A005900
Octahedral numbers: a(n) = n*(2*n^2 + 1)/3.
Original entry on oeis.org
0, 1, 6, 19, 44, 85, 146, 231, 344, 489, 670, 891, 1156, 1469, 1834, 2255, 2736, 3281, 3894, 4579, 5340, 6181, 7106, 8119, 9224, 10425, 11726, 13131, 14644, 16269, 18010, 19871, 21856, 23969, 26214, 28595, 31116, 33781, 36594, 39559, 42680
Offset: 0
G.f. = x + 6*x^2 + 19*x^3 + 44*x^4 + 85*x^5 + 146*x^6 + 231*x^7 + ...
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 50.
- H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- X. Acloque, Polynexus Numbers and other mathematical wonders [broken link]
- Karoly Bezdek, Contact numbers for congruent sphere packings, arXiv:1102.1198 [math.MG], 2011.
- Matteo Cavaleri and Alfredo Donno, Some degree and distance-based invariants of wreath products of graphs, arXiv:1805.08989 [math.CO], 2018.
- Y-h. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq (5), m=2.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Muhammad Fatih Killik and Bünyamin Şahi̇n, Further Results on Level Matrix, Int'l J. Math. Combin. (2024) Vol 4, 68-74. See p. 71.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Hankyung Ko, Volodymyr Mazorchuk and Rafael Mrđen, Join operation for the Bruhat order and Verma modules, arXiv:2109.01067 [math.RT], 2021. See Remark 5.10 p. 19.
- A. Lascoux and M.-P. Schützenberger, Treillis et bases des groupes de Coxeter, Electron. J. Combin. 3 (1996), #R27.
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- J. K. Merikoski, R. Kumar and R. A. Rajput, Upper bounds for the largest eigenvalue of a bipartite graph, Electronic Journal of Linear Algebra ISSN 1081-3810, A publication of the International Linear Algebra Society, Volume 26, pp. 168-176, April 2013.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Eric Weisstein's World of Mathematics, Octahedral Number.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
a005900 n = sum $ zipWith (*) odds $ reverse odds
where odds = take n a005408_list
a005900_list = scanl (+) 0 a001844_list
-- Reinhard Zumkeller, Jun 16 2013, Apr 04 2012
-
[n*(2*n^2+1)/3: n in [0..50]]; // Wesley Ivan Hurt, Sep 11 2015
-
I:=[0,1,6,19]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Sep 12 2015
-
al:=proc(s,n) binomial(n+s-1,s); end; be:=proc(d,n) local r; add( (-1)^r*binomial(d-1,r)*2^(d-1-r)*al(d-r,n), r=0..d-1); end; [seq(be(3,n), n=0..100)];
A005900:=(z+1)**2/(z-1)**4; # Simon Plouffe in his 1992 dissertation
with(combinat): seq(fibonacci(4,2*n)/12, n=0..40); # Zerinvary Lajos, Apr 21 2008
-
Table[(2n^3+n)/3, {n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,1,6,19},50] (* Harvey P. Dale, Oct 10 2013 *)
CoefficientList[Series[x (1 + x)^2/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Sep 12 2015 *)
-
makelist(n*(2*n^2+1)/3, n, 0, 20); /* Martin Ettl, Jan 07 2013 */
-
{a(n) = n*(2*n^2+1)/3};
-
concat([0],Vec(x*(1 + x)^2/(1 - x)^4 + O(x^50))) \\ Indranil Ghosh, Mar 16 2017
-
def a(n): return n*(2*n*n + 1)//3
print([a(n) for n in range(41)]) # Michael S. Branicky, Sep 03 2021
A000447
a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.
Original entry on oeis.org
0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0
G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
- G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Valentin Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, Vol. 275 (2004), pp. 17-41. - _Valentin Bakoev_, Mar 03 2009
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955 [Annotated scans of just pages 742-743]
- Milan Janjic, Two Enumerative Functions.
- T. P. Martin, Shells of atoms, Phys. Reports, Vol. 273 (1996), pp. 199-241, eq. (11).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Haüy Construction.
- Eric Weisstein's World of Mathematics, Square Pyramid.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of
A002577. -
Valentin Bakoev, Mar 03 2009
-
a000447 n = a000447_list !! n
a000447_list = scanl1 (+) a016754_list
-- Reinhard Zumkeller, Apr 02 2012
-
[n*(4*n^2-1)/3: n in [0..50]]; // Vincenzo Librandi, Jan 12 2016
-
A000447:=z*(1+6*z+z**2)/(z-1)**4; # Simon Plouffe, 1992 dissertation.
A000447:=n->n*(4*n^2 - 1)/3; seq(A000447(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n (4 n^2 - 1)/3, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 10, 35}, 80] (* Harvey P. Dale, May 25 2012 *)
Join[{0}, Accumulate[Range[1, 81, 2]^2]] (* Harvey P. Dale, Jul 18 2013 *)
CoefficientList[Series[x (1 + 6 x + x^2)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
A000447(n):=n*(4*n^2 - 1)/3$ makelist(A000447(n),n,0,20); /* Martin Ettl, Jan 07 2013 */
-
{a(n) = n * (4*n^2 - 1) / 3};
-
concat(0, Vec(x*(1+6*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 11 2016
-
def A000447(n): return n*((n**2<<2)-1)//3 # Chai Wah Wu, Feb 12 2023
Chrystal and Durell references from
R. K. Guy, Apr 02 2004
A002817
Doubly triangular numbers: a(n) = n*(n+1)*(n^2+n+2)/8.
Original entry on oeis.org
0, 1, 6, 21, 55, 120, 231, 406, 666, 1035, 1540, 2211, 3081, 4186, 5565, 7260, 9316, 11781, 14706, 18145, 22155, 26796, 32131, 38226, 45150, 52975, 61776, 71631, 82621, 94830, 108345, 123256, 139656, 157641, 177310, 198765, 222111, 247456, 274911, 304590
Offset: 0
G.f. = x + 6*x^2 + 21*x^3 + 55*x^4 + 120*x^5 + 231*x^6 + 406*x^7 + 666*x^8 + ...
- A. Björner, The homology and shellability of matroids and geometric lattices, in Matroid Applications (ed. N. White), Encyclopedia of Mathematics and Its Applications, 40, Cambridge Univ. Press 1992.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 124, #25, Q(3,r).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics I, p. 292.
- T. D. Noe and William A. Tedeschi, Table of n, a(n) for n = 0..10000 (first 1000 terms computed by T. D. Noe)
- G. E. Andrews, P. Paule, A. Riese and V. Strehl, MacMahon's partition analysis V. Bijections, recursions and magic squares, p. 37.
- Weymar Astaiza, Alexander J. Barrios, Henry Chimal-Dzul, Stephan Ramon Garcia, Jaaziel de la Luz, Victor H. Moll, Yunied Puig, and Diego Villamizar, Symmetric tensor powers of graphs, arXiv:2309.13741 [math.CO], 2023. See p. 12.
- Matthias Beck, The number of "magic" squares and hypercubes, arXiv:math/0201013 [math.CO], 2002-2005.
- A. G. Bell, Partitioning integers in n dimensions, The Computer Journal, 13 (1970), 278-283.
- Miklos Bona, A New Proof of the Formula for the Number of 3 X 3 Magic Squares, Mathematics Magazine, Vol. 70, No. 3 (Jun., 1997), pp. 201-203.
- L. Carlitz, Enumeration of symmetric arrays, Duke Math. J., Vol. 33(4) (1966), pp. 771-782.
- Brian Conrey and Alex Gamburd, Pseudomoments of the Riemann zeta-function and pseudomagic squares, Journal of Number Theory, Volume 117, Issue 2, April 2006, Pages 263-278. See H4 on p. 269.
- P. Diaconis and A. Gamburd, Random matrices, magic squares and matching polynomials, Volume 11, Issue 2 (2004-6) (The Stanley Festschrift volume), Research Paper #R2.
- Robert W. Donley, Partitions for semi-magic squares of size three, arXiv:1911.00977 [math.CO], 2019.
- I. J. Good, On the application of symmetric Dirichlet distributions and their mixtures to contingency tables, Ann. Statist. 4 (1976), no. 6, 1159-1189.
- I. J. Good, On the application of symmetric Dirichlet distributions and contingency tables, pp. 1178-1179. (Annotated scanned copy)
- Hansraj Gupta, Enumeration of symmetric matrices, Duke Math. J. 35 (3), 653-659, (September 1968).
- D. M. Jackson and G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4 (1975), 474-477.
- D. M. Jackson & G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4.4 (1975), 474-477. (Annotated scanned copy)
- Milan Janjic, Two Enumerative Functions
- Neven Juric, Illustration of the 55 3 X 3 matrices
- Michal Opler, Pavel Valtr, and Tung Anh Vu, On the Arrangement of Hyperplanes Determined by n Points, EuroCG (39th European Workshop on Computational Geometry, Barcelona, Spain 2023) Session 7B, Talk 1, Vol. 54, No. 6.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Henry Warburton, On Self-Repeating Series, Transactions of the Cambridge Philosophical Society, Vol. 9, 471-486, 1856.
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Path Complement Graph
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A000292 (3-cycle count of \bar P_{n+4}),
A060446 (5-cycle count of \bar P_{n+3}),
A302695 (6-cycle count of \bar P_{n+5}).
-
A002817 := n->n*(n+1)*(n^2+n+2)/8;
-
a[ n_] := n (n + 1) (n^2 + n + 2) / 8; (* Michael Somos, Jul 24 2002 *)
LinearRecurrence[{5,-10,10,-5,1}, {0,1,6,21,55},40] (* Harvey P. Dale, Jul 18 2011 *)
nn=50;Join[{0},With[{c=(n(n+1))/2},Flatten[Table[Take[Accumulate[Range[ (nn(nn+1))/2]], {c,c}],{n,nn}]]]] (* Harvey P. Dale, Mar 19 2013 *)
-
{a(n) = n * (n+1) * (n^2 + n + 2) / 8}; /* Michael Somos, Jul 24 2002 */
-
concat(0, Vec(x*(1+x+x^2)/(1-x)^5 + O(x^50))) \\ Altug Alkan, Nov 15 2015
-
def A002817(n): return (m:=n*(n+1))*(m+2)>>3 # Chai Wah Wu, Aug 30 2024
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999
A004006
a(n) = C(n,1) + C(n,2) + C(n,3), or n*(n^2 + 5)/6.
Original entry on oeis.org
0, 1, 3, 7, 14, 25, 41, 63, 92, 129, 175, 231, 298, 377, 469, 575, 696, 833, 987, 1159, 1350, 1561, 1793, 2047, 2324, 2625, 2951, 3303, 3682, 4089, 4525, 4991, 5488, 6017, 6579, 7175, 7806, 8473, 9177, 9919, 10700, 11521, 12383, 13287, 14234, 15225
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
G.f. = x + 3*x^2 + 7*x^3 + 14*x^4 + 25*x^5 + 41*x^6 + 63*x^7 + 92*x^8 + ... - _Michael Somos_, Dec 29 2019
- W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372. [From Parthasarathy Nambi, Sep 30 2009]
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics, 2017, Vol. 41 Issue 6, pp. 849-853.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Laurent Saloff-Coste, Random walks on finite groups, in Probability on discrete structures, 263-346, Encyclopaedia Math. Sci., 110, Springer, 2004.
- Bridget Eileen Tenner, Reduced word manipulation: patterns and enumeration, J. Algebr. Comb. 46, No. 1, 189-217 (2017), w in S_n(231) l(w)=3.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
List([0..50], n-> n*(n^2+5)/6); # G. C. Greubel, Aug 27 2019
-
a004006 n = a000292 n + n + 1 -- Reinhard Zumkeller, Mar 31 2012
-
[n*(n^2+5)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
A004006 := proc(n) n*(n^2+5)/6 ;end proc:
seq(A004006(n),n=0..10) ; # R. J. Mathar, Jun 05 2011
-
Table[Total[Table[Binomial[n,i], {i,3}]], {n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,1,3,7}, 50] (* Harvey P. Dale, Aug 21 2011 *)
-
A004006(n):=n*(n^2+5)/6$ makelist(A004006(n),n,0,30); /* Martin Ettl, Jan 08 2013 */
-
{a(n) = n*(n^2 + 5)/6}; /* Michael Somos, May 04 2007 */
-
[n*(n^2+5)/6 for n in (0..50)] # G. C. Greubel, Aug 27 2019
A005917
Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.
Original entry on oeis.org
1, 15, 65, 175, 369, 671, 1105, 1695, 2465, 3439, 4641, 6095, 7825, 9855, 12209, 14911, 17985, 21455, 25345, 29679, 34481, 39775, 45585, 51935, 58849, 66351, 74465, 83215, 92625, 102719, 113521, 125055, 137345, 150415, 164289, 178991
Offset: 1
- J. H. Conway and R. K. Guy, The Book of Numbers, p. 53.
- E. Deza and M. M. Deza, Figurate Numbers, World Scientific Publishing, 2012, pp. 123-124.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Mario Defranco and Paul E. Gunnells, Hypergraph matrix models and generating functions, arXiv:2204.11361 [math.CO], 2022.
- Milan Janjic, Two Enumerative Functions
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (9).
- Andy Nicol, Illustration of Rhombic Dodecahedral Numbers
- C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Eric Weisstein's World of Mathematics, Rhombic Dodecahedral Number.
- Eric Weisstein's World of Mathematics, Nexus Number.
- D. Zeitlin, A family of Galileo sequences, Amer. Math. Monthly 82 (1975), 819-822.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A063493,
A063494,
A063495,
A063496.
-
a005917 n = a005917_list !! (n-1)
a005917_list = map sum $ f 1 [1, 3 ..] where
f x ws = us : f (x + 2) vs where (us, vs) = splitAt x ws
-- Reinhard Zumkeller, Nov 13 2014
-
[n^4 - (n-1)^4: n in [1..50]]; // Vincenzo Librandi, Aug 01 2011
-
Table[n^4-(n-1)^4,{n,40}] (* Harvey P. Dale, Apr 01 2011 *)
#[[2]]-#[[1]]&/@Partition[Range[0,40]^4,2,1] (* More efficient than the above Mathematica program because it only has to calculate each 4th power once *) (* Harvey P. Dale, Feb 07 2015 *)
Differences[Range[0,40]^4] (* Harvey P. Dale, Aug 11 2023 *)
-
a(n)=n^4-(n-1)^4 \\ Charles R Greathouse IV, Jul 31 2011
-
A005917_list, m = [], [24, -12, 2, 1]
for _ in range(10**2):
A005917_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
A027480
a(n) = n*(n+1)*(n+2)/2.
Original entry on oeis.org
0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, 1092, 1365, 1680, 2040, 2448, 2907, 3420, 3990, 4620, 5313, 6072, 6900, 7800, 8775, 9828, 10962, 12180, 13485, 14880, 16368, 17952, 19635, 21420, 23310, 25308, 27417, 29640, 31980, 34440
Offset: 0
Row sums of n consecutive integers, starting at 0, seen as a triangle:
.
0 | 0
3 | 1 2
12 | 3 4 5
30 | 6 7 8 9
60 | 10 11 12 13 14
105 | 15 16 17 18 19 20
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica 15 (2006), 1-155.
- Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4.
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Solomon Gartenhaus, Odd Order Pandiagonal Latin and Magic Cubes in Three and Four Dimensions, arXiv:math/0210275 [math.CO], 2002.
- Index entries for sequences related to dominoes
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf. similar sequences of the type n*(n+1)*(n+k)/2 listed in
A267370.
Similar sequences are listed in
A316224.
-
[n*(n+1)*(n+2)/2: n in [0..40]]; // Vincenzo Librandi, Nov 14 2014
-
[seq(3*binomial(n+2,3),n=0..37)]; # Zerinvary Lajos, Nov 24 2006
a := n -> add((j+n)*(n+2)/3,j=0..n): seq(a(n),n=0..35); # Zerinvary Lajos, Dec 17 2006
-
Table[(m^3 - m)/2, {m, 36}] (* Zerinvary Lajos, Mar 21 2007 *)
LinearRecurrence[{4,-6,4,-1},{0,3,12,30},40] (* Harvey P. Dale, Oct 10 2012 *)
CoefficientList[Series[3 x / (x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 14 2014 *)
With[{nn=50},Total/@TakeList[Range[0,(nn(nn+1))/2-1],Range[nn]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jun 02 2019 *)
-
a(n)=3*binomial(n+2,3) \\ Charles R Greathouse IV, May 23 2011
-
def a(n): return (n**3+3*n**2+2*n)//2 # _Torlach Rush, Jun 16 2024
A006527
a(n) = (n^3 + 2*n)/3.
Original entry on oeis.org
0, 1, 4, 11, 24, 45, 76, 119, 176, 249, 340, 451, 584, 741, 924, 1135, 1376, 1649, 1956, 2299, 2680, 3101, 3564, 4071, 4624, 5225, 5876, 6579, 7336, 8149, 9020, 9951, 10944, 12001, 13124, 14315, 15576, 16909, 18316, 19799, 21360, 23001, 24724, 26531, 28424, 30405
Offset: 0
- M. Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246.
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- B. Babcock and A. van Tuyl, Revisiting the spreading and covering numbers, arXiv preprint arXiv:1109.5847 [math.AC], 2011.
- Richard A. Brualdi and Geir Dahl, Alternating Sign Matrices and Hypermatrices, and a Generalization of Latin Square, arXiv:1704.07752 [math.CO], 2017. See p. 8.
- Peter Esser?, Guenter Stertenbrink, Triangles with Mac Mahon's pieces, digest of 14 messages in polyforms Yahoo group, Apr 14 - May 2, 2002.
- Th. Grüner, A. Kerber, R. Laue and M. Meringer, Mathematics for Combinatorial Chemistry
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- polyforms list, Triangles with MacMahon's pieces.
- Taskcentre, McMahon's Triangles 2
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
Row 2 of
A324999 (simplex vertices and facets) and
A327083 (simplex edges and ridges).
-
a006527 n = n * (n ^ 2 + 2) `div` 3 -- Reinhard Zumkeller, Jan 06 2014
-
[(n^3 + 2*n)/3: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
A006527:=z*(1+z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
with(combinat):seq(lcm(fibonacci(4,n),fibonacci(2,n))/3,n=0..42); # Zerinvary Lajos, Apr 20 2008
-
Table[ (n^3 + 2*n)/3, {n, 0, 45} ]
LinearRecurrence[{4,-6,4,-1},{0,1,4,11},46] (* or *) CoefficientList[ Series[(x+x^3)/(x-1)^4,{x,0,49}],x] (* Harvey P. Dale, Jun 13 2011 *)
-
a(n)=n*(n^2+2)/3 \\ Charles R Greathouse IV, Jul 25 2011
A037270
a(n) = n^2*(n^2 + 1)/2.
Original entry on oeis.org
0, 1, 10, 45, 136, 325, 666, 1225, 2080, 3321, 5050, 7381, 10440, 14365, 19306, 25425, 32896, 41905, 52650, 65341, 80200, 97461, 117370, 140185, 166176, 195625, 228826, 266085, 307720, 354061, 405450, 462241, 524800, 593505, 668746, 750925, 840456, 937765
Offset: 0
Aaron Gulliver (gulliver(AT)elec.canterbury.ac.nz)
- C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See p. 5.
- C. Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60(2001), 85-96.
- Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 55.
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
- T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
- R. A. Wilson, Cosmic Trigger, epilogue of S.-P. Sirag.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. D. Bell, A translation of Leonhard Euler's "De Quadratis Magicis", E795, arXiv:math/0408230 [math.CO], 2004-2005.
- N. G de Bruijn, Some classes of integer-valued functions, Nederl. Akad. Wetensch. Proc, Ser. A, 58 (1955), 363-367. See page 363.
- Th. Gruner, A. Kerber, R. Laue, and M. Meringer, Mathematics for Combinatorial Chemistry, In: F. Keil, W. Mackens, H. Voß and J. Wether, Scientific Computing in Chemical Engineering II, Springer, 1999, 74-81.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Row 3 of
A327086 (achiral simplex edge colorings).
-
a:=List([0..30],n->n^2*(n^2+1)/2); # Muniru A Asiru, Mar 28 2018
-
[n^2*(n^2 + 1)/2: n in [0..30]] // Stefano Spezia, Jan 15 2019
-
seq(n^2*(n^2+1)/2,n=0..30); # Muniru A Asiru, Mar 28 2018
-
Table[ n^2*((n^2 + 1)/2), {n, 0, 30} ]
Table[(1/8) Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}] (* Artur Jasinski, Feb 10 2010 *)
LinearRecurrence[{5,-10,10,-5,1},{0,1,10,45,136},30] (* Harvey P. Dale, Aug 03 2014 *)
-
a(n)=binomial(n^2+1,2) \\ Charles R Greathouse IV, Apr 25 2012
-
for n in range(0,30): print(n**2*(n**2+1)/2, end=', ') # Stefano Spezia, Jan 10 2019
A007588
Stella octangula numbers: a(n) = n*(2*n^2 - 1).
Original entry on oeis.org
0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, 3444, 4381, 5474, 6735, 8176, 9809, 11646, 13699, 15980, 18501, 21274, 24311, 27624, 31225, 35126, 39339, 43876, 48749, 53970, 59551, 65504, 71841, 78574, 85715, 93276, 101269, 109706, 118599, 127960
Offset: 0
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 51.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = Dy^4, Avh. Norske Vid. Akad. Oslo. I. 1942 (5): 27.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alexander Adamchuk and Vincenzo Librandi, Table of n, a(n) for n = 0..10000 [Alexander Adamchuk computed terms 0 - 169, Jun 02, 2008; Vincenzo Librandi computed the first 10000 terms, Aug 18 2011]
- A. Bremner, R. Høibakk and D. Lukkassen, Crossed ladders and Euler’s quartic, Annales Mathematicae et Informaticae, 36 (2009) pp. 29-41. See p. 33.
- John Elias, Nesting Cubes of the Surface Points of a Hexagonal Prism
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Amelia Carolina Sparavigna, Generalized Sum of Stella Octangula Numbers, Politecnico di Torino (Italy, 2021).
- Amelia Carolina Sparavigna, Cardano Formula and Some Figurate Numbers, Politecnico di Torino (Italy, 2021).
- Eric Weisstein's World of Mathematics, Stella Octangula Number
- Wikipedia, Stella octangula number
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Backwards differences give star numbers
A003154:
A003154(n)=a(n)-a(n-1).
1/12*t*(n^3-n)+ n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
Cf.
A001653 = Numbers n such that 2*n^2 - 1 is a square.
-
[n*(2*n^2 - 1): n in [0..40]]; // Vincenzo Librandi, Aug 18 2011
-
A007588:=n->n*(2*n^2 - 1); seq(A007588(n), n=0..40); # Wesley Ivan Hurt, Mar 10 2014
-
Table[ n(2n^2-1), {n,0,169} ] (* Alexander Adamchuk, Jun 02 2008 *)
LinearRecurrence[{4,-6,4,-1},{0,1,14,51},50] (* Harvey P. Dale, Sep 16 2011 *)
-
a(n)=n*(2*n^2-1)
-
def A007588(n): return n*(2*n**2-1) # Chai Wah Wu, Feb 18 2022
In the formula given in the 1995 Encyclopedia of Integer Sequences, the second 2 should be an exponent.
A034262
a(n) = n^3 + n.
Original entry on oeis.org
0, 2, 10, 30, 68, 130, 222, 350, 520, 738, 1010, 1342, 1740, 2210, 2758, 3390, 4112, 4930, 5850, 6878, 8020, 9282, 10670, 12190, 13848, 15650, 17602, 19710, 21980, 24418, 27030, 29822, 32800, 35970, 39338, 42910, 46692, 50690, 54910, 59358, 64040, 68962, 74130
Offset: 0
Stuart M. Ellerstein (ellerstein(AT)aol.com), Apr 21 2000
Comments