUD(DUU)DD, the DUU's being shown between parentheses and no other Dyck path of semilength 4 contains a DUU. - David Callan, Jul 25 2008
C(2n,n-m) is the number of Dyck-type walks such that their graphs have one marked edge passed 2m times and the other edges are passed 2 times counting "there and back" directions. - Oleksiy Khorunzhiy, Jan 09 2015
Number of paths in the half-plane x >= 0, from (0,0) to (2n,4), and consisting of steps U=(1,1) and D=(1,-1). For example, for n=3, we have the 6 paths: UUUUUD, UUUUDU, UUUDUU, UUDUUU, UDUUUU, DUUUUU, DUUUUU. - José Luis Ramírez Ramírez, Apr 19 2015

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006659.
Diagonal 5 of triangle A100257.
Cf. binomial(k*n, n-k): A000027 (k=1), this sequence (k=2), A004321 (k=3), A004334 (k=4), A004347 (k=5), A004361 (k=6), A004375 (k=7), A004389 (k=8), A281580 (k=9).
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002054 (m = 3), A003516 (m = 5), A002696 (m = 6), A030053 - A030056, A004310 - A004318.

Programs

  • GAP
    List([2..30], n-> Binomial(2*n,n-2)); # G. C. Greubel, Mar 21 2019
  • Haskell
    a002694 n = a007318' (2 * n) (n - 2)  -- Reinhard Zumkeller, Jun 18 2012
    
  • Magma
    [Binomial(2*n, n-2): n in [2..30]]; // Vincenzo Librandi, Apr 20 2015
    
  • Maple
    a:=n->sum(binomial(n,j-1)*binomial(n,j+1),j=1..n): seq(a(n), n=2..25); # Zerinvary Lajos, Nov 26 2006
  • Mathematica
    CoefficientList[ Series[ 16/(((Sqrt[1 - 4 x] + 1)^4)*Sqrt[1 - 4 x]), {x, 0, 23}], x] (* Robert G. Wilson v, Aug 08 2011 *)
    Table[Binomial[2n,n-2],{n,2,30}] (* Harvey P. Dale, Jun 12 2014 *)
  • PARI
    {a(n) = binomial(2*n,n-2)}; \\ G. C. Greubel, Mar 21 2019
    
  • Sage
    [binomial(2*n,n-2) for n in (2..30)] # G. C. Greubel, Mar 21 2019
    

Formula

a(n) = A067310(n, 1) as this is number of ways of arranging n chords on a circle (handshakes between 2n people across a table) with exactly 1 simple intersection. - Henry Bottomley, Oct 07 2002
E.g.f.: exp(2*x) * BesselI(2, 2*x). - Vladeta Jovovic, Aug 21 2003
G.f.: (1-sqrt(1-4*z))^4/(16*z^2*sqrt(1-4*z)). - Emeric Deutsch, Jan 28 2004
a(n) = Sum_{k=0..n} C(n, k)*C(n, k+2). - Paul Barry, Sep 20 2004
D-finite with recurrence: -(n-2)*(n+2)*a(n) + 2*n*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
G.f.: z^2*C(z)^4/(1-2*z*C(z)), where C(z) is the g.f. of Catalan numbers. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) = Sum_{k=1..n} binomial(2*n-k,n-k-1). - Vladimir Kruchinin, Oct 22 2016
G.f.: x^2* 2F1(5/2,3;5;4*x). - R. J. Mathar, Jan 27 2020
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = 23/6 - 13*Pi/(9*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 106*log(phi)/(5*sqrt(5)) - 37/10, where phi is the golden ratio (A001622). (End)
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * (x^2 - 4*x + 2)/sqrt(x*(4 - x)).
G.f. x^2 * B(x) * C(x)^4, where B(x) = 1/sqrt(1 - 4*x) is the g.f. of the central binomial coefficients A000984 and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

A079309 a(n) = C(1,1) + C(3,2) + C(5,3) + ... + C(2*n-1,n).

Original entry on oeis.org

1, 4, 14, 49, 175, 637, 2353, 8788, 33098, 125476, 478192, 1830270, 7030570, 27088870, 104647630, 405187825, 1571990935, 6109558585, 23782190485, 92705454895, 361834392115, 1413883873975, 5530599237775, 21654401079325, 84859704298201, 332818970772253
Offset: 1

Views

Author

Miklos Kristof, Feb 10 2003

Keywords

Comments

a(n) is the sum of pyramid weights of all Dyck paths of length 2n (for pyramid weight see Denise and Simion). Equivalently, a(n) is the sum of the total lengths of end branches of an ordered tree, summation being over all ordered trees with n edges. For example, the five ordered trees with 3 edges have total lengths of endbranches 3,2,3,3 and 3. - Emeric Deutsch, May 30 2003
a(n) is the number of Motzkin paths of length 2n with exactly one level segment. (A level segment is a maximal sequence of contiguous flatsteps.) Example: for n=2, the paths counted are FFFF, FFUD, UDFF, UFFD. The formula for a(n) below counts these paths by length of the level segment. - David Callan, Jul 15 2004
The inverse Catalan transform yields A024495, shifted once left. - R. J. Mathar, Jul 07 2009
From Paul Barry, Mar 29 2010: (Start)
Hankel transform is A138341.
The aerated sequence 0, 0, 1, 0, 4, 0, 14, 0, 49, ... has e.g.f. int(cosh(x-t)*Bessel_I(1,2t), t = 0..x). (End)
a(n) is the number of terms of A031443 not exceeding 4^n. - Vladimir Shevelev, Oct 01 2010
Also the number of nonempty subsets of {1..2n} with median n, bisection of A361801. The version containing n is A001700 (bisected). Replacing 2n with 2n+1 and n with n+1 gives A006134. For mean instead of median we have A212352. - Gus Wiseman, Apr 16 2023

Examples

			a(4) = C(1,1) + C(3,2) + C(5,3) + C(7,4) = 1 + 3 + 10 + 35 = 49.
G.f. = x + 4*x^2 + 14*x^3 + 49*x^4 + 175*x^5 + 637*x^6 + 2353*x^7 + ...
From _Gus Wiseman_, Apr 16 2023: (Start)
The a(1) = 1 through a(3) = 14 subsets of {1..2n} with median n:
  {1}  {2}      {3}
       {1,3}    {1,5}
       {1,2,3}  {2,4}
       {1,2,4}  {1,3,4}
                {1,3,5}
                {1,3,6}
                {2,3,4}
                {2,3,5}
                {2,3,6}
                {1,2,4,5}
                {1,2,4,6}
                {1,2,3,4,5}
                {1,2,3,4,6}
                {1,2,3,5,6}
(End)
		

Crossrefs

Equals A024718(n) - 1.
This is the even (or odd) bisection of A361801.
A007318 counts subsets by length, A327481 by mean, A013580 by median.
A359893 and A359901 count partitions by median.

Programs

  • Maple
    a := n -> add(binomial(2*j, j)/2, j=1..n): seq(a(n), n=1..24); # Zerinvary Lajos, Oct 25 2006
    a := n -> add(abs(binomial(-j, -2*j)), j=1..n): seq(a(n), n=1..24); # Zerinvary Lajos, Oct 03 2007
    f:= gfun:-rectoproc({n*a(n) +(-5*n+2)*a(n-1) +2*(2*n-1)*a(n-2)=0,a(1)=1,a(2)=4},a(n),remember):
    map(f, [$1..100]); # Robert Israel, Jun 24 2015
  • Mathematica
    Rest[CoefficientList[Series[(1/Sqrt[1-4*x]-1)/(1-x)/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
    Accumulate[Table[Binomial[2n-1,n],{n,30}]] (* Harvey P. Dale, Jan 06 2021 *)
  • PARI
    {a(n) = sum(k=1, n, binomial(2*k - 1, k))}; /* Michael Somos, Feb 14 2006 */
    
  • PARI
    my(x='x+O('x^40)); Vec((1/sqrt(1-4*x)-1)/(1-x)/2) \\ Altug Alkan, Dec 24 2015

Formula

a(n) = (1/2)*(C(2, 1) + C(4, 2) + C(6, 3) + ... + C(2*n, n)) = A066796(n)/2. - Vladeta Jovovic, Feb 12 2003
G.f.: (1/sqrt(1 - 4*x) - 1)/(1 - x)/2. - Vladeta Jovovic, Feb 12 2003
Given g.f. A(x), then x * A(x - x^2) is g.f. of A024495. - Michael Somos, Feb 14 2006
a(n) = A066796(n)/2. - Zerinvary Lajos, Oct 25 2006
a(n) = Sum_{0 <= i <= j <= n} binomial(i+j, i). - Benoit Cloitre, Nov 25 2006
D-finite with recurrence n*a(n) + (-5*n+2)*a(n-1) + 2*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
a(n) ~ 2^(2*n+1) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014
a(n) = Sum_{k=0..n-1} A001700(k). - Doug Bell, Jun 23 2015
a(n) = -binomial(2*n+1, n)*hypergeom([1, n+3/2], [n+2], 4) - (i/sqrt(3) + 1)/2. - Peter Luschny, May 18 2018
From Gus Wiseman, Apr 18 2023: (Start)
a(n) = A024718(n) - 1.
a(n) = A231147(2n+1,n).
a(n) = A361801(2n) = A361801(2n+1). (End)
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(2*n+2-k, n-2*k). - Michael Weselcouch, Jun 17 2025
a(n) = binomial(2*(1+n), n)*hypergeom([1, (1-n)/2, -n/2], [-2*(1+n), 3+n], 4). - Stefano Spezia, Jun 18 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 11 2003

A051924 a(n) = binomial(2*n,n) - binomial(2*n-2,n-1); or (3n-2)*C(n-1), where C = Catalan numbers (A000108).

Original entry on oeis.org

1, 4, 14, 50, 182, 672, 2508, 9438, 35750, 136136, 520676, 1998724, 7696444, 29716000, 115000920, 445962870, 1732525830, 6741529080, 26270128500, 102501265020, 400411345620, 1565841089280, 6129331763880, 24014172955500, 94163002754652, 369507926510352
Offset: 1

Views

Author

Barry E. Williams, Dec 19 1999

Keywords

Comments

Number of partitions with Ferrers plots that fit inside an n X n box, but not in an n-1 X n-1 box. - Wouter Meeussen, Dec 10 2001
From Benoit Cloitre, Jan 29 2002: (Start)
Let m(1,j)=j, m(i,1)=i and m(i,j) = m(i-1,j) + m(i,j-1); then a(n) = m(n,n):
1 2 3 4 ...
2 4 7 11 ...
3 7 14 25 ...
4 11 25 50 ... (End)
This sequence also gives the number of clusters and non-crossing partitions of type D_n. - F. Chapoton, Jan 31 2005
If Y is a 2-subset of a 2n-set X then a(n) is the number of (n+1)-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
Prefaced with a 1: (1, 1, 4, 14, 50, ...) and convolved with the Catalan sequence = A097613: (1, 2, 7, 25, 91, ...). - Gary W. Adamson, May 15 2009
Total number of up steps before the second return in all Dyck n-paths. - David Scambler, Aug 21 2012
Conjecture: a(n) mod n^2 = n+2 iff n is an odd prime. - Gary Detlefs, Feb 19 2013
First differences of A000984 and A030662. - J. M. Bergot, Jun 22 2013
From R. J. Mathar, Jun 30 2013: (Start)
Equivalent to the Meeussen comment and the Bergot comment: The array view of A007318 is
1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6,
1, 3, 6, 10, 15, 21,
1, 4, 10, 20, 35, 56,
1, 5, 15, 35, 70, 126,
1, 6, 21, 56, 126, 252,
and a(n) are the hook sums Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). (End)
From Gus Wiseman, Apr 12 2019: (Start)
Equivalent to Wouter Meeussen's comment, a(n) is the number of integer partitions (of any positive integer) such that the maximum of the length and the largest part is n. For example, the a(1) = 1 through a(3) = 14 partitions are:
(1) (2) (3)
(11) (31)
(21) (32)
(22) (33)
(111)
(211)
(221)
(222)
(311)
(321)
(322)
(331)
(332)
(333)
(End)
Coxeter-Catalan numbers for Coxeter groups of type D_n [Armstrong]. - N. J. A. Sloane, Mar 09 2022
a(n+1) is the number of ways that a best of n pairs contest with early termination can go. For example, the first stage of an association football (soccer) penalty-kick shoot out has n=5 pairs of shots and there are a(6)=672 distinct ways it can go. For n=2 pairs, writing G for goal and M for miss, and listing the up-to-four shots in chronological order with teams alternating shots, the n(3)=14 possibilities are MMMM, MMMG, MMGM, MMGG, MGM, MGGM, MGGG, GMMM, GMMG, GMG, GGMM, GGMG, GGGM, and GGGG. Not all four shots are taken in two cases because it becomes impossible for one team to overcome the lead of the other team. - Lee A. Newberg, Jul 20 2024

Examples

			Sums of {1}, {2, 1, 1}, {2, 2, 3, 3, 2, 1, 1}, {2, 2, 4, 5, 7, 6, 7, 5, 5, 3, 2, 1, 1}, ...
		

References

  • Drew Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274 16; See Table 2.8.

Crossrefs

Left-central elements of the (1, 2)-Pascal triangle A029635.
Column sums of A096771.
Cf. A000108, A024482 (diagonal from 2), A076540 (diagonal from 3), A000124 (row from 2), A004006 (row from 3), A006522 (row from 4).
Cf. A128064; first differences of A000984.
Cf. A097613.

Programs

  • Haskell
    a051924 n = a051924_list !! (n-1)
    a051924_list = zipWith (-) (tail a000984_list) a000984_list
    -- Reinhard Zumkeller, May 25 2013
    
  • Magma
    [Binomial(2*n, n)-Binomial(2*n-2, n-1): n in [1..28]]; // Vincenzo Librandi, Dec 21 2016
  • Maple
    C:= n-> binomial(2*n, n)/(n+1): seq((n+1)*C(n)-n*C(n-1), n=1..25); # Emeric Deutsch, Jan 08 2008
    Z:=(1-z-sqrt(1-4*z))/sqrt(1-4*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..24); # Zerinvary Lajos, Jan 01 2007
    a := n -> 2^(-2+2*n)*GAMMA(-1/2+n)*(3*n-2)/(sqrt(Pi)*GAMMA(1+n)):
    seq(simplify(a(n)), n=1..24); # Peter Luschny, Dec 14 2015
  • Mathematica
    Table[Binomial[2n,n]-Binomial[2n-2,n-1],{n,30}] (* Harvey P. Dale, Jan 15 2012 *)
  • PARI
    a(n)=binomial(2*n,n)-binomial(2*n-2,n-1) \\ Charles R Greathouse IV, Jun 25 2013
    
  • PARI
    {a(n)=polcoeff((1-x) / sqrt(1-4*x +x*O(x^n)) - 1,n)}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • PARI
    {a(n)=polcoeff( sum(m=1, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(2*m)), n)}
    for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • Sage
    a = lambda n: 2^(-2+2*n)*gamma(n-1/2)*(3*n-2)/(sqrt(pi)*gamma(1+n))
    [a(n) for n in (1..120)] # Peter Luschny, Dec 14 2015
    

Formula

G.f.: (1-x) / sqrt(1-4*x) - 1. - Paul D. Hanna, Nov 08 2014
G.f.: Sum_{n>=1} x^n/(1-x)^(2*n) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014
a(n+1) = binomial(2*n, n) + 2*Sum_{i=0..n-1} binomial(n+i, i) (V's in Pascal's Triangle). - Jon Perry Apr 13 2004
a(n) = n*C(n-1) - (n-1)*C(n-2), where C(n) = A000108(n) = Catalan(n). For example, a(5) = 50 = 5*C(4) - 4*C(3) - 5*14 - 3*5 = 70 - 20. Triangle A128064 as an infinite lower triangular matrix * A000108 = A051924 prefaced with a 1: (1, 1, 4, 14, 50, 182, ...). - Gary W. Adamson, May 15 2009
Sum of 3 central terms of Pascal's triangle: 2*C(2+2*n, n)+C(2+2*n, 1+n). - Zerinvary Lajos, Dec 20 2005
a(n+1) = A051597(2n,n). - Philippe Deléham, Nov 26 2006
The sequence 1,1,4,... has a(n) = C(2*n,n)-C(2*(n-1),n-1) = 0^n+Sum_{k=0..n} C(n-1,k-1)*A002426(k), and g.f. given by (1-x)/(1-2*x-2*x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-.... (continued fraction). - Paul Barry, Oct 17 2009
a(n) = (3*n-2)*(2*n-2)!/(n*(n-1)!^2) = A001700(n) + A001791(n-1). - David Scambler, Aug 21 2012
D-finite with recurrence: a(n) = 2*(3*n-2)*(2*n-3)*a(n-1)/(n*(3*n-5)). - Alois P. Heinz, Apr 25 2014
a(n) = 2^(-2+2*n)*Gamma(-1/2+n)*(3*n-2)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) ~ (3/4)*4^n*(1-(7/24)/n-(7/128)/n^2-(85/3072)/n^3-(581/32768)/n^4-(2611/262144)/n^5)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
E.g.f.: ((1 - x)*BesselI(0,2*x) + x*BesselI(1,2*x))*exp(2*x) - 1. - Ilya Gutkovskiy, Dec 20 2016
a(n) = 2 * A097613(n) for n > 1. - Bruce J. Nicholson, Jan 06 2019
Sum_{n>=1} a(n)/8^n = 7/(4*sqrt(2)) - 1. - Amiram Eldar, May 06 2023

Extensions

Edited by N. J. A. Sloane, May 03 2008, at the suggestion of R. J. Mathar

A063886 Number of n-step walks on a line starting from the origin but not returning to it.

Original entry on oeis.org

1, 2, 2, 4, 6, 12, 20, 40, 70, 140, 252, 504, 924, 1848, 3432, 6864, 12870, 25740, 48620, 97240, 184756, 369512, 705432, 1410864, 2704156, 5408312, 10400600, 20801200, 40116600, 80233200, 155117520, 310235040, 601080390, 1202160780, 2333606220, 4667212440
Offset: 0

Views

Author

Henry Bottomley, Aug 28 2001

Keywords

Comments

A Chebyshev transform of A007877(n+1). The g.f. is transformed to (1+x)/((1-x)(1+x^2)) under the mapping G(x)->(1/(1+x^2))G(1/(1+x^2)). - Paul Barry, Oct 12 2004
a(n-1) = 2*C(n-2, floor((n-2)/2)) is also the number of bit strings of length n in which the number of 00 substrings is equal to the number of 11 substrings. For example, when n = 4 we have 4 such bit strings: 0011, 0101, 1010, and 1100. - Angel Plaza, Apr 23 2009
Hankel transform is A120617. - Paul Barry, Aug 10 2009
The Hankel transform of a(n) is (-2)^C(n+1,2). The Hankel transform of (-1)^C(n+1,2)*a(n) is (-1)^C(n+1,2)*A164584(n). - Paul Barry, Aug 17 2009
For n > 1, a(n) is also the number of n-step walks starting from the origin and returning to it exactly once. - Geoffrey Critzer, Jan 24 2010
-a(n) is the Z-sequence for the Riordan array A130777. (See the W. Lang link under A006232 for A- and Z-sequences for Riordan matrices). - Wolfdieter Lang, Jul 12 2011
Number of subsets of {1,...,n} in which the even elements appear as often at even positions as at odd positions. - Gus Wiseman, Mar 17 2018

Examples

			a(4) = 6 because there are six length four walks that do not return to the origin: {-1, -2, -3, -4}, {-1, -2, -3, -2}, {-1, -2, -1, -2}, {1, 2, 1, 2}, {1, 2, 3, 2}, {1, 2, 3, 4}. There are also six such walks that return exactly one time: {-1, -2, -1, 0}, {-1, 0, -1, -2}, {-1, 0, 1, 2}, {1, 0, -1, -2}, {1, 0, 1, 2}, {1, 2, 1, 0}. - _Geoffrey Critzer_, Jan 24 2010
The a(5) = 12 subsets in which the even elements appear as often at even positions as at odd positions: {}, {1}, {3}, {5}, {1,3}, {1,5}, {2,4}, {3,5}, {1,2,4}, {1,3,5}, {2,4,5}, {1,2,4,5}. - _Gus Wiseman_, Mar 17 2018
		

Crossrefs

Programs

  • Magma
    [1] cat [2*Binomial(n-1, Floor((n-1)/2)): n in [1..40]]; // G. C. Greubel, Jun 07 2023
    
  • Maple
    seq(seq(binomial(2*j,j)*i, i=1..2),j=0..16); # Zerinvary Lajos, Apr 28 2007
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, n+1,
           4*a(n-2) +2*(a(n-1) -4*a(n-2))/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 10 2014
    # third program:
    A063886 := series(BesselI(0, 2*x)*(1 + x*2 + x*Pi*StruveL(1, 2*x)) - Pi*x*BesselI(1, 2*x)*StruveL(0, 2*x), x = 0, 34): seq(n!*coeff(A063886, x, n), n = 0 .. 33); # Mélika Tebni, Jun 17 2024
  • Mathematica
    Table[Length[Select[Map[Accumulate, Strings[{-1, 1}, n]], Count[ #, 0] == 0 &]], {n, 0, 20}] (* Geoffrey Critzer, Jan 24 2010 *)
    CoefficientList[Series[Sqrt[(1+2x)/(1-2x)],{x,0,40}],x] (* Harvey P. Dale, Apr 28 2016 *)
  • PARI
    a(n)=(n==0)+2*binomial(n-1,(n-1)\2)
    
  • PARI
    a(n) = 2^n*prod(k=0,n-1,(k/n+1/n)^((-1)^k)); \\ Michel Marcus, Dec 03 2013
    
  • Python
    from math import ceil
    from sympy import binomial
    def a(n):
        if n==0: return 1
        return 2*binomial(n-1,(n-1)//2)
    print([a(n) for n in range(18)])
    # David Nacin, Feb 29 2012
    
  • SageMath
    [2*binomial(n-1, (n-1)//2) + int(n==0) for n in range(41)] # G. C. Greubel, Jun 07 2023

Formula

G.f.: sqrt((1+2*x)/(1-2*x)).
a(n+1) = 2*C(n, floor(n/2)) = 2*A001405(n); a(2n) = C(2n, n) = A000984(n) = 4*a(2n-2)-|A002420(n)| = 4*a(2n-2)-2*A000108(n-1) = 2*A001700(n-1); a(2n+1) = 2*a(2n) = A028329(n).
2*a(n) = A047073(n+1).
a(n) = Sum_{k=0..n} abs(A106180(n,k)). - Philippe Deléham, Oct 06 2006
a(n) = Sum_{k=0..n} (k+1)binomial(n, (n-k)/2) ( 1-cos((k+1)*Pi/2) (1+(-1)^(n-k))/(n+k+2) ). - Paul Barry, Oct 12 2004
G.f.: 1/(1-2*x/(1+x/(1+x/(1-x/(1-x/(1+x/(1+x/(1-x/(1-x/(1+ ... (continued fraction). - Paul Barry, Aug 10 2009
G.f.: 1 + 2*x/(G(0)-x+x^2) where G(k)= 1 - 2*x^2 - x^4/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Aug 10 2012
D-finite with recurrence: n*a(n) = 2*a(n-1) + 4*(n-2)*a(n-2). - R. J. Mathar, Dec 03 2012
From Sergei N. Gladkovskii, Jul 26 2013: (Start)
G.f.: 1/G(0), where G(k) = 1 - 2*x/(1 + 2*x/(1 + 1/G(k+1) )); (continued fraction).
G.f.: G(0), where G(k) = 1 + 2*x/(1 - 2*x/(1 + 1/G(k+1) )); (continued fraction).
G.f.: W(0)/2*(1+2*x), where W(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)/(x*(2*k+1))/W(k+1) )), abs(x) < 1/2; (continued fraction). (End)
a(n) = 2^n*Product_{k=0..n-1} (k/n + 1/n)^((-1)^k). - Peter Luschny, Dec 02 2013
G.f.: G(0), where G(k) = 1 + 2*x*(4*k+1)/((2*k+1)*(1+2*x) - (2*k+1)*(4*k+3)*x*(1+2*x)/((4*k+3)*x + (k+1)*(1+2*x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 19 2014
From Peter Bala, Mar 29 2024: (Start)
a(n) = 2^n * Sum_{k = 0..n} (-1)^(n+k)*binomial(1/2, k)*binomial(- 1/2, n-k) = 2^n * A000246(n)/n!.
a(n) = (1/2^n) * binomial(2*n, n) * hypergeom([-1/2, -n], [1/2 - n], -1). (End)
E.g.f.: BesselI(0, 2*x)*(1 + x*(2 + Pi)*StruveL(1, 2*x)) - Pi*x*BesselI(1, 2*x)*StruveL(0, 2*x). - Stefano Spezia, May 11 2024
a(n) = A089849(n) + A138364(n). - Mélika Tebni, Jun 17 2024
From Amiram Eldar, Aug 15 2025: (Start)
Sum_{n>=0} 1/a(n) = Pi/(3*sqrt(3)) + 2.
Sum_{n>=0} (-1)^n/a(n) = 2/3 + Pi/(9*sqrt(3)). (End)

A138364 The number of Motzkin n-paths with exactly one flat step.

Original entry on oeis.org

0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, 462, 0, 1716, 0, 6435, 0, 24310, 0, 92378, 0, 352716, 0, 1352078, 0, 5200300, 0, 20058300, 0, 77558760, 0, 300540195, 0, 1166803110, 0, 4537567650, 0, 17672631900, 0, 68923264410, 0, 269128937220, 0
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 16 2008

Keywords

Comments

An aerated version of A001700, which is the main entry for this sequence.
Number of paths in the half-plane x>=0, from (0,0) to (n,1), and consisting of steps U=(1,1) and D=(1,-1). For example, for n=3, we have the 3 paths: UUD, UDU, DUU. - José Luis Ramírez Ramírez, Apr 19 2015

Examples

			a(5)=10 since the coefficient of z^5 in I_1(2z) is binomial(5,3)=10.
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Ch. 49, Hemisphere Publishing Corp., 1999.

Crossrefs

Programs

  • Magma
    &cat[[0, Binomial(n, (n+1) div 2)]: n in [1..50 by 2]]; // Vincenzo Librandi, Apr 20 2015
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ n! BesselI[ 1, 2 x], {x, 0, n}]; (* Michael Somos, Mar 19 2014 *)
  • PARI
    x='x+O('x^66); concat([0], Vec( -(sqrt(1-4*x^2)+2*x^2-1) / (x*sqrt(1-4*x^2)+4*x^3-x))) \\ Joerg Arndt, May 08 2013
    
  • Python
    from math import comb
    def A138364(n): return comb(n,n>>1) if n&1 else 0 # Chai Wah Wu, Aug 25 2025
  • Sage
    def A138364(n):
        if is_even(n): return 0
        return binomial(n,n//2)
    [A138364(n) for n in (0..42)]  # Peter Luschny, Mar 18 2014
    

Formula

a(n) = binomial(n,(n+1)/2) for n odd, 0 otherwise.
E.g.f.: I_1(2z), where I_1 is the hyperbolic Bessel function of order 1.
a(n) = (1/(2*Pi))*integral(x=-2..2, x^n*x/sqrt((2+x)*(2-x))). - Peter Luschny, Sep 12 2011
G.f.: -(sqrt(1-4*x^2)+2*x^2-1)/(x*sqrt(1-4*x^2)+4*x^3-x). - Vladimir Kruchinin, Mar 08 2013
a(n) + A126120(n) = A057977(n). - Peter Luschny, Mar 18 2014
G.f.: z*C(z^2)/(1-2*z^2*C(z^2)), where C(z) is the g.f. of Catalan numbers. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) = Integral_[-Pi,Pi] cos^(n+1)/(2^(n-1)*Pi). - M. F. Hasler, Jul 12 2018

Extensions

New name is a comment by David Scambler, May 02 2013. - Peter Luschny, Mar 18 2014

A088617 Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
Offset: 0

Views

Author

N. J. A. Sloane, Nov 23 2003

Keywords

Comments

Row sums: A006318 (Schroeder numbers). Essentially same as triangle A060693 transposed.
T(n,k) is number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k U's. E.g., T(2,1)=3 because we have UHD, UDH and HUD. - Emeric Deutsch, Dec 06 2003
Little Schroeder numbers A001003 have a(n) = Sum_{k=0..n} A088617(n,k)*(-1)^(n-k)*2^k. - Paul Barry, May 24 2005
Conjecture: The expected number of U's in a Schroeder n-path is asymptotically Sqrt[1/2]*n for large n. - David Callan, Jul 25 2008
T(n, k) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
The antidiagonals of this lower triangular matrix are the rows of A055151. - Tom Copeland, Jun 17 2015

Examples

			Triangle begins:
  [0] 1;
  [1] 1,  1;
  [2] 1,  3,   2;
  [3] 1,  6,  10,    5;
  [4] 1, 10,  30,   35,    14;
  [5] 1, 15,  70,  140,   126,    42;
  [6] 1, 21, 140,  420,   630,   462,   132;
  [7] 1, 28, 252, 1050,  2310,  2772,  1716,   429;
  [8] 1, 36, 420, 2310,  6930, 12012, 12012,  6435,  1430;
  [9] 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862;
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.

Crossrefs

Programs

  • Magma
    [[Binomial(n+k,n)*Binomial(n,k)/(k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 18 2015
    
  • Maple
    R := n -> simplify(hypergeom([-n, n + 1], [2], -x)):
    Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
    seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
  • Mathematica
    Table[Binomial[n+k, n] Binomial[n, k]/(k+1), {n,0,10}, {k,0,n}]//Flatten (* Michael De Vlieger, Aug 10 2017 *)
  • PARI
    {T(n, k)= if(k+1, binomial(n+k, n)*binomial(n, k)/(k+1))}
    
  • SageMath
    flatten([[binomial(n+k, 2*k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022

Formula

Triangle T(n, k) read by rows; given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = A085478(n, k)*A000108(k); A000108 = Catalan numbers. - Philippe Deléham, Dec 05 2003
Sum_{k=0..n} T(n, k)*x^k*(1-x)^(n-k) = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Aug 18 2005
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Oct 18 2007
O.g.f. (with initial 1 excluded) is the series reversion with respect to x of (1-t*x)*x/(1+x). Cf. A062991 and A089434. - Peter Bala, Jul 31 2012
G.f.: 1 + (1 - x - T(0))/y, where T(k) = 1 - x*(1+y)/( 1 - x*y/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
From Peter Bala, Jul 20 2015: (Start)
O.g.f. A(x,t) = ( 1 - x - sqrt((1 - x)^2 - 4*x*t) )/(2*x*t) = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2 + ....
1 + x*(dA(x,t)/dx)/A(x,t) = 1 + (1 + t)*x + (1 + 4*t + 3*t^2)*x^2 + ... is the o.g.f. for A123160.
For n >= 1, the n-th row polynomial equals (1 + t)/(n+1)*Jacobi_P(n-1,1,1,2*t+1). Removing a factor of 1 + t from the row polynomials gives the row polynomials of A033282. (End)
From Tom Copeland, Jan 22 2016: (Start)
The o.g.f. G(x,t) = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/2x = (t + t^2) x + (t + 3t^2 + 2t^3) x^2 + (t + 6t^2 + 10t^3 + 5t^3) x^3 + ... generating shifted rows of this entry, excluding the first, was given in my 2008 formulas for A033282 with an o.g.f. f1(x,t) = G(x,t)/(1+t) for A033282. Simple transformations presented there of f1(x,t) are related to A060693 and A001263, the Narayana numbers. See also A086810.
The inverse of G(x,t) is essentially given in A033282 by x1, the inverse of f1(x,t): Ginv(x,t) = x [1/(t+x) - 1/(1+t+x)] = [((1+t) - t) / (t(1+t))] x - [((1+t)^2 - t^2) / (t(1+t))^2] x^2 + [((1+t)^3 - t^3) / (t(1+t))^3] x^3 - ... . The coefficients in t of Ginv(xt,t) are the o.g.f.s of the diagonals of the Pascal triangle A007318 with signed rows and an extra initial column of ones. The numerators give the row o.g.f.s of signed A074909.
Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, related to A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131 and reversed rows of A055151. The diagonals of A107131 give the columns of A055151. The antidiagonals of A088617 (bottom to top) give the rows of A055151.
(End)
T(n, k) = [x^k] hypergeom([-n, 1 + n], [2], -x). - Peter Luschny, Apr 26 2022
Previous Showing 41-50 of 422 results. Next