cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 93 results. Next

A002417 4-dimensional figurate numbers: a(n) = n*binomial(n+2, 3).

Original entry on oeis.org

1, 8, 30, 80, 175, 336, 588, 960, 1485, 2200, 3146, 4368, 5915, 7840, 10200, 13056, 16473, 20520, 25270, 30800, 37191, 44528, 52900, 62400, 73125, 85176, 98658, 113680, 130355, 148800, 169136, 191488, 215985, 242760, 271950, 303696, 338143, 375440, 415740
Offset: 1

Views

Author

Keywords

Comments

a(n) is 1/6 the number of colorings of a 2 X 2 hexagonal array with n+2 colors. - R. H. Hardin, Feb 23 2002
a(n) is the sum of all numbers that cannot be written as t*(n+1) + u*(n+2) for nonnegative integers t,u (see Schuh). - Floor van Lamoen, Oct 09 2002
a(n) is the total number of rectangles (including squares) contained in a stepped pyramid of n rows (or of base 2n-1) of squares. A stepped pyramid of squares of base 2*6 - 1 = 11, for instance, has the following vertices:
..........X.X
........X.X.X.X
......X.X.X.X.X.X
....X.X.X.X.X.X.X.X
..X.X.X.X.X.X.X.X.X.X
X.X.X.X.X.X.X.X.X.X.X.X
X.X.X.X.X.X.X.X.X.X.X.X - Lekraj Beedassy, Sep 02 2003
Partial sums of A002412. - Jonathan Vos Post, Mar 16 2006
a(n) equals -1 times the coefficient of x^3 of the characteristic polynomial of the (n + 2) X (n + 2) matrix with 2's along the main diagonal and 1's everywhere else (see Mathematica code below). - John M. Campbell, May 28 2011
a(n) is the n-th antidiagonal sum of the convolution array A213750. - Clark Kimberling, Jun 20 2012
Convolution of A000027 with A000384 (excluding 0). - Bruno Berselli, Dec 06 2012
The sequence is the binomial transform of (1, 7, 15, 13, 4, 0, 0, 0, ...). - Gary W. Adamson, Jul 31 2015
Also the number of 3-cycles in the (n+2)-triangular graph. - Eric W. Weisstein, Aug 14 2017

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
  • K. -W. Lau, Solution to Problem 2495, Journal of Recreational Mathematics 2002-3 31(1) 79-80.
  • Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A002624.
a(n) = A093561(n+3, 4).
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
Cf. A151974 (number of 4-cycles in the triangular graph), A290939 (5-cycles), A290940 (6-cycles).

Programs

  • GAP
    List([1..40], n-> n^2*(n+1)*(n+2)/6 ); # G. C. Greubel, Jul 03 2019
  • Magma
    /* A000027 convolved with A000384 (excluding 0): */ A000384:=func; [&+[(n-i+1)*A000384(i): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Dec 06 2012
    
  • Magma
    [n*Binomial(n+2,3):n in [1..40]]; // Vincenzo Librandi, Aug 02 2015
    
  • Maple
    seq(n^2*(n+1)*(n+2)/6, n=1..50);
  • Mathematica
    Table[n Binomial[n+2, 3], {n, 40}]
    Table[-Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2] + 1 &, {n+2, n+2}], x], x^3], {n, 40}] (* John M. Campbell, May 28 2011 *)
    Nest[Accumulate, Range[1, 170, 4], 3] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 30, 80, 175}, 40] (* Harvey P. Dale, Jan 11 2014 *)
    Table[n Pochhammer[n, 3]/6, {n, 40}] (* or *) CoefficientList[Series[ (1+3x)/(1-x)^5, {x,0,40}], x] (* Eric W. Weisstein, Aug 14 2017 *)
  • PARI
    a(n)=n^2*(n+1)*(n+2)/6 \\ Charles R Greathouse IV, Jun 10 2011
    
  • Sage
    [n*binomial(n+2,3) for n in (1..40)] # G. C. Greubel, Jul 03 2019
    

Formula

a(n) = n^2*(n+1)*(n+2)/6.
G.f.: x*(1+3*x)/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = C(n+2, 2)*n^2/3. - Paul Barry, Jun 26 2003
a(n) = C(n+3, n)*C(n+1, 1). - Zerinvary Lajos, Apr 27 2005
a(n) = (binomial(n+3,n-1) - binomial(n+2,n-2))*(binomial(n+1,n-1) - binomial(n,n-2)). - Zerinvary Lajos, May 12 2006
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5), n>5. - Wesley Ivan Hurt, Aug 01 2015
G.f.: x*hypergeometric2F1(2,4;1;x). - R. J. Mathar, Aug 09 2015
a(n) = A080852(4,n-1). - R. J. Mathar, Jul 28 2016
Sum_{n>=1} 1/a(n) = Pi^2/2 - 15/4. - Jaume Oliver Lafont, Jul 13 2017
E.g.f.: x*(6 + 18*x + 9*x^2 + x^3)*exp(x)/3!. - G. C. Greubel, Jul 03 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi^2 + 27 - 48*log(2))/4. - Amiram Eldar, Jun 28 2020
a(n) = A000332(n+3) + 3*A000332(n+2). - Mircea Dan Rus, Jul 29 2020

Extensions

Edited and extended by Floor van Lamoen, Oct 09 2002

A001845 Centered octahedral numbers (crystal ball sequence for cubic lattice).

Original entry on oeis.org

1, 7, 25, 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, 82239
Offset: 0

Views

Author

Keywords

Comments

Number of points in simple cubic lattice at most n steps from origin.
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 6-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Equals binomial transform of [1, 6, 12, 8, 0, 0, 0, ...] where (1, 6, 12, 8) = row 3 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 4, a(n-2) = -coeff(charpoly(A,x),x^(n-3)). - Milan Janjic, Jan 26 2010
a(n) = A005408(n) * A097080(n-1) / 3. - Reinhard Zumkeller, Dec 15 2013
a(n) = D(3,n) where D are the Delannoy numbers (A008288). As such, a(n) gives the number of grid paths from (0,0) to (3,n) using steps that move one unit north, east, or northeast. - David Eppstein, Sep 07 2014
The first comment above can be re-expressed and generalized as follows: a(n) is the number of points in Z^3 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 3 from any given point. - Shel Kaphan, Jan 02 2023

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sums of 2 consecutive terms give A008412.
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
Partial sums of A005899.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Row/column 3 of A008288.

Programs

Formula

G.f.: (1+x)^3 /(1-x)^4. [conjectured (correctly) by Simon Plouffe in his 1992 dissertation]
a(n) = (2*n+1)*(2*n^2 + 2*n + 3)/3.
First differences of A014820(n). - Alexander Adamchuk, May 23 2006
a(n) = a(n-1) + 4*n^2 + 2, a(0)=1. - Vincenzo Librandi, Mar 27 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=1, a(1)=7, a(2)=25, a(3)=63. - Harvey P. Dale, Jun 05 2013
a(n) = Sum_{k=0..min(3,n)} 2^k * binomial(3,k) * binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
From Luciano Ancora, Jan 08 2015: (Start)
a(n) = 2 * A000330(n) + A000330(n+1) + A000330(n-1).
a(n) = A005900(n) + A005900(n+1).
a(n) = A005900(n) + A000330(n) + A000330(n+1).
a(n) = A000330(n-1) + A000330(n) + A005900(n+1). (End)
a(n) = A002412(n+1) + A016061(n-1) for n > 0. - Bruce J. Nicholson, Nov 12 2017
E.g.f.: exp(x)*(3 + 18*x + 18*x^2 + 4*x^3)/3. - Stefano Spezia, Mar 14 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 5/6 - log(2) = (1 - 1/2 + 1/3) - log(2). - Peter Bala, Mar 21 2024

A002623 Expansion of 1/((1-x)^4*(1+x)).

Original entry on oeis.org

1, 3, 7, 13, 22, 34, 50, 70, 95, 125, 161, 203, 252, 308, 372, 444, 525, 615, 715, 825, 946, 1078, 1222, 1378, 1547, 1729, 1925, 2135, 2360, 2600, 2856, 3128, 3417, 3723, 4047, 4389, 4750, 5130, 5530, 5950, 6391, 6853, 7337, 7843, 8372, 8924, 9500
Offset: 0

Views

Author

Keywords

Comments

Also a(n) is the number of nondegenerate triangles that can be made from rods of lengths 1 to n+1. - Alfred Bruckstein; corrected by Hans Rudolf Widmer, Nov 02 2023
Also number of circumscribable (or escrible) quadrilaterals that can be made from rods of length 1,2,3,4,...,n. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
Also number of 2 X n binary matrices up to row and column permutation (see the link: Binary matrices up to row and column permutations). - Vladeta Jovovic
Also partial sum of alternate triangular numbers (1, 3, 1+6, 3+10, 1+6+15, 3+10+21, etc.); and also number of triangles pointing in opposite direction to largest triangle in triangular matchstick arrangement of side n+2 (cf. A002717, also the Larsen article). - Henry Bottomley, Aug 08 2000
Ordered union of A002412(n+1) and A016061(n+1). - Lekraj Beedassy, Oct 13 2003
Also Molien series for certain 4-D representation of cyclic group of order 2. - N. J. A. Sloane, Jun 12 2004
From Radu Grigore (radugrigore(AT)gmail.com), Jun 19 2004: (Start)
a(n) = floor( (n+2)*(n+4)*(2n+3) / 24 ). E.g., a(2) = floor(4*6*7/24) = 7 because there are 7 upside down triangles (6 of size one and 1 of size two) in the matchstick figure:
/\
/\/\
/\/\/\
/\/\/\/\
(End)
Number of non-congruent non-parallelogram trapezoids with positive integer sides (trapezints) and perimeter 2n+5. Also with perimeter 2n+8. - Michael Somos, May 12 2005
a(n) = A108561(n+4,n) for n > 0. - Reinhard Zumkeller, Jun 10 2005
Also number of nonisomorphic planes with n points and 2 lines. E.g., a(0)=1 because with no points, we just have two empty lines. a(1)=3 because the one point may belong to 0, 1 or 2 lines. a(2)=7 because there are 7 ways to determine which of 2 points belong to which of 2 lines, up to isomorphism, i.e., up to a bijection f on the sets of points and a bijection g on the sets of lines, such that A belongs to a iff f(A) belongs to g(a). - Bjorn Kjos-Hanssen (bjorn(AT)math.uconn.edu), Nov 10 2005
a(n-2) is the number of ways to pick two non-overlapping subwords of equal nonzero length from a word of length n. E.g., a(5-2)=a(3)=13 since the word 12345 of length 5 has the following subword pairs: 1,2; 1,3; 1,4; 1,5; 2,3; 2,4; 2,5; 3,4; 3,5; 4,5; 12,34; 12,45; 23,45. - Michael Somos, Oct 22 2006
Partial sums of A002620. - G.H.J. van Rees (vanrees(AT)cs.umanitoba.ca), Feb 16 2007
From Philippe LALLOUET (philip.lallouet(AT)orange.fr), Oct 19 2007: (Start)
Also number of squares of any size in a staircase of n steps built with unit squares:
||__
||__|
||__||
For a staircase of 3 steps 6 squares of size 1 and 1 square of size 2, hence c(3)=7.
Columns sums of:
1 3 6 10 15 21 28 ...
1 3 6 10 15 ...
1 3 6 ...
1 ...
---------------------
1 3 7 13 22 34 50 ...
(End)
a(n) = sum of row n+1 of triangle A134446. Also, binomial transform of [1, 2, 2, 0, 1, -2, 4, -8, 16, -32, ...]. - Gary W. Adamson, Oct 25 2007
Let b(n) be the number of 4-tuples (w,x,y,z) having all terms in {1,...,n} and 2w=x+y+z+n; then b(n+3) = a(n) for n >= 0. - Clark Kimberling, May 08 2012
a(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and w >= x+y and x <= y. - Clark Kimberling, Jun 04 2012
Also, number of unlabeled bipartite graphs with two left vertices and n right vertices. - Yavuz Oruc, Jan 14 2018
Also number of triples (x,y,z) with 0 < x <= y <= z <= n + 1, x + y > z. - Ralf Steiner, Feb 06 2020
Bisections A002412 and A016061: a(2*k) = k*(k+1)*(4*k-1)/3! and a(2*k+1) = (k+1)*(k+2)*(4*k+9)/3!, for k >= 0. See the Woolhouse link, II. Solution by Stephen Watson, p. 65, with index shifts. - Mo Li, Apr 02 2020
Also, Wiener index of the square of the path graph P_(n+2). - Allan Bickle, Aug 01 2020
Maximum Wiener index of all maximal 2-degenerate graphs with n+2 vertices. (A maximal 2-degenerate graph can be constructed from a 2-clique by iteratively adding a new 2-leaf (vertex of degree 2) adjacent to two existing vertices.) The extremal graphs are squares of paths, so the bound also applies to 2-trees and maximal outerplanar graphs. - Allan Bickle, Sep 15 2022

Examples

			G.f. = 1 + 3*x + 7*x^2 + 13*x^3 + 22*x^4 + 34*x^5 + 50*x^6 + 70*x^7 + 95*x^8 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7.
  • P. Diaconis, R. L. Graham and B. Sturmfels, Primitive partition identities, in Combinatorics: Paul Erdős is Eighty, Vol. 2, Bolyai Soc. Math. Stud., 2, 1996, pp. 173-192.
  • H. Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • I. Siap, Linear codes over F_2 + u*F_2 and their complete weight enumerators, in Codes and Designs (Ohio State, May 18, 2000), pp. 259-271. De Gruyter, 2002.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002620 (first differences), A000292, A001752 (partial sums), A062109 (binomial transf.).
Bisections A002412, A016061.
Cf. also A002717 (a companion sequence), A002727, A006148, A057524, A134446, A014125, A122046, A122047.
The maximum Wiener index of all maximal k-degenerate graphs for k=1..6 are given in A000292, A002623 (this sequence), A014125, A122046, A122047, A175724, respectively.

Programs

  • Maple
    A002623 := n->(1/16)*(1+(-1)^n)+(n+1)/8+binomial(n+2,2)/4+binomial(n+3,3)/2;
    seq( ((2*n+3)*(n+2)*(n+1)/6-floor((n+2)/2))/4,n=1..47); # Lewis
    a := n -> ((-1)^n*3 + 45 + 68*n + 30*n^2 + 4*n^3) / 48:
    seq(a(n), n=0..46); # Peter Luschny, Jan 22 2018
  • Mathematica
    CoefficientList[Series[1/((1-x)^3(1-x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{1,3,7,13,22},50] (* Harvey P. Dale, Jul 19 2011 *)
    Table[((2 n^3 + 15 n^2 + 34 n + 45 / 2 + (3/2) (-1)^n) / 24), {n, 0, 100}] (* Vincenzo Librandi, Jan 15 2018 *)
    a[ n_] := Floor[(n + 2)*(n + 4)*(2*n + 3)/24]; (* Michael Somos, Feb 19 2024 *)
  • PARI
    {a(n) = (8 + 34/3*n + 5*n^2 + 2/3*n^3) \ 8}; /* Michael Somos, Sep 04 1999 */
    
  • PARI
    x='x+O('x^50); Vec(1/((1 - x)^3 * (1 - x^2))) \\ Indranil Ghosh, Apr 04 2017
    
  • Python
    def A002623(n): return ((n+2)*(n+4)*((n<<1)+3)>>3)//3 # Chai Wah Wu, Mar 25 2024

Formula

a(n+1) = a(n) + {(k-1)*k if n=2*k} or {k*k if n=2*k+1}.
a(n)+a(n+1) = A000292(n+1).
a(n) = a(n-2) + A000217(n+1) = A002717(n+2) - A000292(n+1).
Also: a(n) = C(n+3, 3) - a(n-1) with a(0)=1. - Labos Elemer, Apr 26 2003
From Paul Barry, Jul 01 2003: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k+3,3).
The signed version 1, -3, 7, ... has the formula:
a(n) = (4*n^3 + 30*n^2 + 68*n + 45)*(-1)^n/48 + 1/16.
This is the partial sums of the signed version of A000292. (End)
From Paul Barry, Jul 21 2003: (Start)
a(n) = Sum_{k=0..n} floor((k+2)^2/4).
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..j} (1+(-1)^i)/2. (End)
a(n) = a(n - 2) + (n*(n - 1))/2, with n>2, a(1)=0, a(2)=1; a(n) = (4*n^3+6*n^2-4*n+3*(-1)^n-3)/48, with offset 2. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004 (formula simplified by Bruno Berselli, Aug 29 2013)
a(n) = ((2*n+3)*(n+2)*(n+1)/6-floor((n+2)/2))/4, with offset 1. - Jerry W. Lewis (JLewis(AT)wyeth.com), Mar 23 2005
a(n) = 2*a(n-1) - a(n-2) + 1 + floor(n/2). - Bjorn Kjos-Hanssen (bjorn(AT)math.uconn.edu), Nov 10 2005
A002620(n+3) = a(n+1) - a(n). - Michael Somos, Sep 04 1999
Euler transform of length 2 sequence [ 3, 1]. - Michael Somos, Sep 04 2006
a(n) = -a(-5-n) for all n in Z. - Michael Somos, Sep 04 2006
Let P(i,k) be the number of integer partitions of n into k parts, then with k=2 we have a(n) = sum_{m=1}^{n} sum_{i=k}^{m} P(i,k). For k=1 we get A000217 = triangular numbers. - Thomas Wieder, Feb 18 2007
a(n) = (n+(3+(-1)^n)/2)*(n+(7+(-1)^n)/2)*(2*n+5-2*(-1)^n)/24. - Philippe LALLOUET (philip.lallouet(AT)orange.fr), Oct 19 2007 (corrected by Bruno Berselli, Aug 30 2013)
From Johannes W. Meijer, May 20 2011: (Start)
a(n) = A006918(n+1) + A006918(n).
a(n) = A058187(n-2) + 2*A058187(n-1) + A058187(n). (End)
a(0)=1, a(1)=3, a(2)=7, a(3)=13, a(4)=22; for n > 4, a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). - Harvey P. Dale, Jul 19 2011
a(n) = Sum_{i=0..n+2} floor(i/2)*ceiling(i/2). - Bruno Berselli, Aug 30 2013
a(n) = 15/16 + (1/16)*(-1)^n + (17/12)*n + (5/8)*n^2 + (1/12)*n^3. - Robert Israel, Jul 07 2014
a(n) = Sum_{i=0..n+2} (n+1-i)*floor(i/2+1). - Bruno Berselli, Apr 04 2017
a(n) = 1 + floor((2*n^3 + 15*n^2 + 34*n) / 24). - Allan Bickle, Aug 01 2020
E.g.f.: ((24 + 51*x + 21*x^2 + 2*x^3)*cosh(x) + (21 + 51*x + 21*x^2 + 2*x^3)*sinh(x))/24. - Stefano Spezia, Jun 02 2021

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A000447 a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.

Original entry on oeis.org

0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0

Views

Author

Keywords

Comments

4 times the variance of the area under an n-step random walk: e.g., with three steps, the area can be 9/2, 7/2, 3/2, 1/2, -1/2, -3/2, -7/2, or -9/2 each with probability 1/8, giving a variance of 35/4 or a(3)/4. - Henry Bottomley, Jul 14 2003
Number of standard tableaux of shape (2n-1,1,1,1) (n>=1). - Emeric Deutsch, May 30 2004
Also a(n) = (1/6)*(8*n^3-2*n), n>0: structured octagonal diamond numbers (vertex structure 9). Cf. A059722 = alternate vertex; A000447 = structured diamonds; and structured tetragonal anti-diamond numbers (vertex structure 9). Cf. A096000 = alternate vertex; A100188 = structured anti-diamonds. Cf. A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The n-th tetrahedral (or pyramidal) number is n(n+1)(n+2)/6. This sequence contains the tetrahedral numbers of A000292 obtained for n= 1,3,5,7,... (see A015219). - Valentin Bakoev, Mar 03 2009
Using three consecutive numbers u, v, w, (u+v+w)^3-(u^3+v^3+w^3) equals 18 times the numbers in this sequence. - J. M. Bergot, Aug 24 2011
This sequence is related to A070893 by A070893(2*n-1) = n*a(n)-sum(i=0..n-1, a(i)). - Bruno Berselli, Aug 26 2011
Number of integer solutions to 1-n <= x <= y <= z <= n-1. - Michael Somos, Dec 27 2011
Partial sums of A016754. - Reinhard Zumkeller, Apr 02 2012
Also the number of cubes in the n-th Haüy square pyramid. - Eric W. Weisstein, Sep 27 2017

Examples

			G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
		

References

  • G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
  • F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
  • C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Column 1 in triangles A008956 and A008958.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of A002577. - Valentin Bakoev, Mar 03 2009

Programs

Formula

a(n) = binomial(2*n+1, 3) = A000292(2*n-1).
G.f.: x*(1+6*x+x^2)/(1-x)^4.
a(n) = -a(-n) for all n in Z.
a(n) = A000330(2*n)-4*A000330(n) = A000466(n)*n/3 = A000578(n)+A007290(n-2) = A000583(n)-2*A024196(n-1) = A035328(n)/3. - Henry Bottomley, Jul 14 2003
a(n+1) = (2*n+1)*(2*n+2)(2*n+3)/6. - Valentin Bakoev, Mar 03 2009
a(0)=0, a(1)=1, a(2)=10, a(3)=35, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, May 25 2012
a(n) = v(n,n-1), where v(n,k) is the central factorial numbers of the first kind with odd indices. - Mircea Merca, Jan 25 2014
a(n) = A005917(n+1) - A100157(n+1), where A005917 are the rhombic dodecahedral numbers and A100157 are the structured rhombic dodecahedral numbers (vertex structure 9). - Peter M. Chema, Jan 09 2016
For any nonnegative integers m and n, 8*(n^3)*a(m) + 2*m*a(n) = a(2*m*n). - Ivan N. Ianakiev, Mar 04 2017
E.g.f.: exp(x)*x*(1 + 4*x + (4/3)*x^2). - Wolfdieter Lang, Mar 11 2017
a(n) = A002412(n) + A016061(n-1), for n>0. - Bruce J. Nicholson, Nov 12 2017
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*log(2) - 3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3 - 3*log(2). (End)

Extensions

Chrystal and Durell references from R. K. Guy, Apr 02 2004

A007290 a(n) = 2*binomial(n,3).

Original entry on oeis.org

0, 0, 0, 2, 8, 20, 40, 70, 112, 168, 240, 330, 440, 572, 728, 910, 1120, 1360, 1632, 1938, 2280, 2660, 3080, 3542, 4048, 4600, 5200, 5850, 6552, 7308, 8120, 8990, 9920, 10912, 11968, 13090, 14280, 15540, 16872, 18278, 19760, 21320, 22960, 24682, 26488, 28380, 30360, 32430, 34592, 36848, 39200
Offset: 0

Views

Author

Keywords

Comments

Number of acute triangles made from the vertices of a regular n-polygon when n is even (cf. A000330). - Sen-Peng Eu, Apr 05 2001
a(n+2) is (-1)*coefficient of X in Zagier's polynomial (n,n-1). - Benoit Cloitre, Oct 12 2002
Definite integrals of certain products of 2 derivatives of (orthogonal) Chebyshev polynomials of the 2nd kind are pi-multiple of this sequence. For even (p+q): Integrate[ D[ChebyshevU[p, x], x] D[ChebyshevU[q, x], x] (1 - x^2)^(1/2), {x,-1,1}] / Pi = a(n), where n=Min[p,q]. Example: a(3)=20 because Integrate[ D[ChebyshevU[3, x], x] D[ChebyshevU[5, x], x] (1 - x^2)^(1/2), {x,-1,1}]/Pi = 20 since 3=Min[3,5] and 3+5 is even. - Christoph Pacher (Christoph.Pacher(AT)arcs.ac.at), Dec 16 2004
If Y is a 2-subset of an n-set X then, for n>=3, a(n-1) is the number of 3-subsets and 4-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) is also the number of proper colorings of the cycle graph Csub3 (also the complete graph Ksub3) when n colors are available. - Gary E. Stevens, Dec 28 2008
a(n) is the reverse Wiener index of the path graph with n vertices. See the Balaban et al. reference, p. 927.
For n > 1: a(n) = sum of (n-1)-th row of A141418. - Reinhard Zumkeller, Nov 18 2012
This is the sequence for nuclear magic numbers in an idealized spherical nucleus under the harmonic oscillator model. - Jess Tauber, May 20 2013
Shifted non-vanishing diagonal of A132440^3/3. Second subdiagonal of A238363 (without zeros). For n>0, a(n+2)=n*(n+1)*(n+2)/3. Cf. A130534 for relations to colored forests and disposition of flags on flagpoles. - Tom Copeland, Apr 05 2014
a(n) is the number of ordered rooted trees with n non-root nodes that have 2 leaves; see A108838. - Joerg Arndt, Aug 18 2014
Number of floating point multiplications in the factorization of an (n-1)X(n-1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of additions is given by A000330. - Hugo Pfoertner, Mar 28 2018
a(n+1) = Max_{s in S_n} Sum_{k=1..n} (k - s(k))^2 where S_n is the symmetric group of permutations of [1..n]; this maximum is obtained with the permutation s = (1, n) (2, n-1) (3, n-2) ... (k, n-k+1). (see Protat reference). - Bernard Schott, Dec 26 2022

References

  • Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906, p. 352.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.
  • Maurice Protat, Des Olympiades à l'Agrégation, un problème de maximum, Problème 36, p. 83, Ellipses, Paris 1997.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A059419. Partial sums of A002378.
A diagonal of A008291. Row 3 of A074650.

Programs

  • Haskell
    a007290 n = if n < 3 then 0 else 2 * a007318 n 3  -- Reinhard Zumkeller, Nov 18 2012
    
  • Magma
    I:=[0, 0, 0, 2]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 19 2012
    
  • Maple
    A007290 := proc(n) 2*binomial(n,3) end proc:
  • Mathematica
    Table[Integrate[ D[ChebyshevU[n, x], x] D[ChebyshevU[n, x], x] (1 - x^2)^(1/2), {x, -1, 1}]/Pi, {n, 1, 20}] (* Pacher *)
    LinearRecurrence[{4,-6,4,-1},{0,0,0,2},50] (* Vincenzo Librandi, Jun 19 2012 *)
  • PARI
    my(x='x+O('x^100)); concat([0, 0, 0], Vec(2*x^3/(1-x)^4)) \\ Altug Alkan, Nov 01 2015
    
  • PARI
    apply( {A007290(n)=binomial(n,3)*2}, [0..55]) \\ M. F. Hasler, Jul 02 2021

Formula

G.f.: 2*x^3/(1-x)^4.
a(n) = a(n-1)*n/(n-3) = a(n-1) + A002378(n-2) = 2*A000292(n-2) = Sum_{i=0..n-2} i*(i+1) = n*(n-1)*(n-2)/3. - Henry Bottomley, Jun 02 2000 [Formula corrected by R. J. Mathar, Dec 13 2010]
a(n) = A000217(n-2) + A000330(n-2), n>1. - Reinhard Zumkeller, Mar 20 2008
a(n+1) = A000330(n) - A000217(n), n>=0. - Zak Seidov, Aug 07 2010
a(n) = A033487(n-2) - A052149(n-1) for n>1. - Bruno Berselli, Dec 10 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 19 2012
a(n) = (2*n - 3*n^2 + n^3)/3. - T. D. Noe, May 20 2013
a(n+1) = A002412(n) - A000330(n) or "Hex Pyramidal" - "Square Pyramidal" (as can also be seen via above formula). - Richard R. Forberg, Aug 07 2013
Sum_{n>=3} 1/a(n) = 3/4. - Enrique Pérez Herrero, Nov 10 2013
E.g.f.: exp(x)*x^3/3. - Geoffrey Critzer, Nov 22 2015
a(n+2) = delta(-n) = -delta(n) for n >= 0, where delta is the p-derivation over the integers with respect to prime p = 3. - Danny Rorabaugh, Nov 10 2017
(a(n) + a(n+1))/2 = A000330(n-1). - Ezhilarasu Velayutham, Apr 05 2019
Sum_{n>=3} (-1)^(n+1)/a(n) = 6*log(2) - 15/4. - Amiram Eldar, Jan 09 2022
a(n) = Sum_{m=0..n-2} Sum_{k=0..n-2} abs(m-k). - Nicolas Bělohoubek, Nov 06 2022
From Bernard Schott, Jan 04 2023: (Start)
a(n) = 2 * A000292(n-2), for n >= 2.
a(n+1) = 2 *Sum_{k=1..floor(n/2)} (n-(2k-1))^2, for n >= 2. (End)

A011379 a(n) = n^2*(n+1).

Original entry on oeis.org

0, 2, 12, 36, 80, 150, 252, 392, 576, 810, 1100, 1452, 1872, 2366, 2940, 3600, 4352, 5202, 6156, 7220, 8400, 9702, 11132, 12696, 14400, 16250, 18252, 20412, 22736, 25230, 27900, 30752, 33792, 37026, 40460, 44100, 47952, 52022, 56316, 60840
Offset: 0

Views

Author

Glen Burch (gburch(AT)erols.com), Felice Russo

Keywords

Comments

(1) a(n) = sum of second string of n triangular numbers - sum of first n triangular numbers, or the 2n-th partial sum of triangular numbers (A000217) - the n-th partial sum of triangular numbers (A000217). The same for natural numbers gives squares. (2) a(n) = (n-th triangular number)*(the n-th even number) = n(n+1)/2 * (2n). - Amarnath Murthy, Nov 05 2002
Let M(n) be the n X n matrix m(i,j)=1/(i+j+x), let P(n,x) = (Product_{i=0..n-1} i!^2)/det(M(n)). Then P(n,x) is a polynomial with integer coefficients of degree n^2 and a(n) is the coefficient of x^(n^2-1). - Benoit Cloitre, Jan 15 2003
Y values of solutions of the equation: (X-Y)^3-X*Y=0. X values are a(n)=n*(n+1)^2 (see A045991) - Mohamed Bouhamida, May 09 2006
a(2d-1) is the number of self-avoiding walk of length 3 in the d-dimensional hypercubic lattice. - Michael Somos, Sep 06 2006
a(n) mod 10 is periodic 5: repeat [0, 2, 2, 6, 0]. - Mohamed Bouhamida, Sep 05 2009
This sequence is related to A005449 by a(n) = n*A005449(n)-sum(A005449(i), i=0..n-1), and this is the case d=3 in the identity n^2*(d*n+d-2)/2 - Sum_{k=0..n-1} k*(d*k+d-2)/2 = n*(n+d)*(2*d*n+d-3)/6. - Bruno Berselli, Nov 18 2010
Using (n, n+1) to generate a primitive Pythagorean triangle, the sides will be 2*n+1, 2*(n^2+n), and 2*n^2+2*n+1. Inscribing the largest rectangle with integral sides will have sides of length n and n^2+n. Side n is collinear to side 2*n+1 of the triangle and side n^2+n is collinear to side 2*(n^2+n) of the triangle. The areas of theses rectangles are a(n). - J. M. Bergot, Sep 22 2011
a(n+1) is the sum of n-th row of the triangle in A195437. - Reinhard Zumkeller, Nov 23 2011
Partial sums of A049450. - Omar E. Pol, Jan 12 2013
From Jon Perry, May 11 2013: (Start)
Define a 'stable brick triangle' as:
-----
| c |
---------
| a | | b |
----------
with a, b, c > 0 and c <= a + b. This can be visualized as two bricks with a third brick on top. The third brick can only be as strong as a+b, otherwise the wall collapses - for example, (1,2,4) is unstable.
a(n) gives the number of stable brick triangles that can be formed if the two supporting bricks are 1 <= a <= n and 1 <= b <= n: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_c 1 = n^3 + n^2 as given in the Adamchuk formula.
So for i=j=n=2 we have 4:
1 2 3 4
2 2 2 2 2 2 2 2
For example, n=2 gives 2 from [a=1,b=1], 3 from both [a=1,b=2] and [a=2,b=1] and 4 from [a=2,b=2] so a(2) = 2 + 3 + 3 + 4 = 12. (End)
Define the infinite square array m(n,k) by m(n,k) = (n-k)^2 if n >= k >= 0 and by m(n,k) = (k+n)*(k-n) if 0 <= n <= k. This contains A120070 below the diagonal. Then a(n) = Sum_{k=0..n} m(n,k) + Sum_{r=0..n} m(r,n), the "hook sum" of the terms to the left of m(n,n) and above m(n,n) with irrelevant (vanishing) terms on the diagonal. - J. M. Bergot, Aug 16 2013
a(n) is the sum of all pairs with repetition drawn from the set of odd numbers 2*n-3. This is similar to A027480 but using the odd integers instead. Example using n=3 gives the odd numbers 1,3,5: 1+1, 1+3, 1+5, 3+3, 3+5,5+5 having a total of 36=a(3). - J. M. Bergot, Apr 05 2016
a(n) is the first Zagreb index of the complete graph K[n+1]. The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph. - Emeric Deutsch, Nov 07 2016
a(n-2) is the maximum sigma irregularity over all trees with n vertices. The extremal graphs are stars. (The sigma irregularity of a graph is the sum of squares of the differences between the degrees over all edges of the graph.) - Allan Bickle, Jun 14 2023

Examples

			a(3) = 3^2+3^3 = 36.
		

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, pp. 50, 64.

Crossrefs

Cf. A011379, A181617, A270205 (sigma irregularities of maximal k-degenerate graphs).

Programs

Formula

a(n) = 2*A002411(n).
a(n) = Sum_{j=1..n} (Sum_{i=1..n} (i+j)), row sums of A126890 skipping numbers in the first column. - Alexander Adamchuk, Oct 12 2004
Sum_{n>0} 1/a(n) = (Pi^2 - 6)/6 = 0.6449340... [Jolley eq 272] - Gary W. Adamson, Dec 22 2006
a(n) = 2*n*binomial(n+1,2) = 2*n*A000217(n). - Arkadiusz Wesolowski, Feb 10 2012
G.f.: 2*x*(1 + 2*x)/(1 - x)^4. - Arkadiusz Wesolowski, Feb 11 2012
a(n) = A000330(n) + A002412(n) = A000292(n) + A002413(n). - Omar E. Pol, Jan 11 2013
a(n) = A245334(n+1,2), n > 0. - Reinhard Zumkeller, Aug 31 2014
Sum_{n>=1} 1/a(n) = A013661-1. - R. J. Mathar, Oct 18 2019 [corrected by Jason Yuen, Aug 04 2024]
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 + Pi^2/12 - 2*log(2). - Amiram Eldar, Jul 04 2020
E.g.f.: exp(x)*x*(2 + 4*x + x^2). - Stefano Spezia, May 20 2021
a(n) = n*A002378(n) = A000578(n) + A000290(n). - J.S. Seneschal, Jun 18 2024

A015083 Carlitz-Riordan q-Catalan numbers (recurrence version) for q=2.

Original entry on oeis.org

1, 1, 3, 17, 171, 3113, 106419, 7035649, 915028347, 236101213721, 121358941877763, 124515003203007345, 255256125633703622475, 1046039978882750301409545, 8571252355254982356001107795, 140448544236464264647066322058465, 4602498820363674769217316088142020635
Offset: 0

Views

Author

Keywords

Comments

Limit_{n->inf} a(n)/2^((n-1)(n-2)/2) = Product{k>=1} 1/(1-1/2^k) = 3.462746619455... (cf. A065446). - Paul D. Hanna, Jan 24 2005
It appears that the Hankel transform is 2^A002412(n). - Paul Barry, Aug 01 2008
Hankel transform of aerated sequence is A125791. - Paul Barry, Dec 15 2010

Examples

			G.f. = 1 + x + 3*x^2 + 17*x^3 + 171*x^4 + 3113*x^5 + 106419*x^6 + 7035649*x^7 + ...
From _Seiichi Manyama_, Dec 05 2016: (Start)
a(1) = 1,
a(2) = 2^1 + 1 = 3,
a(3) = 2^3 + 2^2 + 2*2^1 + 1 = 17,
a(4) = 2^6 + 2^5 + 2*2^4 + 3*2^3 + 3*2^2 + 3*2^1 + 1 = 171. (End)
		

Crossrefs

Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), this sequence (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=2 of A090182, A290759.

Programs

  • Mathematica
    a[n_] := a[n] = Sum[2^i*a[i]*a[n - i - 1], {i, 0, n - 1}];
    a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
    m = 17; ContinuedFractionK[If[i == 1, 1, -2^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
  • PARI
    a(n)=if(n==0,1,sum(i=0,n-1,2^i*a(i)*a(n-1-i))) \\  Paul D. Hanna
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = vector(n, i, 1); for(k=0, n-1, A[k+1] = if( k<1, 1, A[k]*(1+2^k) + sum(i=1, k-1, 2^i * A[i] * A[k-i]))); A[n])}; /* Michael Somos, Jan 30 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = O(x); for(k=1, n, A = 1 / (1 - x * subst(A, x, 2*x))); polcoeff(A, n))}; /* Michael Somos, Jan 30 2005 */
    
  • Ruby
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A015083(n)
      A(2, n)
    end # Seiichi Manyama, Dec 24 2016

Formula

a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=2 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(2*x)) = 1/(1-x/(1-2*x/(1-2^2*x/(1-2^3*x/(1-...))))) (continued fraction). - Paul D. Hanna, Jan 24 2005
G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=0..n-1} 2^k*x*A(2^k*x). - Paul D. Hanna, May 17 2010
a(n) = the upper left term in M^(n-1), M = the infinite square production matrix:
1, 2, 0, 0, 0, ...
1, 2, 4, 0, 0, ...
1, 2, 4, 8, 0, ...
1, 2, 4, 8, 16, ...
...
Also, a(n+1) = sum of top row terms of M^(n-1). Example: top row of M^3 = (17, 34, 56, 64, 0, 0, 0, ...); where a(4) = 17 and a(5) = 171 = (17 + 34 + 56 + 64). - Gary W. Adamson, Jul 14 2011
G.f.: T(0), where T(k) = 1 - x*(2^k)/(x*(2^k) - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013

Extensions

Offset changed to 0 by Seiichi Manyama, Dec 05 2016

A002413 Heptagonal (or 7-gonal) pyramidal numbers: a(n) = n*(n+1)*(5*n-2)/6.

Original entry on oeis.org

0, 1, 8, 26, 60, 115, 196, 308, 456, 645, 880, 1166, 1508, 1911, 2380, 2920, 3536, 4233, 5016, 5890, 6860, 7931, 9108, 10396, 11800, 13325, 14976, 16758, 18676, 20735, 22940, 25296, 27808, 30481, 33320, 36330, 39516, 42883, 46436, 50180, 54120
Offset: 0

Views

Author

Keywords

Comments

The partial sums of A000566. - R. J. Mathar, Mar 19 2008
A002413(n + 1) is the number of 4-tuples (w, x, y, z) having all terms in {0, ..., n} and w = floor((x + y + z)/2). - Clark Kimberling, May 28 2012
From Ant King, Oct 25 2012: (Start)
For n > 0, the digital roots of this sequence A010888(A002413(n)) form the purely periodic 27-cycle {1, 8, 8, 6, 7, 7, 2, 6, 6, 7, 5, 5, 3, 4, 4, 8, 3, 3, 4, 2, 2, 9, 1, 1, 5, 9, 9}.
For n > 0, the units' digits of this sequence A010879(A002413(n)) form the purely periodic 20-cycle {1, 8, 6, 0, 5, 6, 8, 6, 5, 0, 6, 8, 1, 0, 0, 6, 3, 6, 0, 0}.
(End)

Examples

			For n=7, a(7) = 7*1 + 6*6 + 5*11 + 4*16 + 3*21 + 2*26 + 1*31 = 308. - _Bruno Berselli_, Feb 10 2014
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093562 ((5, 1) Pascal, column m = 3).
Cf. similar sequences listed in A237616.

Programs

Formula

a(n) = n*(n + 1)*(5*n - 2)/6.
G.f.: x*(1 + 4*x)/(1 - x)^4. [Suggested by Simon Plouffe in his 1992 dissertation.]
From Ant King, Oct 25 2012: (Start)
a(n) = a(n - 1) + n*(5*n - 3)/2.
a(n) = 3*a(n - 1) - 3*a(n - 2) + a(n - 3) + 5.
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4)
a(n) = (n + 1)*(2*A000566(n) + n)/6 = (5*n - 2)*A000217(n)/3.
a(n) = A000292(n) + 4*A000292(n - 1)
a(n) = A002412(n) + A000292(n - 1)
a(n) = A000217(n) + 5*A000292(n - 1)
a(n) = binomial(n + 2, 3) + 4*binomial(n + 1, 3) = (5*n - 2) * binomial(n + 1, 2)/3.
Sum_{n >= 1} 1/a(n) = 15*(log(3125) + sqrt(5)*log((3 - sqrt(5))/2) - 2*Pi*sqrt(5*(5 - 2*sqrt(5)))/5 - 8/5)/28 = 1.207293...
(End)
a(n) = Sum_{i=0..n-1} (n-i)*(5*i+1). - Bruno Berselli, Feb 10 2014
a(n) = A080851(5,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: x*(6 + 18*x + 5*x^2)*exp(x)/6. - Ilya Gutkovskiy, May 12 2017
a(n) = Sum_{i=0..n-1} (n+2*i)*(n-i). - Leonid Bedratyuk, Jul 09 2024

Extensions

More terms from James Sellers, Dec 23 1999
a(0)=0 prepended by Max Alekseyev, Nov 23 2011

A115067 a(n) = (3*n^2 - n - 2)/2.

Original entry on oeis.org

0, 4, 11, 21, 34, 50, 69, 91, 116, 144, 175, 209, 246, 286, 329, 375, 424, 476, 531, 589, 650, 714, 781, 851, 924, 1000, 1079, 1161, 1246, 1334, 1425, 1519, 1616, 1716, 1819, 1925, 2034, 2146, 2261, 2379, 2500, 2624, 2751, 2881, 3014, 3150, 3289, 3431, 3576
Offset: 1

Views

Author

Roger L. Bagula, Mar 01 2006

Keywords

Comments

Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 6720. - Philippe A.J.G. Chevalier, Dec 28 2015
a(n) is the sum of the numerator and denominator of the reduced fraction resulting from the sum A000217(n-2)/A000217(n-1) + A000217(n-1)/A000217(n), n>1. - J. M. Bergot, Jun 10 2017
For n > 1, a(n) is also the number of (not necessarily maximal) cliques in the (n-1)-Andrásfai graph. - Eric W. Weisstein, Nov 29 2017
a(n+1) is the sum of the lengths of all the segments used to draw a square of side n representing the most classic pattern for walls made of 2 X 1 bricks, known as a 1-over-2 pattern, where each joint between neighboring bricks falls over the center of the brick below. - Stefano Spezia, Jun 05 2021

Examples

			Illustrations for n = 2..7 from _Stefano Spezia_, Jun 05 2021:
       _           _ _          _ _ _
      |_|         |_|_|        |_|_ _|
                  |_ _|        |_ _|_|
                               |_|_ _|
   a(2) = 4     a(3) = 11     a(4) = 21
    _ _ _ _     _ _ _ _ _    _ _ _ _ _ _
   |_ _|_ _|   |_ _|_ _|_|  |_ _|_ _|_ _|
   |_|_ _|_|   |_|_ _|_ _|  |_|_ _|_ _|_|
   |_ _|_ _|   |_ _|_ _|_|  |_ _|_ _|_ _|
   |_|_ _|_|   |_|_ _|_ _|  |_|_ _|_ _|_|
               |_ _|_ _|_|  |_ _|_ _|_ _|
                            |_|_ _|_ _|_|
   a(5) = 34    a(6) = 50     a(7) = 69
		

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A008585, A005843, A001477, A000217.

Programs

Formula

a(n) = (3*n+2)*(n-1)/2.
a(n+1) = n*(3*n + 5)/2. - Omar E. Pol, May 21 2008
a(n) = 3*n + a(n-1) - 2 for n>1, a(1)=0. - Vincenzo Librandi, Nov 13 2010
a(n) = A095794(-n). - Bruno Berselli, Sep 02 2011
G.f.: x^2*(4-x) / (1-x)^3. - R. J. Mathar, Sep 02 2011
a(n) = A055998(2*n-2) - A055998(n-1). - Bruno Berselli, Sep 23 2016
E.g.f.: exp(x)*x*(8 + 3*x)/2. - Stefano Spezia, May 19 2021
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=2} 1/a(n) = Pi/(5*sqrt(3)) - 3*log(3)/5 + 21/25.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2)/5 - 2*Pi/(5*sqrt(3)) + 9/25. (End)
a(n) = Sum_{j=0..n-2} (2*n-j) = Sum_{j=0..n-2} (n+2+j), for n>=1. See the trapezoid link. - Leo Tavares, May 20 2022

Extensions

Edited by N. J. A. Sloane, Mar 05 2006
Previous Showing 11-20 of 93 results. Next