cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 401 results. Next

A363039 a(n) is the smallest tribonacci number (A000073) with exactly n divisors, or -1 if no such number exists.

Original entry on oeis.org

1, 2, 4, 274, 81, 44
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2023

Keywords

Comments

a(8) = 24, a(10) = 745527911414639917440582097294401.
a(7), if it exists, is > A000073(200000). - Vaclav Kotesovec, May 17 2023
Has an infinite number of -1's for a(p) where p is prime as A000073 only contains a finite number of perfect powers (see Theorem 1 of Petho link). - Michael S. Branicky, May 17 2023

Crossrefs

A373445 Triple convolution of the three tribonacci-like sequences A000073(n), A077947(n-2), and A103143(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 9, 28, 75, 195, 498, 1229, 2978, 7115, 16756, 39031, 90089, 206228, 468795, 1059197, 2380257, 5323610, 11856514, 26306896, 58172254, 128246136, 281957282, 618367332, 1353112803
Offset: 0

Views

Author

Greg Dresden and Xiaoyuan Wang, Jun 05 2024

Keywords

Comments

If we set b(n)=A000073(n), c(n)=A077947(n-2) with c(0)=c(1)=0, and d(n)=A103143(n), then all three sequences b(n), c(n), and d(n) start with the terms 0,0,1,1,2 and have signatures {1,1,1}, {1,1,2}, and {1,1,3} respectively. The triple convolution is defined as a(n) = Sum_{i+j+k=n} b(i)*c(j)*d(k).

Examples

			For n=7 the triple convolution of the three sequences b(n)=A000073(n), c(n)=A077947(n-2) with c(0)=c(1)=0, and d(n)=A103143(n) has only three nonzero terms in the sum: b(2)*c(2)*d(3), b(2)*c(3)*d(2), and b(3)*c(2)*c(2). All three terms are 1, so the triple convolution adds up to 3. Hence, a(7) = 3.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^6/((1-x-x^2-x^3)(1-x-x^2-2x^3)(1-x-x^2-3x^3)), {x, 0, 30}], x]

Formula

a(n) = (A000073(n+2) + A103143(n+2))/2 - A077947(n).
a(n) = 3*a(n-1) + a(n-3) - 12*a(n-4) - 3*a(n-5) + 2*a(n-6) + 17*a(n-7) + 11*a(n-8) + 6*a(n-9).
G.f.: x^6/((1 - 2*x)*(1 + x + x^2)*(1 - x - x^2 - x^3)*(1 - x - x^2 - 3*x^3)).

A000930 Narayana's cows sequence: a(0) = a(1) = a(2) = 1; thereafter a(n) = a(n-1) + a(n-3).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925
Offset: 0

Views

Author

Keywords

Comments

Named after a 14th-century Indian mathematician. [The sequence first appeared in the book "Ganita Kaumudi" (1356) by the Indian mathematician Narayana Pandita (c. 1340 - c. 1400). - Amiram Eldar, Apr 15 2021]
Number of compositions of n into parts 1 and 3. - Joerg Arndt, Jun 25 2011
A Lamé sequence of higher order.
Could have begun 1,0,0,1,1,1,2,3,4,6,9,... (A078012) but that would spoil many nice properties.
Number of tilings of a 3 X n rectangle with straight trominoes.
Number of ways to arrange n-1 tatami mats in a 2 X (n-1) room such that no 4 meet at a point. For example, there are 6 ways to cover a 2 X 5 room, described by 11111, 2111, 1211, 1121, 1112, 212.
Equivalently, number of compositions (ordered partitions) of n-1 into parts 1 and 2 with no two 2's adjacent. E.g., there are 6 such ways to partition 5, namely 11111, 2111, 1211, 1121, 1112, 212, so a(6) = 6. [Minor edit by Keyang Li, Oct 10 2020]
This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..floor(n/m)} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
a(n+2) is the number of n-bit 0-1 sequences that avoid both 00 and 010. - David Callan, Mar 25 2004 [This can easily be proved by the Cluster Method - see for example the Noonan-Zeilberger article. - N. J. A. Sloane, Aug 29 2013]
a(n-4) is the number of n-bit sequences that start and end with 0 but avoid both 00 and 010. For n >= 6, such a sequence necessarily starts 011 and ends 110; deleting these 6 bits is a bijection to the preceding item. - David Callan, Mar 25 2004
Also number of compositions of n+1 into parts congruent to 1 mod m. Here m=3, A003269 for m=4, etc. - Vladeta Jovovic, Feb 09 2005
Row sums of Riordan array (1/(1-x^3), x/(1-x^3)). - Paul Barry, Feb 25 2005
Row sums of Riordan array (1,x(1+x^2)). - Paul Barry, Jan 12 2006
Starting with offset 1 = row sums of triangle A145580. - Gary W. Adamson, Oct 13 2008
Number of digits in A061582. - Dmitry Kamenetsky, Jan 17 2009
From Jon Perry, Nov 15 2010: (Start)
The family a(n) = a(n-1) + a(n-m) with a(n)=1 for n=0..m-1 can be generated by considering the sums (A102547):
1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
1 3 6 10 15 21 28
1 4 10 20
1
------------------------------
1 1 1 2 3 4 6 9 13 19 28 41 60
with (in this case 3) leading zeros added to each row.
(End)
Number of pairs of rabbits existing at period n generated by 1 pair. All pairs become fertile after 3 periods and generate thereafter a new pair at all following periods. - Carmine Suriano, Mar 20 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=3, 2*a(n-3) equals the number of 2-colored compositions of n with all parts >= 3, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
For n>=2, row sums of Pascal's triangle (A007318) with triplicated diagonals. - Vladimir Shevelev, Apr 12 2012
Pisano period lengths of the sequence read mod m, m >= 1: 1, 7, 8, 14, 31, 56, 57, 28, 24, 217, 60, 56, 168, ... (A271953) If m=3, for example, the remainder sequence becomes 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, ... with a period of length 8. - R. J. Mathar, Oct 18 2012
Diagonal sums of triangle A011973. - John Molokach, Jul 06 2013
"In how many ways can a kangaroo jump through all points of the integer interval [1,n+1] starting at 1 and ending at n+1, while making hops that are restricted to {-1,1,2}? (The OGF is the rational function 1/(1 - z - z^3) corresponding to A000930.)" [Flajolet and Sedgewick, p. 373] - N. J. A. Sloane, Aug 29 2013
a(n) is the number of length n binary words in which the length of every maximal run of consecutive 0's is a multiple of 3. a(5) = 4 because we have: 00011, 10001, 11000, 11111. - Geoffrey Critzer, Jan 07 2014
a(n) is the top left entry of the n-th power of the 3X3 matrix [1, 0, 1; 1, 0, 0; 0, 1, 0] or of the 3 X 3 matrix [1, 1, 0; 0, 0, 1; 1, 0, 0]. - R. J. Mathar, Feb 03 2014
a(n-3) is the top left entry of the n-th power of any of the 3 X 3 matrices [0, 1, 0; 0, 1, 1; 1, 0, 0], [0, 0, 1; 1, 1, 0; 0, 1, 0], [0, 1, 0; 0, 0, 1; 1, 0, 1] or [0, 0, 1; 1, 0, 0; 0, 1, 1]. - R. J. Mathar, Feb 03 2014
Counts closed walks of length (n+3) on a unidirectional triangle, containing a loop at one of remaining vertices. - David Neil McGrath, Sep 15 2014
a(n+2) equals the number of binary words of length n, having at least two zeros between every two successive ones. - Milan Janjic, Feb 07 2015
a(n+1)/a(n) tends to x = 1.465571... (decimal expansion given in A092526) in the limit n -> infinity. This is the real solution of x^3 - x^2 -1 = 0. See also the formula by Benoit Cloitre, Nov 30 2002. - Wolfdieter Lang, Apr 24 2015
a(n+2) equals the number of subsets of {1,2,..,n} in which any two elements differ by at least 3. - Robert FERREOL, Feb 17 2016
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x. If a positive integer N such that r = N^(1/3) is not an integer, then the number of (not necessarily distinct) integers in g(n) is A000930(n), for n >= 1. (See A274142.) - Clark Kimberling, Jun 13 2016
a(n-3) is the number of compositions of n excluding 1 and 2, n >= 3. - Gregory L. Simay, Jul 12 2016
Antidiagonal sums of array A277627. - Paul Curtz, May 16 2019
a(n+1) is the number of multus bitstrings of length n with no runs of 3 ones. - Steven Finch, Mar 25 2020
Suppose we have a(n) samples, exactly one of which is positive. Assume the cost for testing a mix of k samples is 3 if one of the samples is positive (but you will not know which sample was positive if you test more than 1) and 1 if none of the samples is positive. Then the cheapest strategy for finding the positive sample is to have a(n-3) undergo the first test and then continue with testing either a(n-4) if none were positive or with a(n-6) otherwise. The total cost of the tests will be n. - Ruediger Jehn, Dec 24 2020

Examples

			The number of compositions of 11 without any 1's and 2's is a(11-3) = a(8) = 13. The compositions are (11), (8,3), (3,8), (7,4), (4,7), (6,5), (5,6), (5,3,3), (3,5,3), (3,3,5), (4,4,3), (4,3,4), (3,4,4). - _Gregory L. Simay_, Jul 12 2016
The compositions from the above example may be mapped to the a(8) compositions of 8 into 1's and 3's using this (more generally applicable) method: replace all numbers greater than 3 with a 3 followed by 1's to make the same total, then remove the initial 3 from the composition. Maintaining the example's order, they become (1,1,1,1,1,1,1,1), (1,1,1,1,1,3), (3,1,1,1,1,1), (1,1,1,1,3,1), (1,3,1,1,1,1), (1,1,1,3,1,1), (1,1,3,1,1,1), (1,1,3,3), (3,1,1,3), (3,3,1,1), (1,3,1,3), (1,3,3,1), (3,1,3,1). - _Peter Munn_, May 31 2017
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 8,80.
  • R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [See p. 12, line 3]
  • H. Langman, Play Mathematics. Hafner, NY, 1962, p. 13.
  • David Sankoff and Lani Haque, Power Boosts for Cluster Tests, in Comparative Genomics, Lecture Notes in Computer Science, Volume 3678/2005, Springer-Verlag. - N. J. A. Sloane, Jul 09 2009
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For Lamé sequences of orders 1 through 9 see A000045, this sequence, and A017898 - A017904.
Essentially the same as A068921 and A078012.
See also A001609, A145580, A179070, A214551 (same rule except divide by GCD).
A271901 and A271953 give the period of this sequence mod n.
A120562 has the same recurrence for odd n.

Programs

  • GAP
    a:=[1,1,1];; for n in [4..50] do a[n]:=a[n-1]+a[n-3]; od; a; # Muniru A Asiru, Aug 13 2018
    
  • Haskell
    a000930 n = a000930_list !! n
    a000930_list = 1 : 1 : 1 : zipWith (+) a000930_list (drop 2 a000930_list)
    -- Reinhard Zumkeller, Sep 25 2011
    
  • Magma
    [1,1] cat [ n le 3 select n else Self(n-1)+Self(n-3): n in [1..50] ]; // Vincenzo Librandi, Apr 25 2015
    
  • Maple
    f := proc(r) local t1,i; t1 := []; for i from 1 to r do t1 := [op(t1),0]; od: for i from 1 to r+1 do t1 := [op(t1),1]; od: for i from 2*r+2 to 50 do t1 := [op(t1),t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
    with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 2)}, unlabeled]: seq(count(SeqSetU, size=j), j=3..40); # Zerinvary Lajos, Oct 10 2006
    A000930 := proc(n)
        add(binomial(n-2*k,k),k=0..floor(n/3)) ;
    end proc: # Zerinvary Lajos, Apr 03 2007
    a:= n-> (<<1|1|0>, <0|0|1>, <1|0|0>>^n)[1,1]:
    seq(a(n), n=0..50); # Alois P. Heinz, Jun 20 2008
  • Mathematica
    a[0] = 1; a[1] = a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 3]; Table[ a[n], {n, 0, 40} ]
    CoefficientList[Series[1/(1 - x - x^3), {x, 0, 45}], x] (* Zerinvary Lajos, Mar 22 2007 *)
    LinearRecurrence[{1, 0, 1}, {1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    a[n_] := HypergeometricPFQ[{(1 - n)/3, (2 - n)/3, -n/3}, {(1 - n)/ 2, -n/2}, -27/4]; Table[a[n], {n, 0, 43}] (* Jean-François Alcover, Feb 26 2013 *)
    Table[-RootSum[1 + #^2 - #^3 &, 3 #^(n + 2) - 11 #^(n + 3) + 2 #^(n + 4) &]/31, {n, 20}] (* Eric W. Weisstein, Feb 14 2025 *)
  • Maxima
    makelist(sum(binomial(n-2*k,k),k,0,n/3),n,0,18); /* Emanuele Munarini, May 24 2011 */
    
  • PARI
    a(n)=polcoeff(exp(sum(m=1,n,((1+sqrt(1+4*x))^m + (1-sqrt(1+4*x))^m)*(x/2)^m/m)+x*O(x^n)),n) \\ Paul D. Hanna, Oct 08 2009
    
  • PARI
    x='x+O('x^66); Vec(1/(1-(x+x^3))) \\ Joerg Arndt, May 24 2011
    
  • PARI
    a(n)=([0,1,0;0,0,1;1,0,1]^n*[1;1;1])[1,1] \\ Charles R Greathouse IV, Feb 26 2017
    
  • Python
    from itertools import islice
    def A000930_gen(): # generator of terms
        blist = [1]*3
        while True:
            yield blist[0]
            blist = blist[1:]+[blist[0]+blist[2]]
    A000930_list = list(islice(A000930_gen(),30)) # Chai Wah Wu, Feb 04 2022
    
  • SageMath
    @CachedFunction
    def a(n): # A000930
        if (n<3): return 1
        else: return a(n-1) + a(n-3)
    [a(n) for n in (0..80)] # G. C. Greubel, Jul 29 2022

Formula

G.f.: 1/(1-x-x^3). - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{i=0..floor(n/3)} binomial(n-2*i, i).
a(n) = a(n-2) + a(n-3) + a(n-4) for n>3.
a(n) = floor(d*c^n + 1/2) where c is the real root of x^3-x^2-1 and d is the real root of 31*x^3-31*x^2+9*x-1 (c = 1.465571... = A092526 and d = 0.611491991950812...). - Benoit Cloitre, Nov 30 2002
a(n) = Sum_{k=0..n} binomial(floor((n+2k-2)/3), k). - Paul Barry, Jul 06 2004
a(n) = Sum_{k=0..n} binomial(k, floor((n-k)/2))(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
a(n) = Sum_{k=0..n} binomial((n+2k)/3,(n-k)/3)*(2*cos(2*Pi*(n-k)/3)+1)/3. - Paul Barry, Dec 15 2006
a(n) = term (1,1) in matrix [1,1,0; 0,0,1; 1,0,0]^n. - Alois P. Heinz, Jun 20 2008
G.f.: exp( Sum_{n>=1} ((1+sqrt(1+4*x))^n + (1-sqrt(1+4*x))^n)*(x/2)^n/n ).
Logarithmic derivative equals A001609. - Paul D. Hanna, Oct 08 2009
a(n) = a(n-1) + a(n-2) - a(n-5) for n>4. - Paul Weisenhorn, Oct 28 2011
For n >= 2, a(2*n-1) = a(2*n-2)+a(2*n-4); a(2*n) = a(2*n-1)+a(2*n-3). - Vladimir Shevelev, Apr 12 2012
INVERT transform of (1,0,0,1,0,0,1,0,0,1,...) = (1, 1, 1, 2, 3, 4, 6, ...); but INVERT transform of (1,0,1,0,0,0,...) = (1, 1, 2, 3, 4, 6, ...). - Gary W. Adamson, Jul 05 2012
G.f.: 1/(G(0)-x) where G(k) = 1 - x^2/(1 - x^2/(x^2 - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
G.f.: 1 + x/(G(0)-x) where G(k) = 1 - x^2*(2*k^2 + 3*k +2) + x^2*(k+1)^2*(1 - x^2*(k^2 + 3*k +2))/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 27 2012
a(2*n) = A002478(n), a(2*n+1) = A141015(n+1), a(3*n) = A052544(n), a(3*n+1) = A124820(n), a(3*n+2) = A052529(n+1). - Johannes W. Meijer, Jul 21 2013, corrected by Greg Dresden, Jul 06 2020
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
a(n) = v1*w1^n+v3*w2^n+v2*w3^n, where v1,2,3 are the roots of (-1+9*x-31*x^2+31*x^3): [v1=0.6114919920, v2=0.1942540040 - 0.1225496913*I, v3=conjugate(v2)] and w1,2,3 are the roots of (-1-x^2+x^3): [w1=1.4655712319, w2=-0.2327856159 - 0.7925519925*I, w3=conjugate(w2)]. - Gerry Martens, Jun 27 2015
a(n) = (6*A001609(n+3) + A001609(n-7))/31 for n>=7. - Areebah Mahdia, Jun 07 2020
a(n+6)^2 + a(n+1)^2 + a(n)^2 = a(n+5)^2 + a(n+4)^2 + 3*a(n+3)^2 + a(n+2)^2. - Greg Dresden, Jul 07 2021
a(n) = Sum_{i=(n-7)..(n-1)} a(i) / 2. - Jules Beauchamp, May 10 2025

Extensions

Name expanded by N. J. A. Sloane, Sep 07 2012

A000931 Padovan sequence (or Padovan numbers): a(n) = a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 0.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n into parts congruent to 2 mod 3 (offset -1). - Vladeta Jovovic, Feb 09 2005
a(n) is the number of compositions of n into parts that are odd and >= 3. Example: a(10)=3 counts 3+7, 5+5, 7+3. - David Callan, Jul 14 2006
Referred to as N0102 in R. K. Guy's "Anyone for Twopins?" - Rainer Rosenthal, Dec 05 2006
Zagier conjectures that a(n+3) is the maximum number of multiple zeta values of weight n > 1 which are linearly independent over the rationals. - Jonathan Sondow and Sergey Zlobin (sirg_zlobin(AT)mail.ru), Dec 20 2006
Starting with offset 6: (1, 1, 2, 2, 3, 4, 5, ...) = INVERT transform of A106510: (1, 1, -1, 0, 1, -1, 0, 1, -1, ...). - Gary W. Adamson, Oct 10 2008
Starting with offset 7, the sequence 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, ... is called the Fibonacci quilt sequence by Catral et al., in Fib. Q. 2017. - N. J. A. Sloane, Dec 24 2021
Triangle A145462: right border = A000931 starting with offset 6. Row sums = Padovan sequence starting with offset 7. - Gary W. Adamson, Oct 10 2008
Starting with offset 3 = row sums of triangle A146973 and INVERT transform of [1, -1, 2, -2, 3, -3, ...]. - Gary W. Adamson, Nov 03 2008
a(n+5) corresponds to the diagonal sums of "triangle": 1; 1; 1,1; 1,1; 1,2,1; 1,2,1; 1,3,3,1; 1,3,3,1; 1,4,6,4,1; ..., rows of Pascal's triangle (A007318) repeated. - Philippe Deléham, Dec 12 2008
With offset 3: (1, 0, 1, 1, 1, 2, 2, ...) convolved with the tribonacci numbers prefaced with a "1": (1, 1, 1, 2, 4, 7, 13, ...) = the tribonacci numbers, A000073. (Cf. triangle A153462.) - Gary W. Adamson, Dec 27 2008
a(n) is also the number of strings of length (n-8) from an alphabet {A, B} with no more than one A or 2 B's consecutively. (E.g., n = 4: {ABAB,ABBA,BABA,BABB,BBAB} and a(4+8) = 5.) - Toby Gottfried, Mar 02 2010
p(n):=A000931(n+3), n >= 1, is the number of partitions of the numbers {1,2,3,...,n} into lists of length two or three containing neighboring numbers. The 'or' is inclusive. For n=0 one takes p(0)=1. For details see the W. Lang link. There the explicit formula for p(n) (analog of the Binet-de Moivre formula for Fibonacci numbers) is also given. Padovan sequences with different inputs are also considered there. - Wolfdieter Lang, Jun 15 2010
Equals the INVERTi transform of Fibonacci numbers prefaced with three 1's, i.e., (1 + x + x^2 + x^3 + x^4 + 2x^5 + 3x^6 + 5x^7 + 8x^8 + 13x^9 + ...). - Gary W. Adamson, Apr 01 2011
When run backwards gives (-1)^n*A050935(n).
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 0, 1; 1, 0, 1; 0, 1, 0] or of the 3 X 3 matrix [0, 1, 0; 0, 0, 1; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
Figure 4 of Brauchart et al., 2014, shows a way to "visualize the Padovan sequence as cuboid spirals, where the dimensions of each cuboid made up by the previous ones are given by three consecutive numbers in the sequence". - N. J. A. Sloane, Mar 26 2014
a(n) is the number of closed walks from a vertex of a unidirectional triangle containing an opposing directed edge (arc) between the second and third vertices. Equivalently the (1,1) entry of A^n where the adjacency matrix of digraph is A=(0,1,0;0,0,1;1,1,0). - David Neil McGrath, Dec 19 2014
Number of compositions of n-3 (n >= 4) into 2's and 3's. Example: a(12)=5 because we have 333, 3222, 2322, 2232, and 2223. - Emeric Deutsch, Dec 28 2014
The Hoffman (2015) paper "offers significant evidence that the number of quantities needed to generate the weight-n multiple harmonic sums mod p is" a(n). - N. J. A. Sloane, Jun 24 2016
a(n) gives the number of compositions of n-5 into odd parts where the order of the 1's does not matter. For example, a(11)=4 counts the following compositions of 6: (5,1)=(1,5), (3,3), (3,1,1,1)=(1,3,1,1)=(1,1,3,1)=(1,1,1,3), (1,1,1,1,1,1). - Gregory L. Simay, Aug 04 2016
For n > 6, a(n) is the number of maximal matchings in the (n-5)-path graph, maximal independent vertex sets and minimal vertex covers in the (n-6)-path graph, and minimal edge covers in the (n-5)-pan graph and (n-3)-path graphs. - Eric W. Weisstein, Mar 30, Aug 03, and Aug 07 2017
From James Mitchell and Wilf A. Wilson, Jul 21 2017: (Start)
a(2n + 5) + 2n - 4, n > 2, is the number of maximal subsemigroups of the monoid of order-preserving mappings on a set with n elements.
a(n + 6) + n - 3, n > 3, is the number of maximal subsemigroups of the monoid of order-preserving or reversing mappings on a set with n elements.
(End)
Has the property that the largest of any four consecutive terms equals the sum of the two smallest. - N. J. A. Sloane, Aug 29 2017 [David Nacin points out that there are many sequences with this property, such as 1,1,1,2,1,1,1,2,1,1,1,2,... or 2,3,4,5,2,3,4,5,2,3,4,5,... or 2,2,1,3,3, 4,1,4, 5,5,1,6,6, 7,1,7, 8,8,1,9,9, 10,1,10, ... (spaces added for clarity), and a conjecture I made here in 2017 was simply wrong. I have deleted it. - N. J. A. Sloane, Oct 23 2018]
a(n) is also the number of maximal cliques in the (n+6)-path complement graph. - Eric W. Weisstein, Apr 12 2018
a(n+8) is the number of solus bitstrings of length n with no runs of 3 zeros. - Steven Finch, Mar 25 2020
Named after the architect Richard Padovan (b. 1935). - Amiram Eldar, Jun 08 2021
Shannon et al. (2006) credit a French architecture student Gérard Cordonnier with the discovery of these numbers.
For n >= 3, a(n) is the number of sequences of 0s and 1s of length (n-2) that begin with a 0, end with a 0, contain no two consecutive 0s, and contain no three consecutive 1s. - Yifan Xie, Oct 20 2022
For n >= 2, a(n+5) is the number of ways to tile the 1xn board with dominoes and squares (ie. size 1x1) such that are either none or one squares between dominoes, none or one squares at both ends of the board, and there is at least one domino. For example, for n=6, a(11)=4 since the tilings are |2|2, |22|, 2|2| and 222 (where 2 represents a domino and | a square). - Enrique Navarrete, Aug 31 2024

Examples

			G.f. = 1 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 4*x^11 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
  • Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, Dawn Nelson, Zhao Pan, and Huanzhong Xu, Legal Decompositions Arising from Non-positive Linear Recurrences, Fib. Quart., 55:3 (2017), 252-275. [Note that there is an earlier version of this paper, with only five authors, on the arXiv in 2016. Note to editors: do not merge these two citations. - N. J. A. Sloane, Dec 24 2021]
  • Richard K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 10-11.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See P_n.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, L'univers des nombres, "La sculpture et les nombres", pp. 19-20, Belin-Pour La Science, Paris, 2000.
  • Hans van der Laan, Het plastische getal. XV lessen over de grondslagen van de architectonische ordonnantie. Leiden, E.J. Brill, 1967.
  • Don Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics (Paris, 1992), Vol. II, A. Joseph et al. (eds.), Birkhäuser, Basel, 1994, pp. 497-512.

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Closely related to A001608.
Doubling every term gives A291289.

Programs

  • GAP
    a:=[1,0,0];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # G. C. Greubel, Dec 30 2019
    
  • Haskell
    a000931 n = a000931_list !! n
    a000931_list = 1 : 0 : 0 : zipWith (+) a000931_list (tail a000931_list)
    -- Reinhard Zumkeller, Feb 10 2011
    
  • Magma
    I:=[1,0,0]; [n le 3 select I[n] else Self(n-2) + Self(n-3): n in [1..60]]; // Vincenzo Librandi, Jul 21 2015
    
  • Maple
    A000931 := proc(n) option remember; if n = 0 then 1 elif n <= 2 then 0 else procname(n-2)+procname(n-3); fi; end;
    A000931:=-(1+z)/(-1+z^2+z^3); # Simon Plouffe in his 1992 dissertation; gives sequence without five leading terms
    a[0]:=1; a[1]:=0; a[2]:=0; for n from 3 to 50 do a[n]:=a[n-2]+a[n-3]; end do; # Francesco Daddi, Aug 04 2011
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-x^2-x^3), {x, 0, 50}], x]
    a[0]=1; a[1]=a[2]=0; a[n_]:= a[n]= a[n-2] + a[n-3]; Table[a[n], {n, 0, 50}] (* Robert G. Wilson v, May 04 2006 *)
    LinearRecurrence[{0,1,1}, {1,0,0}, 50] (* Harvey P. Dale, Jan 10 2012 *)
    Table[RootSum[-1 -# +#^3 &, 5#^n -6#^(n+1) +4#^(n+2) &]/23, {n,0,50}] (* Eric W. Weisstein, Nov 09 2017 *)
  • PARI
    Vec((1-x^2)/(1-x^2-x^3) + O(x^50)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    {a(n) = if( n<0, polcoeff(1/(1+x-x^3) + x * O(x^-n), -n), polcoeff( (1 - x^2)/(1-x^2-x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
    
  • Python
    def aupton(nn):
        alst = [1, 0, 0]
        for n in range(3, nn+1): alst.append(alst[n-2]+alst[n-3])
        return alst
    print(aupton(49)) # Michael S. Branicky, Mar 28 2022
  • Sage
    def A000931_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^2)/(1-x^2-x^3) ).list()
    A000931_list(50) # G. C. Greubel, Dec 30 2019
    

Formula

G.f.: (1-x^2)/(1-x^2-x^3).
a(n) is asymptotic to r^n / (2*r+3) where r = 1.3247179572447... = A060006, the real root of x^3 = x + 1. - Philippe Deléham, Jan 13 2004
a(n)^2 + a(n+2)^2 + a(n+6)^2 = a(n+1)^2 + a(n+3)^2 + a(n+4)^2 + a(n+5)^2 (Barniville, Question 16884, Ed. Times 1911).
a(n+5) = a(0) + a(1) + ... + a(n).
a(n) = central and lower right terms in the (n-3)-th power of the 3 X 3 matrix M = [0 1 0 / 0 0 1 / 1 1 0]. E.g., a(13) = 7. M^10 = [3 5 4 / 4 7 5 / 5 9 7]. - Gary W. Adamson, Feb 01 2004
G.f.: 1/(1 - x^3 - x^5 - x^7 - x^9 - ...). - Jon Perry, Jul 04 2004
a(n+4) = Sum_{k=0..floor((n-1)/2)} binomial(floor((n+k-2)/3), k). - Paul Barry, Jul 06 2004
a(n+3) = Sum_{k=0..floor(n/2)} binomial(k, n-2k). - Paul Barry, Sep 17 2004, corrected by Greg Dresden and Zi Ye, Jul 06 2021
a(n+3) is diagonal sum of A026729 (as a number triangle), with formula a(n+3) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} (-1)^(n-k+i)*binomial(n-k, i)*binomial(i+k, i-k). - Paul Barry, Sep 23 2004
a(n) = a(n-1) + a(n-5) = A003520(n-4) + A003520(n-13) = A003520(n-3) - A003520(n-9). - Henry Bottomley, Jan 30 2005
a(n+3) = Sum_{k=0..floor(n/2)} binomial((n-k)/2, k)(1+(-1)^(n-k))/2. - Paul Barry, Sep 09 2005
The sequence 1/(1-x^2-x^3) (a(n+3)) is given by the diagonal sums of the Riordan array (1/(1-x^3), x/(1-x^3)). The row sums are A000930. - Paul Barry, Feb 25 2005
a(n) = A023434(n-7) + 1 for n >= 7. - David Callan, Jul 14 2006
a(n+5) corresponds to the diagonal sums of A030528. The binomial transform of a(n+5) is A052921. a(n+5) = Sum_{k=0..floor(n/2)} Sum_{k=0..n} (-1)^(n-k+i)*binomial(n-k, i)binomial(i+k+1, 2k+1). - Paul Barry, Jun 21 2004
r^(n-1) = (1/r)*a(n) + r*a(n+1) + a(n+2), where r = 1.32471... is the real root of x^3 - x - 1 = 0. Example: r^8 = (1/r)*a(9) + r*a(10) + a(11) = (1/r)*2 + r*3 + 4 = 9.483909... - Gary W. Adamson, Oct 22 2006
a(n) = (r^n)/(2r+3) + (s^n)/(2s+3) + (t^n)/(2t+3) where r, s, t are the three roots of x^3-x-1. - Keith Schneider (schneidk(AT)email.unc.edu), Sep 07 2007
a(n) = -k*a(n-1) + a(n-2) + (k+1)a(n-2) + k*a(n-4), n > 3, for any value of k. - Gary Detlefs, Sep 13 2010
From Francesco Daddi, Aug 04 2011: (Start)
a(0) + a(2) + a(4) + a(6) + ... + a(2*n) = a(2*n+3).
a(0) + a(3) + a(6) + a(9) + ... + a(3*n) = a(3*n+2)+1.
a(0) + a(5) + a(10) + a(15) + ... + a(5*n) = a(5*n+1)+1.
a(0) + a(7) + a(14) + a(21) + ... + a(7*n) = (a(7*n) + a(7*n+1) + 1)/2. (End)
a(n+3) = Sum_{k=0..floor((n+1)/2)} binomial((n+k)/3,k), where binomial((n+k)/3,k)=0 for noninteger (n+k)/3. - Nikita Gogin, Dec 07 2012
a(n) = A182097(n-3) for n > 2. - Jonathan Sondow, Mar 14 2014
a(n) = the k-th difference of a(n+5k) - a(n+5k-1), k>=1. For example, a(10)=3 => a(15)-a(14) => 2nd difference of a(20)-a(19) => 3rd difference of a(25)-a(24)... - Bob Selcoe, Mar 18 2014
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A=(0,0,1,0,1,0,1,...) and S=(0,1,0,0,...) or A063524. [* is convolution operation] Define S^*0=I with I=(1,0,0,...). Then a(n) = Sum_{j=1...n} T(n,j). - David Neil McGrath, Dec 19 2014
If x=a(n), y=a(n+1), z=a(n+2), then x^3 + 2*y*x^2 - z^2*x - 3*y*z*x + y^2*x + y^3 - y^2*z + z^3 = 1. - Alexander Samokrutov, Jul 20 2015
For the sequence shifted by 6 terms, a(n) = Sum_{k=ceiling(n/3)..ceiling(n/2)} binomial(k+1,3*k-n) [Doslic-Zubac]. - N. J. A. Sloane, Apr 23 2017
From Joseph M. Shunia, Jan 21 2020: (Start)
a(2n) = 2*a(n-1)*a(n) + a(n)^2 + a(n+1)^2, for n > 8.
a(2n-1) = 2*a(n)*a(n+1) + a(n-1)^2, for n > 8.
a(2n+1) = 2*a(n+1)*a(n+2) + a(n)^2, for n > 7. (End)
0*a(0) + 1*a(1) + 2*a(2) + ... + n*a(n) = n*a(n+5) - a(n+9) + 2. - Greg Dresden and Zi Ye, Jul 02 2021
From Greg Dresden and Zi Ye, Jul 06 2021: (Start)
2*a(n) = a(n+2) + a(n-5) for n >= 5.
3*a(n) = a(n+4) - a(n-9) for n >= 9.
4*a(n) = a(n+5) - a(n-9) for n >= 9. (End)

Extensions

Edited by Charles R Greathouse IV, Mar 17 2010
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A027907 Triangle of trinomial coefficients T(n,k) (n >= 0, 0 <= k <= 2*n), read by rows: n-th row is obtained by expanding (1 + x + x^2)^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1, 1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1, 1, 7, 28, 77, 161, 266, 357, 393, 357, 266, 161, 77, 28, 7, 1, 1, 8, 36, 112, 266
Offset: 0

Views

Author

Keywords

Comments

When the rows are centered about their midpoints, each term is the sum of the three terms directly above it (assuming the undefined terms in the previous row are zeros). - N. J. A. Sloane, Dec 23 2021
T(n,k) = number of integer strings s(0),...,s(n) such that s(0)=0, s(n)=k, s(i) = s(i-1) + c, where c is 0, 1 or 2. Columns of T include A002426, A005717 and A014531.
Also number of ordered trees having n+1 leaves, all at level three and n+k+3 edges. Example: T(3,5)=3 because we have three ordered trees with 4 leaves, all at level three and 11 edges: the root r has three children; from one of these children two paths of length two are hanging (i.e., 3 possibilities) while from each of the other two children one path of length two is hanging. Diagonal sums are the tribonacci numbers; more precisely: Sum_{i=0..floor(2*n/3)} T(n-i,i) = A000073(n+2). - Emeric Deutsch, Jan 03 2004
T(n,k) = A111808(n,k) for 0 <= k <= n and T(n, 2*n-k) = A111808(n,k) for 0 <= k < n. - Reinhard Zumkeller, Aug 17 2005
The trinomial coefficients, T(n,i), are the absolute value of the coefficients of the chromatic polynomial of P_2 X P_n factored with x*(x-1)^i terms. Example: The chromatic polynomial of P_2 X P_2 is: x*(x-1) - 2*x*(x-1)^2 + x*(x-1)^3 and so T(1,0)=1, T(1,1)=2 and T(1,1) = 1. - Thomas J. Pfaff (tpfaff(AT)ithaca.edu), Oct 02 2006
T(n,k) is the number of distinct ways in which k unlabeled objects can be distributed in n labeled urns allowing at most 2 objects to fall into each urn. - N-E. Fahssi, Mar 16 2008
T(n,k) is the number of compositions of k into n parts p, each part 0 <= p <= 2. Adding 1 to each part, as a corollary, T(n,k) is the number of compositions of n+k into n parts p where 1 <= p <= 3. E.g., T(2,3)=2 since 5 = 3+2 = 2+3. - Steffen Eger, Jun 10 2011
Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (1,2). - Joerg Arndt, Jul 05 2011
Number of lattice paths from (0,0) to (2*n-k,k) using steps (2,0), (1,1), (0,2). - Werner Schulte, Jan 25 2017
T(n,k) is number of distinct ways to sum the integers -1, 0 , and 1 n times to obtain n-k, where T(n,0) = T(n,2*n+1) = 1. - William Boyles, Apr 23 2017
T(n-1,k-1) is the number of 2-compositions of n with 0's having k parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020
T(n,k) is the number of ways to obtain a sum of n+k when throwing a 3-sided die n times. Follows from the "T(n,k) is the number of compositions of n+k into n parts p where 1 <= p <= 3" comment above. - Feryal Alayont, Dec 30 2024

Examples

			The triangle T(n, k) begins:
  n\k 0   1   2   3   4   5   6   7   8   9 10 11 12
  0:  1
  1:  1   1   1
  2:  1   2   3   2   1
  3:  1   3   6   7   6   3   1
  4:  1   4  10  16  19  16  10   4   1
  5:  1   5  15  30  45  51  45  30  15   5  1
  6:  1   6  21  50  90 126 141 126  90  50 21  6  1
Concatenated rows:
G.f. = 1 + (x^2+x+1)*x + (x^2+x+1)^2*x^4 + (x^2+x+1)^3*x^9 + ...
     = 1 + (x + x^2 + x^3) + (x^4 + 2*x^5 + 3*x^6 + 2*x^7 + x^8) +
  (x^9 + 3*x^10 + 6*x^11 + 7*x^12 + 6*x^13 + 3*x^14 + x^15) + ... .
As a centered triangle, this begins:
           1
        1  1  1
     1  2  3  2  1
  1  3  6  7  6  3  1
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer).
  • L. Kleinrock, Uniform permutation of sequences, JPL Space Programs Summary, Vol. 37-64-III, Apr 30, 1970, pp. 32-43.

Crossrefs

Columns of T include A002426, A005717, A014531, A005581, A005712, etc. See also A035000, A008287.
First differences are in A025177. Pairwise sums are in A025564.

Programs

  • Haskell
    a027907 n k = a027907_tabf !! n !! k
    a027907_row n = a027907_tabf !! n
    a027907_tabf = [1] : iterate f [1, 1, 1] where
       f row = zipWith3 (((+) .) . (+))
                        (row ++ [0, 0]) ([0] ++ row ++ [0]) ([0, 0] ++ row)
    a027907_list = concat a027907_tabf
    -- Reinhard Zumkeller, Jul 06 2014, Jan 22 2013, Apr 02 2011
  • Maple
    A027907 := proc(n,k) expand((1+x+x^2)^n) ; coeftayl(%,x=0,k) ; end proc:
    seq(seq(A027907(n,k),k=0..2*n),n=0..5) ; # R. J. Mathar, Jun 13 2011
    T := (n,k) -> simplify(GegenbauerC(`if`(kPeter Luschny, May 08 2016
  • Mathematica
    Table[CoefficientList[Series[(Sum[x^i, {i, 0, 2}])^n, {x, 0, 2 n}], x], {n, 0, 10}] // Grid (* Geoffrey Critzer, Mar 31 2010 *)
    Table[Sum[Binomial[n, i]Binomial[n - i, k - 2i], {i, 0, n}], {n, 0, 10}, {k, 0, 2n}] (* Adi Dani, May 07 2011 *)
    T[ n_, k_] := If[ n < 0, 0, Coefficient[ (1 + x + x^2)^n, x, k]]; (* Michael Somos, Nov 08 2016 *)
    Flatten[DeleteCases[#,0]&/@CellularAutomaton[{Total[#] &, {}, 1}, {{1}, 0}, 8] ] (* Giorgos Kalogeropoulos, Nov 09 2021 *)
  • Maxima
    trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k);
    create_list(trinomial(n,k),n,0,8,k,0,2*n); /* Emanuele Munarini, Mar 15 2011 */
    
  • Maxima
    create_list(ultraspherical(k,-n,-1/2),n,0,6,k,0,2*n); /* Emanuele Munarini, Oct 18 2016 */
    
  • PARI
    {T(n, k) = if( n<0, 0, polcoeff( (1 + x + x^2)^n, k))}; /* Michael Somos, Jun 27 2003 */
    

Formula

G.f.: 1/(1-z*(1+w+w^2)).
T(n,k) = Sum_{r=0..floor(k/3)} (-1)^r*binomial(n, r)*binomial(k-3*r+n-1, n-1).
Recurrence: T(0,0) = 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k-0), with T(n,k) = 0 if k < 0 or k > 2*n:
T(i,0) = T(i, 2*i) = 1 for i >= 0, T(i, 1) = T(i, 2*i-1) = i for i >= 1 and for i >= 2 and 2 <= j <= i-2, T(i, j) = T(i-1, j-2) + T(i-1, j-1) + T(i-1, j).
The row sums are powers of 3 (A000244). - Gerald McGarvey, Aug 14 2004
T(n,k) = Sum_{i=0..floor(k/2)} binomial(n, 2*i+n-k) * binomial(2*i+n-k, i). - Ralf Stephan, Jan 26 2005
T(n,k) = Sum_{j=0..n} binomial(n, j) * binomial(j, k-j). - Paul Barry, May 21 2005
T(n,k) = Sum_{j=0..n} binomial(k-j, j) * binomial(n, k-j). - Paul Barry, Nov 04 2005
From Loic Turban (turban(AT)lpm.u-nancy.fr), Aug 31 2006: (Start)
T(n,k) = Sum_{j=0..n} (-1)^j * binomial(n,j) * binomial(2*n-2*j, k-j); (G. E. Andrews (1990)) obtained by expanding ((1+x)^2 - x)^n.
T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(n-j, k-2*j); obtained by expanding ((1+x) + x^2)^n.
T(n,k) = (-1)^k*Sum_{j=0..n} (-3)^j * binomial(n,j) * binomial(2*n-2*j, k-j); obtained by expanding ((1-x)^2 + 3*x)^n.
T(n,k) = (1/2)^k * Sum_{j=0..n} 3^j * binomial(n,j) * binomial(2*n-2*j, k-2*j); obtained by expanding ((1+x/2)^2 + (3/4)*x^2)^n.
T(n,k) = (2^k/4^n) * Sum_{j=0..n} 3^j * binomial(n,j) * binomial(2*n-2*j, k); obtained by expanding ((1/2+x)^2 + 3/4)^n using T(n,k) = T(2*n-k). (End)
From Paul D. Hanna, Apr 18 2012: (Start)
Let A(x) be the g.f. of the flattened sequence, then:
G.f.: A(x) = Sum_{n>=0} x^(n^2) * (1+x+x^2)^n.
G.f.: A(x) = Sum_{n>=0} x^n*(1+x+x^2)^n * Product_{k=1..n} (1 - (1+x+x^2) * x^(4*k-3)) / (1 - (1+x+x^2)*x^(4*k-1)).
G.f.: A(x) = 1/(1 - x*(1+x+x^2)/(1 + x*(1-x^2)*(1+x+x^2)/(1 - x^5*(1+x+x^2)/(1 + x^3*(1-x^4)*(1+x+x^2)/(1 - x^9*(1+x+x^2)/(1 + x^5*(1-x^6)*(1+x+x^2)/(1 - x^13* (1+x+x^2)/(1 + x^7*(1-x^8)*(1+x+x^2)/(1 - ...))))))))), a continued fraction.
(End)
Triangle: G.f. = Sum_{n>=0} (1+x+x^2)^n * x^(n^2) * y^n. - Daniel Forgues, Mar 16 2015
From Peter Luschny, May 08 2016: (Start)
T(n+1,n)/(n+1) = A001006(n) (Motzkin) for n>=0.
T(n,k) = H(n, k) if k < n else H(n, 2*n-k) where H(n,k) = binomial(n,k)*hypergeom([(1-k)/2, -k/2], [n-k+1], 4).
T(n,k) = GegenbauerC(m, -n, -1/2) where m=k if k < n else 2*n-k. (End)
T(n,k) = (-1)^k * C(2*n,k) * hypergeom([-k, -(2*n-k)], [-n+1/2], 3/4), for all k with 0 <= k <= 2n. - Robert S. Maier, Jun 13 2023
T(n,n) = Sum_{k=0..2*n} (-1)^k*(T(n,k))^2 and T(2*n,2*n) = Sum_{k=0..2*n} (T(n,k))^2 for n >= 0. - Werner Schulte, Nov 08 2016
T(n,n) = A002426(n), central trinomial coefficients. - M. F. Hasler, Nov 02 2019
Sum_{k=0..n-1} T(n, 2*k) = (3^n-1)/2. - Tony Foster III, Oct 06 2020

A000213 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201, 2209, 4063, 7473, 13745, 25281, 46499, 85525, 157305, 289329, 532159, 978793, 1800281, 3311233, 6090307, 11201821, 20603361, 37895489, 69700671, 128199521, 235795681, 433695873, 797691075, 1467182629
Offset: 0

Views

Author

Keywords

Comments

The name "tribonacci number" is less well-defined than "Fibonacci number". The sequence A000073 (which begins 0, 0, 1) is probably the most important version, but the name has also been applied to A000213, A001590, and A081172. - N. J. A. Sloane, Jul 25 2024
Number of (n-1)-bit binary sequences with each one adjacent to a zero. - R. H. Hardin, Dec 24 2007
The binomial transform is A099216. The inverse binomial transform is (-1)^n*A124395(n). - R. J. Mathar, Aug 19 2008
Equals INVERT transform of (1, 0, 2, 0, 2, 0, 2, ...). a(6) = 17 = (1, 1, 1, 3, 5, 9) dot (0, 2, 0, 2, 0, 1) = (0 + 2 + 0 + 6 + 0 + 9) = 17. - Gary W. Adamson, Apr 27 2009
From John M. Campbell, May 16 2011: (Start)
Equals the number of tilings of a 2 X n grid using singletons and "S-shaped tetrominoes" (i.e., shapes of the form Polygon[{{0, 0}, {2, 0}, {2, 1}, {3, 1}, {3, 2}, {1, 2}, {1, 1}, {0, 1}}]).
Also equals the number of tilings of a 2 X n grid using singletons and "T-shaped tetrominoes" (i.e., shapes of the form Polygon[{{0, 0}, {3, 0}, {3, 1}, {2, 1}, {2, 2}, {1, 2}, {1, 1}, {0, 1}}]). (End)
Pisano period lengths: 1, 1, 13, 4, 31, 13, 48, 8, 39, 31, 110, 52, 168, 48, 403, 16, 96, 39, 360, 124, ... (differs from A106293). - R. J. Mathar, Aug 10 2012
a(n) is the number of compositions of n with no consecutive 1's. a(4) = 5 because we have: 4, 3+1, 1+3, 2+2, 1+2+1. Cf. A239791, A003242. - Geoffrey Critzer, Mar 27 2014
a(n+2) is the number of words of length n over alphabet {1,2,3} without having {11,12,22,23} as substrings. - Ran Pan, Sep 16 2015
Satisfies Benford's law [see A186190]. - N. J. A. Sloane, Feb 09 2017
a(n) is also the number of dominating sets on the (n-1)-path graph. - Eric W. Weisstein, Mar 31 2017
a(n) is also the number of maximal irredundant sets and minimal dominating sets in the (2n-3)-triangular snake graph. - Eric W. Weisstein, Jun 09 2019
a(n) is also the number of anti-palindromic compositions of n, where a composition (c(1), c(2),..., c(k)) is anti-palindromic if c(i) is not equal to c(k+1-i) whenever 1 <= i <= k/2. For instance, there are a(4) = 5 anti-palindromic compositions of 4: 4, 31, 13, 211, 112. - Jia Huang, Apr 08 2023

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 5*x^4 + 9*x^5+ 17*x^6 + 31*x^7 + 57*x^8 + ...
		

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[1,1,1];; for n in [4..45] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 09 2019
    
  • Haskell
    a000213 n = a000213_list !! n
    a000213_list = 1 : 1 : 1 : zipWith (+) a000213_list
       (tail $ zipWith (+) a000213_list (tail a000213_list))
    -- Reinhard Zumkeller, Apr 07 2012
    
  • Magma
    I:=[1,1,1]; [n le 3 select I[n] else Self(n-1) + Self(n-2) + Self(n-3): n in [1..45]]; // G. C. Greubel, Jun 09 2019
    
  • Maple
    K:=(1-z^2)/(1-z-z^2-z^3): Kser:=series(K, z=0, 45): seq((coeff(Kser, z, n)), n= 0..34); # Zerinvary Lajos, Nov 08 2007
    A000213:=(z-1)*(1+z)/(-1+z+z**2+z**3); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{1, 1, 1}, {1, 1, 1}, 45] (* Harvey P. Dale, May 23 2011 *)
    Table[RootSum[-1 - # - #^2 + #^3 &, 2 #^n - 4 #^(n + 1) + 3 #^(n + 2) &]/11, {n, 0, 45}] (* Eric W. Weisstein, Apr 10 2018 *)
    CoefficientList[Series[(1-x)(1+x)/(1-x-x^2-x^3), {x, 0, 45}], x] (* Eric W. Weisstein, Apr 10 2018 *)
  • Maxima
    a(n):=sum(sum(binomial(n-2*m+1,m-i)*binomial(n-2*m+i,n-2*m), i,0,m),m,0,(n)/2); /* Vladimir Kruchinin, Dec 17 2011 */
    
  • PARI
    a(n)=tn=[1,1,1;1,0,0;0,1,0]^n;tn[3,1]+tn[3,2]+tn[3,3] \\ Charles R Greathouse IV, Feb 18 2011
    
  • Python
    alst = [1, 1, 1]
    [alst.append(alst[n-1] + alst[n-2] + alst[n-3]) for n in range(3, 37)]
    print(alst) # Michael S. Branicky, Sep 21 2021
  • Sage
    ((1-x^2)/(1-x-x^2-x^3)).series(x, 45).coefficients(x, sparse=False) # G. C. Greubel, Jun 09 2019
    

Formula

G.f.: (1-x)*(1+x)/(1-x-x^2-x^3). - Ralf Stephan, Feb 11 2004
G.f.: 1 / (1 - x / (1 - 2*x^2 / (1 + x^2))). - Michael Somos, May 12 2012
a(n) = rightmost term of M^n * [1 1 1], where M is the 3 X 3 matrix [1 1 1 / 1 0 0 / 0 1 0]. M^n * [1 1 1] = [a(n+2) a(n+1) a(n)]. a(n)/a(n-1) tends to the tribonacci constant, 1.839286755...; an eigenvalue of M and a root of x^3 - x^2 - x - 1 = 0. - Gary W. Adamson, Dec 17 2004
a(n) = A001590(n+3) - A001590(n+2); a(n+1) - a(n) = 2*A000073(n); a(n) = A000073(n+3) - A000073(n+1). - Reinhard Zumkeller, May 22 2006
a(n) = A001590(n) + A001590(n+1). - Philippe Deléham, Sep 25 2006
a(n) ~ (F - 1) * T^n, where F = A086254 and T = A058265. - Charles R Greathouse IV, Nov 09 2008
a(n) = 2*a(n-1) - a(n-4), n > 3. - Gary Detlefs, Sep 13 2010
a(n) = Sum_{m=0..n/2} Sum_{i=0..m} binomial(n-2*m+1,m-i)*binomial(n-2*m+i, n-2*m). - Vladimir Kruchinin, Dec 17 2011
a(n) = 2*A008937(n-2) + 1 for n > 1. - Reinhard Zumkeller, Apr 07 2012
G.f.: 1+x/(U(0) - x) where U(k) = 1 - x^2/(1 - 1/(1 + 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 16 2012
G.f.: 1 + x + x^2/(G(0)-x) where G(k) = 1 - x*(2*k+1)/(1 - 1/(1 + (2*k+1)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 17 2012
G.f.: (1+x)*(1-x)*(1 + x*(G(0)-1)/(x+1)) where G(k) = 1 + (1+x+x^2)/(1-x/(x+1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
G.f.: 1/(1+x-G(0)), where G(k) = 1 - 1/(1 - x/(x - 1/(1 + 1/(1 - x/(x + 1/G(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
a(n) = (-1)^n * A180735(-1-n) for all n in Z. - Michael Somos, Aug 15 2015
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(-r^2+2*r+2). - Fabian Pereyra, Nov 21 2024

A008288 Square array of Delannoy numbers D(i,j) (i >= 0, j >= 0) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 7, 1, 1, 9, 25, 25, 9, 1, 1, 11, 41, 63, 41, 11, 1, 1, 13, 61, 129, 129, 61, 13, 1, 1, 15, 85, 231, 321, 231, 85, 15, 1, 1, 17, 113, 377, 681, 681, 377, 113, 17, 1, 1, 19, 145, 575, 1289, 1683, 1289, 575, 145, 19, 1, 1, 21, 181, 833, 2241, 3653, 3653
Offset: 0

Views

Author

Keywords

Comments

In the Formula section, some contributors use T(n,k) = D(n-k, k) (for 0 <= k <= n), which is the triangular version of the square array (D(n,k): n,k >= 0). Conversely, D(n,k) = T(n+k,k) for n,k >= 0. - Petros Hadjicostas, Aug 05 2020
Also called the tribonacci triangle [Alladi and Hoggatt (1977)]. - N. J. A. Sloane, Mar 23 2014
D(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0), (0,1), (1,1). - Joerg Arndt, Jul 01 2011 [Corrected by N. J. A. Sloane, May 30 2020]
Or, triangle read by rows of coefficients of polynomials P[n](x) defined by P[0] = 1, P[1] = x+1; for n >= 2, P[n] = (x+1)*P[n-1] + x*P[n-2].
D(n, k) is the number of k-matchings of a comb-like graph with n+k teeth. Example: D(1, 3) = 7 because the graph consisting of a horizontal path ABCD and the teeth Aa, Bb, Cc, Dd has seven 3-matchings: four triples of three teeth and the three triples {Aa, Bb, CD}, {Aa, Dd, BC}, {Cc, Dd, AB}. Also D(3, 1)=7, the 1-matchings of the same graph being the seven edges: {AB}, {BC}, {CD}, {Aa}, {Bb}, {Cc}, {Dd}. - Emeric Deutsch, Jul 01 2002
Sum of n-th antidiagonal of the array D is A000129(n+1). - Reinhard Zumkeller, Dec 03 2004 [Edited by Petros Hadjicostas, Aug 05 2020 so that the counting of antidiagonals of D starts at n = 0. That is, the sum of the terms in the n-th row of the triangles T is A000129(n+1).]
The A-sequence for this Riordan type triangle (see one of Paul Barry's comments under Formula) is A112478 and the Z-sequence the trivial: {1, 0, 0, 0, ...}. See the W. Lang link under A006232 for Sheffer a- and z-sequences where also Riordan A- and Z-sequences are explained. This leads to the recurrence for the triangle given below. - Wolfdieter Lang, Jan 21 2008
The triangle or chess sums, see A180662 for their definitions, link the Delannoy numbers with twelve different sequences, see the crossrefs. All sums come in pairs due to the symmetrical nature of this triangle. The knight sums Kn14 and Kn15 have been added. It is remarkable that all knight sums are related to the tribonacci numbers, that is, A000073 and A001590, but none of the others. - Johannes W. Meijer, Sep 22 2010
This sequence, A008288, is jointly generated with A035607 as an array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 09 2012
Row n, for n > 0, of Roger L. Bagula's triangle in the Example section shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(n)*x^n which is the numerator of the n-th convergent of the continued fraction [k, k, k, ...], where k = sqrt(x) + 1/sqrt(x); see A230000. - Clark Kimberling, Nov 13 2013
In an n-dimensional hypercube lattice, D(n,k) gives the number of nodes situated at a Minkowski (Manhattan) distance of k from a given node. In cellular automata theory, the cells at Manhattan distance k are called the von Neumann neighborhood of radius k. For k=1, see A005843. - Dmitry Zaitsev, Dec 10 2015
These numbers appear as the coefficients of series relating spherical and bispherical harmonics, in the solutions of Laplace's equation in 3D. [Majic 2019, Eq. 22] - Matt Majic, Nov 24 2019
From Peter Bala, Feb 19 2020: (Start)
The following remarks assume an offset of 1 in the row and column indices of the triangle.
The sequence of row polynomials T(n,x), beginning with T(1,x) = x, T(2,x) = x + x^2, T(3,x) = x + 3*x^2 + x^3, ..., is a strong divisibility sequence of polynomials in the ring Z[x]; that is, for all positive integers n and m, poly_gcd(T(n,x), T(m,x)) = T(gcd(n, m), x) - apply Norfleet (2005), Theorem 3. Consequently, the sequence (T(n,x): n >= 1) is a divisibility sequence in the polynomial ring Z[x]; that is, if n divides m then T(n,x) divides T(m,x) in Z[x].
Let S(x) = 1 + 2*x + 6*x^2 + 22*x^3 + ... denote the o.g.f. for the large Schröder numbers A006318. The power series (x*S(x))^n, n = 2, 3, 4, ..., can be expressed as a linear combination with polynomial coefficients of S(x) and 1: (x*S(x))^n = T(n-1,-x) - T(n,-x)*S(x). The result can be extended to negative integer n if we define T(0,x) = 0 and T(-n,x) = (-1)^(n+1) * T(n,x)/x^n. Cf. A115139.
[In the previous two paragraphs, D(n,x) was replaced with T(n,x) because the contributor is referring to the rows of the triangle T(n,k), not the rows of the array D(n,k). - Petros Hadjicostas, Aug 05 2020] (End)
Named after the French amateur mathematician Henri-Auguste Delannoy (1833-1915). - Amiram Eldar, Apr 15 2021
D(i,j) = D(j,i). With this and Dmitry Zaitsev's Dec 10 2015 comment, D(i,j) can be considered the number of points at L1 distance <= i in Z^j or the number of points at L1 distance <= j in Z^i from any given point. The rows and columns of D(i,j) are the crystal ball sequences on cubic lattices. See the first example below. The n-th term in the k-th crystal ball sequence can be considered the number of points at distance <= n from any point in a k-dimensional cubic lattice, or the number of points at distance <= k from any point in an n-dimensional cubic lattice. - Shel Kaphan, Jan 01 2023 and Jan 07 2023
Dimensions of hom spaces Hom(R^{(i)}, R^{(j)}) in the Delannoy category attached to the oligomorphic group of order preserving self-bijections of the real line. - Noah Snyder, Mar 22 2023

Examples

			The square array D(i,j) (i >= 0, j >= 0) begins:
  1, 1,  1,   1,   1,   1,    1,    1,    1,    1, ... = A000012
  1, 3,  5,   7,   9,  11,   13,   15,   17,   19, ... = A005408
  1, 5, 13,  25,  41,  61,   85,  113,  145,  181, ... = A001844
  1, 7, 25,  63, 129, 231,  377,  575,  833, 1159, ... = A001845
  1, 9, 41, 129, 321, 681, 1289, 2241, 3649, 5641, ... = A001846
  ...
For D(2,5) = 61, which is seen above in the row labeled A001844, we calculate the sum (9 + 11 + 41) of the 3 nearest terms above and/or to the left. - _Peter Munn_, Jan 01 2023
D(2,5) = 61 can also be obtained from the row labeled A005408 using a recurrence mentioned in the formula section:  D(2,5) = D(1,5) + 2*Sum_{k=0..4} D(1,k), so D(2,5) = 11 + 2*(1+3+5+7+9) = 11 + 2*25. - _Shel Kaphan_, Jan 01 2023
As a triangular array (on its side) this begins:
   0,   0,   0,   0,   1,   0,  11,   0, ...
   0,   0,   0,   1,   0,   9,   0,  61, ...
   0,   0,   1,   0,   7,   0,  41,   0, ...
   0,   1,   0,   5,   0,  25,   0, 129, ...
   1,   0,   3,   0,  13,   0,  63,   0, ...
   0,   1,   0,   5,   0,  25,   0, 129, ...
   0,   0,   1,   0,   7,   0,  41,   0, ...
   0,   0,   0,   1,   0,   9,   0,  61, ...
   0,   0,   0,   0,   1,   0,  11,   0, ...
   [Edited by _Shel Kaphan_, Jan 01 2023]
From _Roger L. Bagula_, Dec 09 2008: (Start)
As a triangle T(n,k) (with rows n >= 0 and columns k = 0..n), this begins:
   1;
   1,  1;
   1,  3,   1;
   1,  5,   5,   1;
   1,  7,  13,   7,    1;
   1,  9,  25,  25,    9,    1;
   1, 11,  41,  63,   41,   11,    1;
   1, 13,  61, 129,  129,   61,   13,   1;
   1, 15,  85, 231,  321,  231,   85,  15,   1;
   1, 17, 113, 377,  681,  681,  377, 113,  17,  1;
   1, 19, 145, 575, 1289, 1683, 1289, 575, 145, 19, 1;
   ... (End)
Triangle T(n,k) recurrence: 63 = T(6,3) = 25 + 13 + 25 = T(5,2) + T(4,2) + T(5,3).
Triangle T(n,k) recurrence with A-sequence A112478: 63 = T(6,3) = 1*25 + 2*25 - 2*9 + 6*1 (T entries from row n = 5 only). [Here the formula T(n,k) = Sum_{j=0..n-k} A112478(j) * T(n-1, k-1+j) is used with n = 6 and k = 3; i.e., T(6,3) = Sum_{j=0..3} A111478(j) * T(5, 2+j). - _Petros Hadjicostas_, Aug 05 2020]
From _Philippe Deléham_, Mar 29 2012: (Start)
Subtriangle of the triangle given by (1, 0, 1, -1, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, ...) where DELTA is the operator defined in A084938:
   1;
   1,  0;
   1,  1,  0;
   1,  3,  1,  0;
   1,  5,  5,  1,  0;
   1,  7, 13,  7,  1,  0;
   1,  9, 25, 25,  9,  1, 0;
   1, 11, 41, 63, 41, 11, 1, 0;
   ...
Subtriangle of the triangle given by (0, 1, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, ...) where DELTA is the operator defined in A084938:
   1;
   0, 1;
   0, 1,  1;
   0, 1,  3,  1;
   0, 1,  5,  5,  1;
   0, 1,  7, 13,  7,  1;
   0, 1,  9, 25, 25,  9,  1;
   0, 1, 11, 41, 63, 41, 11, 1;
   ... (End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 593.
  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Mathematica, 26 (1963), 223-229.
  • G. Picou, Note #2235, L'Intermédiaire des Mathématiciens, 8 (1901), page 281. - N. J. A. Sloane, Mar 02 2022
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 28.

Crossrefs

Sums of antidiagonals: A000129 (Pell numbers).
Main diagonal: A001850 (central Delannoy numbers), which has further information and references.
A002002, A026002, and A190666 are +-k-diagonals for k=1, 2, 3 resp. - Shel Kaphan, Jan 01 2023
See also A027618.
Cf. A059446.
Has same main diagonal as A064861. Different from A100936.
Read mod small primes: A211312, A211313, A211314, A211315.
Triangle sums (see the comments): A000129 (Row1); A056594 (Row2); A000073 (Kn11 & Kn21); A089068 (Kn12 & Kn22); A180668 (Kn13 & Kn23); A180669 (Kn14 & Kn24); A180670 (Kn15 & Kn25); A099463 (Kn3 & Kn4); A116404 (Fi1 & Fi2); A006498 (Ca1 & Ca2); A006498(3*n) (Ca3 & Ca4); A079972 (Gi1 & Gi2); A079972(4*n) (Gi3 & Gi4); A079973(3*n) (Ze1 & Ze2); A079973(2*n) (Ze3 & Ze4).
Cf. A102413, A128966. (D(n,1)) = A005843. Cf. A115139.

Programs

  • Haskell
    a008288 n k = a008288_tabl !! n !! k
    a008288_row n = a008288_tabl !! n
    a008288_tabl = map fst $ iterate
        (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                           zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Jul 21 2013
    
  • Maple
    A008288 := proc(n, k) option remember; if k = 0 then 1 elif n=k then 1 else procname(n-1, k-1) + procname(n-2, k-1) + procname(n-1, k) end if; end proc: seq(seq(A008288(n,k),k=0..n), n=0..10); # triangular indices n and k
    P[0]:=1; P[1]:=x+1; for n from 2 to 12 do P[n]:=expand((x+1)*P[n-1]+x*P[n-2]); lprint(P[n]); lprint(seriestolist(series(P[n],x,200))); end do:
  • Mathematica
    (* Next, A008288 jointly generated with A035607 *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A008288 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A035607 *)
    (* Clark Kimberling, Mar 09 2012 *)
    d[n_, k_] := Binomial[n+k, k]*Hypergeometric2F1[-k, -n, -n-k, -1]; A008288 = Flatten[Table[d[n-k, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Apr 05 2012, after 3rd formula *)
  • Python
    from functools import cache
    @cache
    def delannoy_row(n: int) -> list[int]:
        if n == 0: return [1]
        if n == 1: return [1, 1]
        rov = delannoy_row(n - 2)
        row = delannoy_row(n - 1) + [1]
        for k in range(n - 1, 0, -1):
            row[k] += row[k - 1] + rov[k - 1]
        return row
    for n in range(10): print(delannoy_row(n))  # Peter Luschny, Jul 30 2023
  • Sage
    for k in range(8):  # seen as an array, read row by row
        a = lambda n: hypergeometric([-n, -k], [1], 2)
        print([simplify(a(n)) for n in range(11)]) # Peter Luschny, Nov 19 2014
    

Formula

D(n, 0) = 1 = D(0, n) for n >= 0; D(n, k) = D(n, k-1) + D(n-1, k-1) + D(n-1, k).
Bivariate o.g.f.: Sum_{n >= 0, k >= 0} D(n, k)*x^n*y^k = 1/(1 - x - y - x*y).
D(n, k) = Sum_{d = 0..min(n,k)} binomial(k, d)*binomial(n+k-d, k) = Sum_{d=0..min(n,k)} 2^d*binomial(n, d)*binomial(k, d). [Edited by Petros Hadjicostas, Aug 05 2020]
Seen as a triangle read by rows: T(n, 0) = T(n, n) = 1 for n >= 0 and T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), 0 < k < n and n > 1. - Reinhard Zumkeller, Dec 03 2004
Read as a number triangle, this is the Riordan array (1/(1-x), x(1+x)/(1-x)) with T(n, k) = Sum_{j=0..n-k} C(n-k, j) * C(k, j) * 2^j. - Paul Barry, Jul 18 2005
T(n,k) = Sum_{j=0..n-k} C(k,j)*C(n-j,k). - Paul Barry, May 21 2006
Let y^k(n) be the number of Khalimsky-continuous functions f from [0,n-1] to Z such that f(0) = 0 and f(n-1) = k. Then y^k(n) = D(i,j) for i = (1/2)*(n-1-k) and j = (1/2)*(n-1+k) where n-1+k belongs to 2Z. - Shiva Samieinia (shiva(AT)math.su.se), Oct 08 2007
Recurrence for triangle from A-sequence (see the Wolfdieter Lang comment above): T(n,k) = Sum_{j=0..n-k} A112478(j) * T(n-1, k-1+j), n >= 1, k >= 1. [For k > n, the sum is empty, in which case T(n,k) = 0.]
From Peter Bala, Jul 17 2008: (Start)
The n-th row of the square array is the crystal ball sequence for the product lattice A_1 x ... x A_1 (n copies). A035607 is the table of the associated coordination sequences for these lattices.
The polynomial p_n(x) := Sum {k = 0..n} 2^k * C(n,k) * C(x,k) = Sum_{k = 0..n} C(n,k) * C(x+k,n), whose values [p_n(0), p_n(1), p_n(2), ... ] give the n-th row of the square array, is the Ehrhart polynomial of the n-dimensional cross polytope (the hyperoctahedron) [Bump et al. (2000), Theorem 6].
The first few values are p_0(x) = 1, p_1(x) = 2*x + 1, p_2(x) = 2*x^2 + 2*x + 1 and p_3(x) = (4*x^3 + 6*x^2 + 8*x + 3)/3.
The reciprocity law p_n(m) = p_m(n) reflects the symmetry of the table.
The polynomial p_n(x) is the unique polynomial solution of the difference equation (x+1)*f(x+1) - x*f(x-1) = (2*n+1)*f(x), normalized so that f(0) = 1.
These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane; that is, the polynomials p_n(x-1), n = 1,2,3,..., satisfy a Riemann hypothesis [Bump et al. (2000), Theorem 4]. The o.g.f. for the p_n(x) is (1 + t)^x/(1 - t)^(x + 1) = 1 + (2*x + 1)*t + (2*x^2 + 2*x + 1)*t^2 + ... .
The square array of Delannoy numbers has a close connection with the constant log(2). The entries in the n-th row of the array occur in the series acceleration formula log(2) = (1 - 1/2 + 1/3 - ... + (-1)^(n+1)/n) + (-1)^n * Sum_{k>=1} (-1)^(k+1)/(k*D(n,k-1)*D(n,k)). [T(n,k) was replaced with D(n,k) in the formula to agree with the beginning of the paragraph. - Petros Hadjicostas, Aug 05 2020]
For example, the fourth row of the table (n = 3) gives the series log(2) = 1 - 1/2 + 1/3 - 1/(1*1*7) + 1/(2*7*25) - 1/(3*25*63) + 1/(4*63*129) - ... . See A142979 for further details.
Also the main diagonal entries (the central Delannoy numbers) give the series acceleration formula Sum_{n>=1} 1/(n*D(n-1,n-1)*D(n,n)) = (1/2)*log(2), a result due to Burnside. [T(n,n) was replaced here with D(n,n) to agree with the previous paragraphs. - Petros Hadjicostas, Aug 05 2020]
Similar relations hold between log(2) and the crystal ball sequences of the C_n lattices A142992. For corresponding results for the constants zeta(2) and zeta(3), involving the crystal ball sequences for root lattices of type A_n and A_n x A_n, see A108625 and A143007 respectively. (End)
From Peter Bala, Oct 28 2008: (Start)
Hilbert transform of Pascal's triangle A007318 (see A145905 for the definition of this term).
D(n+a,n) = P_n(a,0;3) for all integer a such that a >= -n, where P_n(a,0;x) is the Jacobi polynomial with parameters (a,0) [Hetyei]. The related formula A(n,k) = P_k(0,n-k;3) defines the table of asymmetric Delannoy numbers, essentially A049600. (End)
Seen as a triangle read by rows: T(n, k) = Hyper2F1([k-n, -k], [1], 2). - Peter Luschny, Aug 02 2014, Oct 13 2024.
From Peter Bala, Jun 25 2015: (Start)
O.g.f. for triangle T(n,k): A(z,t) = 1/(1 - (1 + t)*z - t*z^2) = 1 + (1 + t)*z + (1 + 3*t + t^2)*z^2 + (1 + 5*t + 5*t^2 + t^3)*z^3 + ....
1 + z*d/dz(A(z,t))/A(z,t) is the o.g.f. for A102413. (End)
E.g.f. for the n-th subdiagonal of T(n,k), n >= 0, equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(2*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 4*x + 4*x^2/2) = 1 + 5*x + 13*x^2/2! + 25*x^3/3! + 41*x^4/4! + 61*x^5/5! + .... - Peter Bala, Mar 05 2017 [The n-th subdiagonal of triangle T(n,k) is the n-th row of array D(n,k).]
Let a_i(n) be multiplicative with a_i(p^e) = D(i, e), p prime and e >= 0, then Sum_{n > 0} a_i(n)/n^s = (zeta(s))^(2*i+1)/(zeta(2*s))^i for i >= 0. - Werner Schulte, Feb 14 2018
Seen as a triangle read by rows: T(n,k) = Sum_{i=0..k} binomial(n-i, i) * binomial(n-2*i, k-i) for 0 <= k <= n. - Werner Schulte, Jan 09 2019
Univariate generating function: Sum_{k >= 0} D(n,k)*z^k = (1 + z)^n/(1 - z)^(n+1). [Dziemianczuk (2013), Eq. 5.3] - Matt Majic, Nov 24 2019
(n+1)*D(n+1,k) = (2*k+1)*D(n,k) + n*D(n-1,k). [Majic (2019), Eq. 22] - Matt Majic, Nov 24 2019
For i, j >= 1, D(i,j) = D(i,j-1) + 2*Sum_{k=0..i-1} D(k,j-1), or, because D(i,j) = D(j,i), D(i,j) = D(i-1,j) + 2*Sum_{k=0..j-1} D(i-1,k). - Shel Kaphan, Jan 01 2023
Sum_{k=0..n} T(n,k)^2 = A026933(n). - R. J. Mathar, Nov 07 2023
Let S(x) = (1 - x - (1 - 6*x + x^2)^(1/2))/(2*x) denote the g.f. of the sequence of large Schröder numbers A006318. Read as a lower triangular array, the signed n-th row polynomial R(n, -x) = 1/sqrt(1 - 6*x + x^2) *( 1/S(x)^(n+1) + (x*S(x))^(n+1) ). For example, R(4, -x) = 1 - 7*x + 13*x^2 - 7*x^3 + x^4 = 1/sqrt(1 - 6*x + x^2) * ( 1/S(x)^5 + (x*S(x))^5 ). Cf. A102413. - Peter Bala, Aug 01 2024

Extensions

Expanded description from Clark Kimberling, Jun 15 1997
Additional references from Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Nov 28 2001
Changed the notation to make the formulas more precise. - N. J. A. Sloane, Jul 01 2002

A001590 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=0, a(1)=1, a(2)=0.

Original entry on oeis.org

0, 1, 0, 1, 2, 3, 6, 11, 20, 37, 68, 125, 230, 423, 778, 1431, 2632, 4841, 8904, 16377, 30122, 55403, 101902, 187427, 344732, 634061, 1166220, 2145013, 3945294, 7256527, 13346834, 24548655, 45152016, 83047505, 152748176, 280947697, 516743378, 950439251
Offset: 0

Views

Author

Keywords

Comments

The name "tribonacci number" is less well-defined than "Fibonacci number". The sequence A000073 (which begins 0, 0, 1) is probably the most important version, but the name has also been applied to A000213, A001590, and A081172. - N. J. A. Sloane, Jul 25 2024
Dimensions of the homogeneous components of the higher order peak algebra associated to cubic roots of unity (Hilbert series = 1 + 1*t + 2*t^2 + 3*t^3 + 6*t^4 + 11*t^5 ...). - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 22 2006
Starting with offset 3: (1, 2, 3, 6, 11, 10, 37, ...) = row sums of triangle A145579. - Gary W. Adamson, Oct 13 2008
Starting (1, 2, 3, 6, 11, ...) = INVERT transform of the periodic sequence (1, 1, 0, 1, 1, 0, 1, 1, 0, ...). - Gary W. Adamson, May 04 2009
The comment of May 04 2009 is equivalent to: The numbers of ordered compositions of n using integers that are not multiples of 3 is equal to a(n+2) for n>=1, see [Hoggatt-Bicknell (1975) eq (2.7)]. - Gary W. Adamson, May 13 2013
Primes in the sequence are 2, 3, 11, 37, 634061, 7256527, ... in A231574. - R. J. Mathar, Aug 09 2012
Pisano period lengths: 1, 2, 13, 8, 31, 26, 48, 16, 39, 62,110,104,168, 48,403, 32, 96, 78, 360, 248, ... . - R. J. Mathar, Aug 10 2012
a(n+1) is the top left entry of the n-th power of any of 3 X 3 matrices [0, 1, 0; 1, 1, 1; 1, 0, 0], [0, 1, 1; 1, 1, 0; 0, 1, 0], [0, 1, 1; 0, 0, 1; 1, 0, 1] or [0, 0, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n+3) equals the number of n-length binary words avoiding runs of zeros of lengths 3i+2, (i=0,1,2,...). - Milan Janjic, Feb 26 2015
Sums of pairs of successive terms of A000073. - N. J. A. Sloane, Oct 30 2016
The power Q^n, for n >= 0, of the tribonacci Q-matrix Q = matrix([1, 1, 1], [1, 0, 0], [0, 1, 0]) is, by the Cayley-Hamilton theorem, Q^n = matrix([a(n+2), a(n+1) + a(n), a(n+1)], [a(n+1), a(n) + a(n-1), a(n)], [a(n), a(n-1) + a(n-2), a(n-1)]), with a(-2) = -1 and a(-1) = 1. One can use a(n) = a(n-1) + a(n-2) + a(n-3) in order to obtain a(-1) and a(-2). - Wolfdieter Lang, Aug 13 2018
a(n+2) is the number of entries n, for n>=1, in the sequence {A278038(k)}A278038(0)%20=%201).%20-%20_Wolfdieter%20Lang">{k>=1} (without A278038(0) = 1). - _Wolfdieter Lang, Sep 11 2018
In terms of the tribonacci numbers T(n) = A000073(n) the nonnegative powers of the Q-matrix (from the Aug 13 2018 comment) are Q^n = T(n)*Q^2 + (T(n-1) + T(n-2))*Q + T(n-1)*1_3, for n >= 0, with T(-1) = 1, T(-2) = -1. This is equivalent to the powers t^n of the tribonacci constant t = A058255 (or also for powers of the complex solutions). - Wolfdieter Lang, Oct 24 2018

Examples

			a(12)=a(11)+a(10)+a(9): 230=125+68+37.
For n=5 the partitions of 5 are 1+1+1+1+1 (1 composition), 1+1+1+2 (4 compositions), 1+2+2 (3 compositions), 1+1+3 (not contrib because 3 is a part), 2+3 (no contrib because 3 is a part), 1+4 (2 compositions) and 5 (1 composition), total 1+4+3+2+1=11 =a(5+2) - _R. J. Mathar_, Jan 13 2023
		

References

  • Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[0,1,0];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Oct 24 2018
  • Magma
    I:=[0,1,0]; [n le 3 select I[n]  else Self(n-1)+Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Apr 19 2018
    
  • Maple
    seq(coeff(series(x*(1-x)/(1-x-x^2-x^3),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 24 2018
    # alternative
    A001590 := proc(n)
        option remember;
        if n <=2 then
            op(n+1,[0,1,0]) ;
        else
            procname(n-1)+procname(n-2)+procname(n-3) ;
        end if;
    end proc:
    seq(A001590(n),n=0..30) ;# R. J. Mathar, Nov 22 2024
  • Mathematica
    LinearRecurrence[{1,1,1}, {0,1,0}, 50] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
    RecurrenceTable[{a[0]==0, a[1]==1, a[2]==0, a[n]==a[n-1]+a[n-2]+a[n-3]}, a, {n, 40}] (* Vincenzo Librandi, Apr 19 2018 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,1,1]^n*[0;1;0])[1,1] \\ Charles R Greathouse IV, Jul 28 2015
    
  • Sage
    def A001590():
        W = [0, 1, 0]
        while True:
            yield W[0]
            W.append(sum(W))
            W.pop(0)
    a = A001590(); [next(a) for  in range(38)]  # _Peter Luschny, Sep 12 2016
    

Formula

G.f.: x*(1-x)/(1-x-x^2-x^3).
Limit a(n)/a(n-1) = t where t is the real solution of t^3 = 1 + t + t^2, t = A058265 = 1.839286755... . If T(n) = A000073(n) then t^n = T(n-1) + a(n)*t + T(n)*t^2, for n >= 0, with T(-1) = 1.
a(3*n) = Sum_{k+l+m=n} (n!/k!l!m!)*a(l+2*m). Example: a(12)=a(8)+4a(7)+10a(6)+16a(5)+19a(4)+16a(3)+10a(2)+4a(1)+a(0) The coefficients are the trinomial coefficients. T(n) and T(n-1) also satisfy this equation. (T(-1)=1)
From Reinhard Zumkeller, May 22 2006: (Start)
a(n) = A000073(n+1)-A000073(n);
a(n) = A000073(n-1)+A000073(n-2) for n>1;
A000213(n-2) = a(n+1)-a(n) for n>1. (End)
a(n) + a(n+1) = A000213(n). - Philippe Deléham, Sep 25 2006
If p[1]=0, p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A. - Milan Janjic, May 02 2010
For n>=4, a(n)=2*a(n-1)-a(n-4). - Bob Selcoe, Feb 18 2014
a(-1-n) = -A078046(n). - Michael Somos, Jun 01 2014
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(3*r+1). - Fabian Pereyra, Nov 22 2024

Extensions

Additional comments from Miklos Kristof, Jul 03 2002

A058265 Decimal expansion of the tribonacci constant t, the real root of x^3 - x^2 - x - 1.

Original entry on oeis.org

1, 8, 3, 9, 2, 8, 6, 7, 5, 5, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 5, 1, 8, 5, 2, 5, 6, 4, 6, 5, 3, 2, 8, 6, 6, 0, 0, 4, 2, 4, 1, 7, 8, 7, 4, 6, 0, 9, 7, 5, 9, 2, 2, 4, 6, 7, 7, 8, 7, 5, 8, 6, 3, 9, 4, 0, 4, 2, 0, 3, 2, 2, 2, 0, 8, 1, 9, 6, 6, 4, 2, 5, 7, 3, 8, 4, 3, 5, 4, 1, 9, 4, 2, 8, 3, 0, 7, 0, 1, 4
Offset: 1

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

"The tribonacci constant, the only real solution to the equation x^3 - x^2 - x - 1 = 0, which is related to tribonacci sequences (in which U_n = U_n-1 + U_n-2 + U_n-3) as the Golden Ratio is related to the Fibonacci sequence and its generalizations. This ratio also appears when a snub cube is inscribed in an octahedron or a cube, by analogy once again with the appearance of the Golden Ratio when an icosahedron is inscribed in an octahedron. [John Sharp, 1997]"
The tribonacci constant corresponds to the Golden Section in a tripartite division 1 = u_1 + u_2 + u_3 of a unit line segment; i.e., if 1/u_1 = u_1/u_2 = u_2/u_3 = c, c is the tribonacci constant. - Seppo Mustonen, Apr 19 2005
The other two polynomial roots are the complex-conjugated pair -0.4196433776070805662759262... +- i* 0.60629072920719936925934... - R. J. Mathar, Oct 25 2008
For n >= 3, round(q^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - Vladimir Shevelev, Mar 21 2014
Concerning orthogonal projections, the tribonacci constant is the ratio of the diagonal of a square to the width of a rhombus projected by rotating a square along its diagonal in 3D until the angle of rotation equals the apparent apex angle at approximately 57.065 degrees (also the corresponding angle in the formula generating A256099). See illustration in the links. - Peter M. Chema, Jan 02 2017
From Wolfdieter Lang, Aug 10 2018: (Start)
Real eigenvalue t of the tribonacci Q-matrix <<1, 1, 1>,<1, 0, 0>,<0, 1, 0>>.
Limit_{n -> oo} T(n+1)/T(n) = t (from the T recurrence), where T = {A000073(n+2)}_{n >= 0}. (End)
The nonnegative powers of t are t^n = T(n)*t^2 + (T(n-1) + T(n-2))*t + T(n-1)*1, for n >= 0, with T(n) = A000073(n), with T(-1) = 1 and T(-2) = -1, This follows from the recurrences derived from t^3 = t^2 + t + 1. See the examples below. For the negative powers see A319200. - Wolfdieter Lang, Oct 23 2018
Note that we have: t + t^(-3) = 2, and the k-nacci constant approaches 2 when k approaches infinity (Martin Gardner). - Bernard Schott, May 16 2022
The roots of this cubic are found from those of y^3 - (4/3)*y - 38/27, after adding 1/3. - Wolfdieter Lang, Aug 24 2022
The algebraic number t - 1 has minimal polynomial x^3 + 2*x^2 - 2 over Q. The roots coincide with those of y^3 - (4/3)*y - 38/27, after subtracting 2/3. - Wolfdieter Lang, Sep 20 2022
The value of the ratio R/r of the radius R of a uniform ball to the radius r of a spherical hole in it with a common point of contact, such that the center of gravity of the object lies on the surface of the spherical hole (Schmidt, 2002). - Amiram Eldar, May 20 2023

Examples

			1.8392867552141611325518525646532866004241787460975922467787586394042032220\
    81966425738435419428307014141979826859240974164178450746507436943831545\
    820499513796249655539644613666121540277972678118941041...
From _Wolfdieter Lang_, Oct 23 2018: (Start)
The coefficients of t^2, t, 1 for t^n begin, for n >= 0:
    n     t^2    t    1
    -------------------
    0      0     0    1
    1      0     1    0
    2      1     0    0
    1      1     1    1
    4      2     2    1
    5      4     3    2
    6      7     6    4
    7     13    11    7
    8     24    20   13
    9     44    37   24
   10     81    68   44
...  (End)
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
  • Martin Gardner, The Second Scientific American Book of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.

Crossrefs

Cf. A000073, A019712 (continued fraction), A133400, A254231, A158919 (spectrum = floor(n*t)), A357101 (x^3-2*x^2-2).
Cf. A192918 (reciprocal), A276800 (square), A276801 (cube), A319200.
k-nacci constants: A001622 (Fibonacci), this sequence (tribonacci), A086088 (tetranacci), A103814 (pentanacci), A118427 (hexanacci), A118428 (heptanacci).

Programs

  • Maple
    Digits:=200; fsolve(x^3=x^2+x+1); # N. J. A. Sloane, Mar 16 2019
  • Mathematica
    RealDigits[ N[ 1/3 + 1/3*(19 - 3*Sqrt[33])^(1/3) + 1/3*(19 + 3*Sqrt[33])^(1/3), 100]] [[1]]
    RealDigits[Root[x^3-x^2-x-1,1],10,120][[1]] (* Harvey P. Dale, Mar 23 2019 *)
  • Maxima
    set_display(none)$ fpprec:100$ bfloat(rhs(solve(t^3-t^2-t-1,t)[3])); /* Dimitri Papadopoulos, Nov 09 2023 */
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^3 - x^2 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b058265.txt", n, " ", d));  \\ Harry J. Smith, May 30 2009
    
  • PARI
    q=(1+sqrtn(19+3*sqrt(33),3)+sqrtn(19-3*sqrt(33),3))/3 \\ Use \p# to set 'realprecision'. - M. F. Hasler, Mar 23 2014
    

Formula

t = (1/3)*(1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3)). - Zak Seidov, Jun 08 2005
t = 1 - Sum_{k>=1} A057597(k+2)/(T_k*T_(k+1)), where T_n = A000073(n+1). - Vladimir Shevelev, Mar 02 2013
1/t + 1/t^2 + 1/t^3 = 1/A058265 + 1/A276800 + 1/A276801 = 1. - N. J. A. Sloane, Oct 28 2016
t = (4/3)*cosh((1/3)*arccosh(19/8)) + 1/3. - Wolfdieter Lang, Aug 24 2022
t = 2 - Sum_{k>=0} binomial(4*k + 2, k)/((k + 1)*2^(4*k + 3)). - Antonio Graciá Llorente, Oct 28 2024

A000078 Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) for n >= 4 with a(0) = a(1) = a(2) = 0 and a(3) = 1.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, 10671, 20569, 39648, 76424, 147312, 283953, 547337, 1055026, 2033628, 3919944, 7555935, 14564533, 28074040, 54114452, 104308960, 201061985, 387559437, 747044834, 1439975216, 2775641472
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of compositions of n-3 with no part greater than 4. Example: a(7) = 8 because we have 1+1+1+1 = 2+1+1 = 1+2+1 = 3+1 = 1+1+2 = 2+2 = 1+3 = 4. - Emeric Deutsch, Mar 10 2004
In other words, a(n) is the number of ways of putting stamps in one row on an envelope using stamps of denominations 1, 2, 3 and 4 cents so as to total n-3 cents [Pólya-Szegő]. - N. J. A. Sloane, Jul 28 2012
a(n+4) is the number of 0-1 sequences of length n that avoid 1111. - David Callan, Jul 19 2004
a(n) is the number of matchings in the graph obtained by a zig-zag triangulation of a convex (n-3)-gon. Example: a(8) = 15 because in the triangulation of the convex pentagon ABCDEA with diagonals AD and AC we have 15 matchings: the empty set, seven singletons and {AB,CD}, {AB,DE}, {BC,AD}, {BC,DE}, {BC,EA}, {CD,EA} and {DE,AC}. - Emeric Deutsch, Dec 25 2004
Number of permutations satisfying -k <= p(i)-i <= r, i=1..n-3, with k = 1, r = 3. - Vladimir Baltic, Jan 17 2005
For n >= 0, a(n+4) is the number of palindromic compositions of 2*n+1 into an odd number of parts that are not multiples of 4. In addition, a(n+4) is also the number of Sommerville symmetric cyclic compositions (= bilaterally symmetric cyclic compositions) of 2*n+1 into an odd number of parts that are not multiples of 4. - Petros Hadjicostas, Mar 10 2018
a(n) is the number of ways to tile a hexagonal double-strip (two rows of adjacent hexagons) containing (n-4) cells with hexagons and double-hexagons (two adjacent hexagons). - Ziqian Jin, Jul 28 2019
The term "tetranacci number" was coined by Mark Feinberg (1963; see A000073). - Amiram Eldar, Apr 16 2021
a(n) is the number of ways to tile a skew double-strip of n-3 cells using squares and all possible "dominos", as seen in Ziqian Jin's article, below. Here is the skew double-strip corresponding to n=15, with 12 cells:
_ ___ _ ___ _ ___
| | | | | | |
|__|___|_|___| |___|
| | | | | | |
|_|___|_|___|_|___|,
and here are the three possible "domino" tiles:
_ _
| | | |
| | | | | |
|_|, |_|, |_____|.
As an example, here is one of the a(15) = 1490 ways to tile the skew double-strip of 12 cells:
_ ___ _____ _______
| | | | | | |
|__|_ |_|_ | _| _|
| | | | | |
|_____|___|_|___|_|. - Greg Dresden, Jun 05 2024

Examples

			From _Petros Hadjicostas_, Mar 10 2018: (Start)
For n = 3, we get a(3+4) = a(7) = 8 palindromic compositions of 2*n+1 = 7 into an odd number of parts that are not a multiple of 4. They are the following: 7 = 1+5+1 = 3+1+3 = 2+3+2 = 1+2+1+2+1 = 2+1+1+1+2 = 1+1+3+1+1 = 1+1+1+1+1+1+1. If we put these compositions on a circle, they become bilaterally symmetric cyclic compositions of 2*n+1 = 7.
For n = 4, we get a(4+4) = a(8) = 15 palindromic compositions of 2*n + 1 = 9 into an odd number of parts that are not a multiple of 4. They are the following: 9 = 3+3+3 = 2+5+2 = 1+7+1 = 1+1+5+1+1 = 2+1+3+1+2 = 1+2+3+2+1 = 1+3+1+3+1 = 3+1+1+1+3 = 2+2+1+2+2 = 2+1+1+1+1+1+2 = 1+2+1+1+1+2+1 = 1+1+2+1+2+1+1 = 1+1+1+3+1+1+1 = 1+1+1+1+1+1+1+1+1.
As _David Callan_ points out in the comments above, for n >= 1, a(n+4) is also the number of 0-1 sequences of length n that avoid 1111. For example, for n = 5, a(5+4) = a(9) = 29 is the number of binary strings of length n that avoid 1111. Out of the 2^5 = 32 binary strings of length n = 5, the following do not avoid 1111: 11111, 01111, and 11110. (End)
		

References

  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1, Problems 3 and 4.
  • J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 4 of arrays A048887 and A092921 (k-generalized Fibonacci numbers).
First differences are in A001631.
Cf. A008287 (quadrinomial coefficients) and A073817 (tetranacci with different initial conditions).

Programs

  • GAP
    a:=[0,0,0,1];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]+a[n-4]; od; a; # Muniru A Asiru, Mar 11 2018
  • Haskell
    import Data.List (tails, transpose)
    a000078 n = a000078_list !! n
    a000078_list = 0 : 0 : 0 : f [0,0,0,1] where
       f xs = y : f (y:xs) where
         y = sum $ head $ transpose $ take 4 $ tails xs
    -- Reinhard Zumkeller, Jul 06 2014, Apr 28 2011
    
  • Magma
    [n le 4 select Floor(n/4) else Self(n-1)+Self(n-2)+Self(n-3)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 29 2016
    
  • Maple
    a:= n-> (<<1|1|0|0>, <1|0|1|0>, <1|0|0|1>, <1|0|0|0>>^n)[1, 4]: seq(a(n), n=0..50); # Alois P. Heinz, Jun 12 2008
  • Mathematica
    CoefficientList[Series[x^3/(1-x-x^2-x^3-x^4), {x, 0, 50}], x]
    LinearRecurrence[{1,1,1,1}, {0,0,0,1}, 50]  (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
    (* From Eric W. Weisstein, Nov 09 2017 *)
    Table[RootSum[-1 -# -#^2 -#^3 +#^4 &, 10#^n +157#^(n+1) -103 #^(n+2) +16#^(n+3) &]/563, {n, 0, 40}]
    Table[RootSum[#^4 -#^3 -#^2 -# -1 &, #^(n-2)/(-#^3 +6# -1) &], {n, 0, 40}] (* End *)
  • Maxima
    a(n):=sum(sum(if mod(5*k-i,4)>0 then 0 else binomial(k,(5*k-i)/4)*(-1)^((i-k)/4)*binomial(n-i+k-1,k-1),i,k,n),k,1,n); /* Vladimir Kruchinin, Aug 18 2010 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( x^3 / (1 - x - x^2 - x^3 - x^4) + x * O(x^n), n))}
    
  • Python
    A000078 = [0,0,0,1]
    for n in range(4, 100):
        A000078.append(A000078[n-1]+A000078[n-2]+A000078[n-3]+A000078[n-4])
    # Chai Wah Wu, Aug 20 2014
    

Formula

a(n) = A001630(n) - a(n-1). - Henry Bottomley
G.f.: x^3/(1 - x - x^2 - x^3 - x^4). - Simon Plouffe in his 1992 dissertation
G.f.: x^3 / (1 - x / (1 - x / (1 + x^3 / (1 + x / (1 - x / (1 + x)))))). - Michael Somos, May 12 2012
G.f.: Sum_{n >= 0} x^(n+3) * (Product_{k = 1..n} (k + k*x + k*x^2 + x^3)/(1 + k*x + k*x^2 + k*x^3)). - Peter Bala, Jan 04 2015
a(n) = term (1,4) in the 4 X 4 matrix [1,1,0,0; 1,0,1,0; 1,0,0,1; 1,0,0,0]^n. - Alois P. Heinz, Jun 12 2008
Another form of the g.f.: f(z) = (z^3 - z^4)/(1 - 2*z + z^5), then a(n) = Sum_{i=0..floor((n-3)/5)} (-1)^i*binomial(n-3-4*i, i)*2^(n - 3 - 5*i) - Sum_{i=0..floor((n-4)/5)} (-1)^i*binomial(n-4-4*i, i)*2^(n - 4 - 5*i) with natural convention Sum_{i=m..n} alpha(i) = 0 for m > n. - Richard Choulet, Feb 22 2010
a(n+3) = Sum_{k=1..n} Sum_{i=k..n} [(5*k-i mod 4) = 0] * binomial(k, (5*k-i)/4) *(-1)^((i-k)/4) * binomial(n-i+k-1,k-1), n > 0. - Vladimir Kruchinin, Aug 18 2010 [Edited by Petros Hadjicostas, Jul 26 2020, so that the formula agrees with the offset of the sequence]
Sum_{k=0..3*n} a(k+b) * A008287(n,k) = a(4*n+b), b >= 0 ("quadrinomial transform"). - N. J. A. Sloane, Nov 10 2010
G.f.: x^3*(1 + x*(G(0)-1)/(x+1)) where G(k) = 1 + (1+x+x^2+x^3)/(1-x/(x+1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
Starting (1, 2, 4, 8, ...) = the INVERT transform of (1, 1, 1, 1, 0, 0, 0, ...). - Gary W. Adamson, May 13 2013
a(n) ~ c*r^n, where c = 0.079077767399388561146007... and r = 1.92756197548292530426195... = A086088 (One of the roots of the g.f. denominator polynomial is 1/r.). - Fung Lam, Apr 29 2014
a(n) = 2*a(n-1) - a(n-5), n >= 5. - Bob Selcoe, Jul 06 2014
From Ziqian Jin, Jul 28 2019: (Start)
a(2*n+5) = a(n+4)^2 + a(n+3)^2 + a(n+2)^2 + 2*a(n+3)*(a(n+2) + a(n+1)).
a(n) - 1 = a(n-2) + 2*a(n-3) + 3*(a(n-4) + a(n-5) + ... + a(2) + a(1)), n >= 4. (End)
a(n) = (Sum_{i=0..n-1} a(i)*A073817(n-i))/(n-3) for n > 3. - Greg Dresden and Advika Srivastava, Sep 28 2019
a(n) = Sum_{r root of x^4-x^3-x^2-x-1} r^n/(4*r^3-3*r^2-2*r-1). - Fabian Pereyra, Dec 06 2024

Extensions

Definition augmented (with 4 initial terms) by Daniel Forgues, Dec 02 2009
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
Previous Showing 71-80 of 401 results. Next