A002417
4-dimensional figurate numbers: a(n) = n*binomial(n+2, 3).
Original entry on oeis.org
1, 8, 30, 80, 175, 336, 588, 960, 1485, 2200, 3146, 4368, 5915, 7840, 10200, 13056, 16473, 20520, 25270, 30800, 37191, 44528, 52900, 62400, 73125, 85176, 98658, 113680, 130355, 148800, 169136, 191488, 215985, 242760, 271950, 303696, 338143, 375440, 415740
Offset: 1
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
- K. -W. Lau, Solution to Problem 2495, Journal of Recreational Mathematics 2002-3 31(1) 79-80.
- Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Teofil Bogdan and Mircea Dan Rus, Counting the lattice rectangles inside Aztec diamonds and square biscuits, arXiv:2007.13472 [math.CO], 2020.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Johnson Graph
- Eric Weisstein's World of Mathematics, Triangular Graph
- A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
List([1..40], n-> n^2*(n+1)*(n+2)/6 ); # G. C. Greubel, Jul 03 2019
-
/* A000027 convolved with A000384 (excluding 0): */ A000384:=func; [&+[(n-i+1)*A000384(i): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Dec 06 2012
-
[n*Binomial(n+2,3):n in [1..40]]; // Vincenzo Librandi, Aug 02 2015
-
seq(n^2*(n+1)*(n+2)/6, n=1..50);
-
Table[n Binomial[n+2, 3], {n, 40}]
Table[-Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2] + 1 &, {n+2, n+2}], x], x^3], {n, 40}] (* John M. Campbell, May 28 2011 *)
Nest[Accumulate, Range[1, 170, 4], 3] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 30, 80, 175}, 40] (* Harvey P. Dale, Jan 11 2014 *)
Table[n Pochhammer[n, 3]/6, {n, 40}] (* or *) CoefficientList[Series[ (1+3x)/(1-x)^5, {x,0,40}], x] (* Eric W. Weisstein, Aug 14 2017 *)
-
a(n)=n^2*(n+1)*(n+2)/6 \\ Charles R Greathouse IV, Jun 10 2011
-
[n*binomial(n+2,3) for n in (1..40)] # G. C. Greubel, Jul 03 2019
A001845
Centered octahedral numbers (crystal ball sequence for cubic lattice).
Original entry on oeis.org
1, 7, 25, 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, 82239
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Luciano Ancora, The Square Pyramidal Number and other figurate numbers, ch. 4.
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Section 2.3.
- D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Milan Janjić, Two Enumerative Functions
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
- Eric Weisstein's World of Mathematics, Haüy Construction
- Eric Weisstein's World of Mathematics, Octahedral Number
- Index entries for crystal ball sequences
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Sums of 2 consecutive terms give
A008412.
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
The 28 uniform 3D tilings: cab:
A299266,
A299267; crs:
A299268,
A299269; fcu:
A005901,
A005902; fee:
A299259,
A299265; flu-e:
A299272,
A299273; fst:
A299258,
A299264; hal:
A299274,
A299275; hcp:
A007899,
A007202; hex:
A005897,
A005898; kag:
A299256,
A299262; lta:
A008137,
A299276; pcu:
A005899,
A001845; pcu-i:
A299277,
A299278; reo:
A299279,
A299280; reo-e:
A299281,
A299282; rho:
A008137,
A299276; sod:
A005893,
A005894; sve:
A299255,
A299261; svh:
A299283,
A299284; svj:
A299254,
A299260; svk:
A010001,
A063489; tca:
A299285,
A299286; tcd:
A299287,
A299288; tfs:
A005899,
A001845; tsi:
A299289,
A299290; ttw:
A299257,
A299263; ubt:
A299291,
A299292; bnn:
A007899,
A007202. See the Proserpio link in
A299266 for overview.
-
a001845 n = (2 * n + 1) * (2 * n ^ 2 + 2 * n + 3) `div` 3
-- Reinhard Zumkeller, Dec 15 2013
-
Table[(4 n^3 - 6 n^2 + 8 n - 3)/3, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 7, 25, 63}, 40] (* Harvey P. Dale, Jun 05 2013 *)
CoefficientList[Series[(1 + x)^3/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
a(n)=(2*n+1)*(2*n^2+2*n+3)/3 \\ Charles R Greathouse IV, Dec 06 2011
A002623
Expansion of 1/((1-x)^4*(1+x)).
Original entry on oeis.org
1, 3, 7, 13, 22, 34, 50, 70, 95, 125, 161, 203, 252, 308, 372, 444, 525, 615, 715, 825, 946, 1078, 1222, 1378, 1547, 1729, 1925, 2135, 2360, 2600, 2856, 3128, 3417, 3723, 4047, 4389, 4750, 5130, 5530, 5950, 6391, 6853, 7337, 7843, 8372, 8924, 9500
Offset: 0
G.f. = 1 + 3*x + 7*x^2 + 13*x^3 + 22*x^4 + 34*x^5 + 50*x^6 + 70*x^7 + 95*x^8 + ...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7.
- P. Diaconis, R. L. Graham and B. Sturmfels, Primitive partition identities, in Combinatorics: Paul Erdős is Eighty, Vol. 2, Bolyai Soc. Math. Stud., 2, 1996, pp. 173-192.
- H. Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
- I. Siap, Linear codes over F_2 + u*F_2 and their complete weight enumerators, in Codes and Designs (Ohio State, May 18, 2000), pp. 259-271. De Gruyter, 2002.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- A. Atmaca and A. Yavuz Oruç, On the size of two families of unlabeled bipartite graphs, AKCE International Journal of Graphs and Combinatorics, 2017.
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5, Lemma 6 5th line.
- Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Shalosh B. Ekhad and Doron Zeilberger, Computerizing the Andrews-Fraenkel-Sellers Proofs on the Number of m-ary partitions mod m (and doing MUCH more!), arXiv preprint arXiv:1511.06791 [math.CO], 2015.
- E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy]
- E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312.
- Enrique González-Jiménez and Xavier Xarles, On a conjecture of Rudin on squares in Arithmetic Progressions, arXiv preprint arXiv:1301.5122 [math.NT], 2013.
- H. Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts, Math. Student 40 (1972), 401-441 (1974). [Annotated scanned copy]
- M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051. doi:10.1109/T-C.1973.223649.
- M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 203
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 413
- Vladeta Jovovic, Binary matrices up to row and column permutations
- A. Kerber, Experimentelle Mathematik, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 19 (1988), 77-83. [Annotated scanned copy]. See page 79.
- W. Lanssens, B. Demoen, and P.-L. Nguyen, The Diagonal Latin Tableau and the Redundancy of its Disequalities, Report CW 666, July 2014, Department of Computer Science, KU Leuven
- M. E. Larsen, The eternal triangle - a history of a counting problem, College Math. J., 20 (1989), 370-392.
- P. Lisonek, Quasi-polynomials: A case study in experimental combinatorics, RISC-Linz Report Series No. 93-18, 1983. (Annotated scanned copy)
- Math StackExchange, cycle index for S_2 X S_4, Apr. 2021
- B. Misek, On the number of classes of strongly equivalent incidence matrices, (Czech with English summary) Casopis Pest. Mat. 89 1964 211-218. See page 217.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 10a, lambda=2]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Giovanni Resta, Illustration for a(8)=70.
- Marko Riedel, The O.g.f. of inequivalent colorings of a 2xN board with C colors in N is (1/2) 1/(1-w)^(C^2) + (1/2) 1/(1+w)^(C(C-1)/2)*1/(1-w)^(C(C+1)/2) by PET
- Sebastian Sassi, Aula Al-Adulrazzaq, Matti Heikinheimo, and Kimmo Tuominen, Fast numerical evaluation of dark matter direct detection event rates, arXiv:2504.19714 [hep-ph], 2025. See p. 7.
- Atsuto Seko, Tutorial: Systematic development of polynomial machine learning potentials for elemental and alloy systems, J. Appl. Phys. (2023) Vol. 133, 011101.
- J. Silverman, V. E. Vickers and J. M. Mooney, On the number of Costas arrays as a function of array size, Proc. IEEE, 76 (1988), 851-853.
- Eric Weisstein's World of Mathematics, Triangle Counting.
- W. S. B. Woolhouse, Problem 2420. On the probability of the number of triangles, Mathematical questions with their solutions, v. 9 (June 1868), pp. 63-65.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
-
A002623 := n->(1/16)*(1+(-1)^n)+(n+1)/8+binomial(n+2,2)/4+binomial(n+3,3)/2;
seq( ((2*n+3)*(n+2)*(n+1)/6-floor((n+2)/2))/4,n=1..47); # Lewis
a := n -> ((-1)^n*3 + 45 + 68*n + 30*n^2 + 4*n^3) / 48:
seq(a(n), n=0..46); # Peter Luschny, Jan 22 2018
-
CoefficientList[Series[1/((1-x)^3(1-x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{1,3,7,13,22},50] (* Harvey P. Dale, Jul 19 2011 *)
Table[((2 n^3 + 15 n^2 + 34 n + 45 / 2 + (3/2) (-1)^n) / 24), {n, 0, 100}] (* Vincenzo Librandi, Jan 15 2018 *)
a[ n_] := Floor[(n + 2)*(n + 4)*(2*n + 3)/24]; (* Michael Somos, Feb 19 2024 *)
-
{a(n) = (8 + 34/3*n + 5*n^2 + 2/3*n^3) \ 8}; /* Michael Somos, Sep 04 1999 */
-
x='x+O('x^50); Vec(1/((1 - x)^3 * (1 - x^2))) \\ Indranil Ghosh, Apr 04 2017
-
def A002623(n): return ((n+2)*(n+4)*((n<<1)+3)>>3)//3 # Chai Wah Wu, Mar 25 2024
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A000447
a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.
Original entry on oeis.org
0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0
G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
- G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Valentin Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, Vol. 275 (2004), pp. 17-41. - _Valentin Bakoev_, Mar 03 2009
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955 [Annotated scans of just pages 742-743]
- Milan Janjic, Two Enumerative Functions.
- T. P. Martin, Shells of atoms, Phys. Reports, Vol. 273 (1996), pp. 199-241, eq. (11).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Haüy Construction.
- Eric Weisstein's World of Mathematics, Square Pyramid.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of
A002577. -
Valentin Bakoev, Mar 03 2009
-
a000447 n = a000447_list !! n
a000447_list = scanl1 (+) a016754_list
-- Reinhard Zumkeller, Apr 02 2012
-
[n*(4*n^2-1)/3: n in [0..50]]; // Vincenzo Librandi, Jan 12 2016
-
A000447:=z*(1+6*z+z**2)/(z-1)**4; # Simon Plouffe, 1992 dissertation.
A000447:=n->n*(4*n^2 - 1)/3; seq(A000447(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n (4 n^2 - 1)/3, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 10, 35}, 80] (* Harvey P. Dale, May 25 2012 *)
Join[{0}, Accumulate[Range[1, 81, 2]^2]] (* Harvey P. Dale, Jul 18 2013 *)
CoefficientList[Series[x (1 + 6 x + x^2)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
A000447(n):=n*(4*n^2 - 1)/3$ makelist(A000447(n),n,0,20); /* Martin Ettl, Jan 07 2013 */
-
{a(n) = n * (4*n^2 - 1) / 3};
-
concat(0, Vec(x*(1+6*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 11 2016
-
def A000447(n): return n*((n**2<<2)-1)//3 # Chai Wah Wu, Feb 12 2023
Chrystal and Durell references from
R. K. Guy, Apr 02 2004
A007290
a(n) = 2*binomial(n,3).
Original entry on oeis.org
0, 0, 0, 2, 8, 20, 40, 70, 112, 168, 240, 330, 440, 572, 728, 910, 1120, 1360, 1632, 1938, 2280, 2660, 3080, 3542, 4048, 4600, 5200, 5850, 6552, 7308, 8120, 8990, 9920, 10912, 11968, 13090, 14280, 15540, 16872, 18278, 19760, 21320, 22960, 24682, 26488, 28380, 30360, 32430, 34592, 36848, 39200
Offset: 0
- Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906, p. 352.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.
- Maurice Protat, Des Olympiades à l'Agrégation, un problème de maximum, Problème 36, p. 83, Ellipses, Paris 1997.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Alexandru T. Balaban, Denise Mills, Ovidiu Ivanciuc and Subhash C. Basak,, Reverse Wiener indices, Croatica Chemica Acta, Vol. 73, No. 4 (2000), pp. 923-941.
- A. Burstein, S. Kitaev and T. Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A. Vol. 19, No. 2-3 (2008), pp. 27-38.
- Otto Haxel, J. Hans D. Jensen and Hans E. Suess, On the "Magic Numbers" in Nuclear Structure, Phys. Rev., Vol. 75 (1949), p. 1766.
- Xiangdong Ji, Chapter 8: Structure of Finite Nuclei, Lecture notes for Phys 741 at Univ. of Maryland, p. 140 [From _Tom Copeland_, Apr 07 2014].
- Sandi Klavžar, Balázs Patkós, Gregor Rus and Ismael G. Yero, On general position sets in Cartesian grids, arXiv:1907.04535 [math.CO], 2019.
- Vladimir Ladma, Magic Numbers.
- Cleve Moler, LINPACK subroutine sgefa.f, University of New Mexico, Argonne National Lab, 1978.
- Hamzeh Mujahed and Benedek Nagy, Wiener Index on Lines of Unit Cells of the Body-Centered Cubic Grid, Mathematical Morphology and Its Applications to Signal and Image Processing, 12th International Symposium, ISMM 2015.
- V. B. Priezzhev, Series expansion for rectilinear polymers on the square lattice, J. Phys. A, Vol. 12, No. 11 (1979), pp. 2131-2139.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Wikipedia, p-derivation.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a007290 n = if n < 3 then 0 else 2 * a007318 n 3 -- Reinhard Zumkeller, Nov 18 2012
-
I:=[0, 0, 0, 2]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 19 2012
-
A007290 := proc(n) 2*binomial(n,3) end proc:
-
Table[Integrate[ D[ChebyshevU[n, x], x] D[ChebyshevU[n, x], x] (1 - x^2)^(1/2), {x, -1, 1}]/Pi, {n, 1, 20}] (* Pacher *)
LinearRecurrence[{4,-6,4,-1},{0,0,0,2},50] (* Vincenzo Librandi, Jun 19 2012 *)
-
my(x='x+O('x^100)); concat([0, 0, 0], Vec(2*x^3/(1-x)^4)) \\ Altug Alkan, Nov 01 2015
-
apply( {A007290(n)=binomial(n,3)*2}, [0..55]) \\ M. F. Hasler, Jul 02 2021
A011379
a(n) = n^2*(n+1).
Original entry on oeis.org
0, 2, 12, 36, 80, 150, 252, 392, 576, 810, 1100, 1452, 1872, 2366, 2940, 3600, 4352, 5202, 6156, 7220, 8400, 9702, 11132, 12696, 14400, 16250, 18252, 20412, 22736, 25230, 27900, 30752, 33792, 37026, 40460, 44100, 47952, 52022, 56316, 60840
Offset: 0
- L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, pp. 50, 64.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Ivan Gutman and Kinkar Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- J.S. Seneschal, Oblong cuboid illustration
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf.
A000217,
A000290,
A000292,
A000330,
A000578,
A002378,
A002411,
A002412,
A002413,
A005449,
A013661,
A022549,
A027480,
A045991,
A049450,
A120070,
A126890,
A195437,
A245334.
-
List([0..40], n-> n^2*(n+1) ); # G. C. Greubel, Aug 10 2019
-
a011379 n = a000290 n + a000578 n -- Reinhard Zumkeller, Apr 28 2013
-
[n^2+n^3: n in [0..40]]; // Vincenzo Librandi, May 02 2011
-
A011379:=n->n^2*(n+1); seq(A011379(n), n=0..40); # Wesley Ivan Hurt, Feb 25 2014
-
Table[n^3+n^2, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009, modified by G. C. Greubel, Aug 10 2019 *)
LinearRecurrence[{4,-6,4,-1},{0,2,12,36},40] (* Harvey P. Dale, Sep 13 2018 *)
-
a(n)=n^3+n^2 \\ Charles R Greathouse IV, Apr 06 2016
-
[n^2*(n+1) for n in (0..40)] # G. C. Greubel, Aug 10 2019
A015083
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=2.
Original entry on oeis.org
1, 1, 3, 17, 171, 3113, 106419, 7035649, 915028347, 236101213721, 121358941877763, 124515003203007345, 255256125633703622475, 1046039978882750301409545, 8571252355254982356001107795, 140448544236464264647066322058465, 4602498820363674769217316088142020635
Offset: 0
G.f. = 1 + x + 3*x^2 + 17*x^3 + 171*x^4 + 3113*x^5 + 106419*x^6 + 7035649*x^7 + ...
From _Seiichi Manyama_, Dec 05 2016: (Start)
a(1) = 1,
a(2) = 2^1 + 1 = 3,
a(3) = 2^3 + 2^2 + 2*2^1 + 1 = 17,
a(4) = 2^6 + 2^5 + 2*2^4 + 3*2^3 + 3*2^2 + 3*2^1 + 1 = 171. (End)
- Seiichi Manyama, Table of n, a(n) for n = 0..81
- J. Fürlinger, J. Hofbauer, q-Catalan numbers, Journal of Combinatorial Theory, Series A, Volume 40, Issue 2, November 1985, Pages 248-264.
- Robin Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Thesis, University of Vienna, 2013.
Cf.
A015108 (q=-11),
A015107 (q=-10),
A015106 (q=-9),
A015105 (q=-8),
A015103 (q=-7),
A015102 (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1), this sequence (q=2),
A015084 (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7),
A015092 (q=8),
A015093 (q=9),
A015095 (q=10),
A015096 (q=11).
-
a[n_] := a[n] = Sum[2^i*a[i]*a[n - i - 1], {i, 0, n - 1}];
a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
m = 17; ContinuedFractionK[If[i == 1, 1, -2^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
a(n)=if(n==0,1,sum(i=0,n-1,2^i*a(i)*a(n-1-i))) \\ Paul D. Hanna
-
{a(n) = my(A); if( n<1, n==0, A = vector(n, i, 1); for(k=0, n-1, A[k+1] = if( k<1, 1, A[k]*(1+2^k) + sum(i=1, k-1, 2^i * A[i] * A[k-i]))); A[n])}; /* Michael Somos, Jan 30 2005 */
-
{a(n) = my(A); if( n<0, 0, A = O(x); for(k=1, n, A = 1 / (1 - x * subst(A, x, 2*x))); polcoeff(A, n))}; /* Michael Somos, Jan 30 2005 */
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015083(n)
A(2, n)
end # Seiichi Manyama, Dec 24 2016
A002413
Heptagonal (or 7-gonal) pyramidal numbers: a(n) = n*(n+1)*(5*n-2)/6.
Original entry on oeis.org
0, 1, 8, 26, 60, 115, 196, 308, 456, 645, 880, 1166, 1508, 1911, 2380, 2920, 3536, 4233, 5016, 5890, 6860, 7931, 9108, 10396, 11800, 13325, 14976, 16758, 18676, 20735, 22940, 25296, 27808, 30481, 33320, 36330, 39516, 42883, 46436, 50180, 54120
Offset: 0
For n=7, a(7) = 7*1 + 6*6 + 5*11 + 4*16 + 3*21 + 2*26 + 1*31 = 308. - _Bruno Berselli_, Feb 10 2014
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Heptagonal Pyramidal Number.
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf.
A093562 ((5, 1) Pascal, column m = 3).
Cf. similar sequences listed in
A237616.
-
[n*(n + 1)*(5*n - 2)/6: n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
A002413:=n->n*(n+1)*(5*n-2)/6: seq(A002413(n), n=0..60); # Wesley Ivan Hurt, Apr 14 2017
-
LinearRecurrence[{4, -6, 4, -1}, {1, 8, 26, 60}, 40] (* Ant King, Oct 25 2012 *)
Table[(5n^3 + 3n^2 - 2n)/6, {n, 0, 39}] (* Alonso del Arte, Oct 25 2012 *)
-
A002413(n):=n*(n+1)*(5*n-2)/6$ makelist(A002413(n),n,0,20); /* Martin Ettl, Dec 12 2012 */
-
a(n)=n*(n+1)*(5*n-2)/6 \\ Charles R Greathouse IV, Sep 24 2015
A115067
a(n) = (3*n^2 - n - 2)/2.
Original entry on oeis.org
0, 4, 11, 21, 34, 50, 69, 91, 116, 144, 175, 209, 246, 286, 329, 375, 424, 476, 531, 589, 650, 714, 781, 851, 924, 1000, 1079, 1161, 1246, 1334, 1425, 1519, 1616, 1716, 1819, 1925, 2034, 2146, 2261, 2379, 2500, 2624, 2751, 2881, 3014, 3150, 3289, 3431, 3576
Offset: 1
Illustrations for n = 2..7 from _Stefano Spezia_, Jun 05 2021:
_ _ _ _ _ _
|_| |_|_| |_|_ _|
|_ _| |_ _|_|
|_|_ _|
a(2) = 4 a(3) = 11 a(4) = 21
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _|_ _| |_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_| |_|_ _|_ _| |_|_ _|_ _|_|
|_ _|_ _| |_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_| |_|_ _|_ _| |_|_ _|_ _|_|
|_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_ _|_|
a(5) = 34 a(6) = 50 a(7) = 69
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
- Alfred Hoehn, Illustration of initial terms of A000326, A005449, A045943, A115067.
- Leo Tavares, Illustration: Trapezoids (A115067)
- Eric Weisstein's World of Mathematics, Andrásfai Graph.
- Eric Weisstein's World of Mathematics, Clique.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences
A000326,
A005449,
A045943,
A115067,
A140090,
A140091,
A059845,
A140672,
A140673,
A140674,
A140675,
A151542.
-
[n*(3*n-1)/2-1: n in [1..50]]; // Vincenzo Librandi, Jun 11 2017
-
Table[n (3 n - 1)/2 - 1, {n, 50}] (* Vincenzo Librandi, Jun 11 2017 *)
LinearRecurrence[{3, -3, 1}, {0, 4, 11}, 20] (* Eric W. Weisstein, Nov 29 2017 *)
CoefficientList[Series[(-4 + x) x/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
a(n)=n*(3*n-1)/2-1 \\ Charles R Greathouse IV, Jan 27 2012
Comments