cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 190 results. Next

A309526 a(n) is the greatest divisor of A001353(n) that is coprime to A001353(m) for all positive integers m < n.

Original entry on oeis.org

1, 4, 15, 7, 209, 13, 2911, 97, 901, 181, 564719, 193, 7865521, 2521, 6989, 18817, 1525870529, 2701, 21252634831, 37441, 6779137, 489061, 4122901604639, 37633, 274758906449, 6811741, 6575588101, 1037623, 11140078609864049, 40321, 155161278879431551
Offset: 1

Views

Author

Jianing Song, Aug 06 2019

Keywords

Comments

Analog of A178763 and A308949.
Let b(n) = A309040(n)*gcd(A309040(n),n), then for n > 3: a(n) = b(2n) for even n and b(n)*b(2n) for odd n. It seems highly impossible that b(n) = 1 holds for n > 3, so it seems that only even-indexed terms can be primes.

Examples

			A001353(6) = 780 = 2^2 * 3 * 5 * 13. We have 2 divides A001353(2) = 2 and 3, 5 divides A001353(3) = 15, but A001353(m) is coprime to 13 for all 1 <= m < 6, so a(6) = 13.
		

Crossrefs

Programs

  • PARI
    T(n) = ([4, -1; 1, 0]^n)[2, 1]
    b(n) = my(v=divisors(n)); prod(i=1, #v, T(v[i])^moebius(n/v[i]))
    a(n) = if(isprime(n)&&!(12%n), b(n), b(n)/gcd(n, b(n)))

Formula

a(n) = A306825(n) / gcd(A306825(n), n) if n != 2, 3.

A007342 Erroneous version of A001353.

Original entry on oeis.org

1, 4, 15, 59, 209, 780
Offset: 1

Views

Author

Keywords

Comments

Included in accordance with OEIS policy of including published but erroneous sequences to serve as pointers to the correct versions.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence as Entry M3502).

A052209 b(n)*b(2*n), b(n) = A001353(n+1).

Original entry on oeis.org

4, 224, 11700, 608384, 31625044, 1643896800, 85451019364, 4441809150464, 230888624955300, 12001766689086944, 623860979209662484, 32428769152221187200, 1685672134936321275124, 87622522247536594107104
Offset: 0

Views

Author

Gary W. Adamson, Feb 01 2000

Keywords

Formula

G.f.: (-4x^2+4)/[(1-4x+x^2)(1-52x+x^2)].

A049310 Triangle of coefficients of Chebyshev's S(n,x) := U(n,x/2) polynomials (exponents in increasing order).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 1, 0, -3, 0, 1, 0, 3, 0, -4, 0, 1, -1, 0, 6, 0, -5, 0, 1, 0, -4, 0, 10, 0, -6, 0, 1, 1, 0, -10, 0, 15, 0, -7, 0, 1, 0, 5, 0, -20, 0, 21, 0, -8, 0, 1, -1, 0, 15, 0, -35, 0, 28, 0, -9, 0, 1, 0, -6, 0, 35, 0, -56, 0, 36, 0, -10, 0, 1, 1, 0, -21, 0, 70, 0, -84, 0
Offset: 0

Views

Author

Keywords

Comments

G.f. for row polynomials S(n,x) (signed triangle): 1/(1-x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,x) as row polynomials with g.f. 1/(1-x*z-z^2). |a(n,m)| triangle has rows of Pascal's triangle A007318 in the even-numbered diagonals (odd-numbered ones have only 0's).
Row sums (unsigned triangle) A000045(n+1) (Fibonacci). Row sums (signed triangle) S(n,1) sequence = periodic(1,1,0,-1,-1,0) = A010892.
Alternating row sums A049347(n) = S(n,-1) = periodic(1,-1,0). - Wolfdieter Lang, Nov 04 2011
S(n,x) is the characteristic polynomial of the adjacency matrix of the n-path. - Michael Somos, Jun 24 2002
S(n,x) is also the matching polynomial of the n-path. - Eric W. Weisstein, Apr 10 2017
|T(n,k)| = number of compositions of n+1 into k+1 odd parts. Example: |T(7,3)| = 10 because we have (1,1,3,3), (1,3,1,3), (1,3,3,1), (3,1,1,3), (3,1,3,1), (3,3,1,1), (1,1,1,5), (1,1,5,1), (1,5,1,1) and (5,1,1,1). - Emeric Deutsch, Apr 09 2005
S(n,x)= R(n,x) + S(n-2,x), n >= 2, S(-1,x)=0, S(0,x)=1, R(n,x):=2*T(n,x/2) = Sum_{m=0..n} A127672(n,m)*x^m (monic integer Chebyshev T-Polynomials). This is the rewritten so-called trace of the transfer matrix formula for the T-polynomials. - Wolfdieter Lang, Dec 02 2010
In a regular N-gon inscribed in a unit circle, the side length is d(N,1) = 2*sin(Pi/N). The length ratio R(N,k):=d(N,k)/d(N,1) for the (k-1)-th diagonal, with k from {2,3,...,floor(N/2)}, N >= 4, equals S(k-1,x) = sin(k*Pi/N)/sin(Pi/N) with x=rho(N):=R(N,2) = 2*cos(Pi/N). Example: N=7 (heptagon), rho=R(7,2), sigma:=R(N,3) = S(2,rho) = rho^2 - 1. Motivated by the quoted paper by P. Steinbach. - Wolfdieter Lang, Dec 02 2010
From Wolfdieter Lang, Jul 12 2011: (Start)
In q- or basic analysis, q-numbers are [n]_q := S(n-1,q+1/q) = (q^n-(1/q)^n)/(q-1/q), with the row polynomials S(n,x), n >= 0.
The zeros of the row polynomials S(n-1,x) are (from those of Chebyshev U-polynomials):
x(n-1;k) = +- t(k,rho(n)), k = 1..ceiling((n-1)/2), n >= 2, with t(n,x) the row polynomials of A127672 and rho(n):= 2*cos(Pi/n). The simple vanishing zero for even n appears here as +0 and -0.
Factorization of the row polynomials S(n-1,x), x >= 1, in terms of the minimal polynomials of cos(2 Pi/2), called Psi(n,x), with coefficients given by A181875/A181876:
S(n-1,x) = (2^(n-1))*Product_{n>=1}(Psi(d,x/2), 2 < d | 2n).
(From the rewritten eq. (3) of the Watkins and Zeitlin reference, given under A181872.) [See the W. Lang ArXiv link, Proposition 9, eq. (62). - Wolfdieter Lang, Apr 14 2018]
(End)
The discriminants of the S(n,x) polynomials are found in A127670. - Wolfdieter Lang, Aug 03 2011
This is an example for a subclass of Riordan convolution arrays (lower triangular matrices) called Bell arrays. See the L. W. Shapiro et al. reference under A007318. If a Riordan array is named (G(z),F(z)) with F(z)=z*Fhat(z), the o.g.f. for the row polynomials is G(z)/(1-x*z*Fhat(z)), and it becomes a Bell array if G(z)=Fhat(z). For the present Bell type triangle G(z)=1/(1+z^2) (see the o.g.f. comment above). This leads to the o.g.f. for the column no. k, k >= 0, x^k/(1+x^2)^(k+1) (see the formula section), the one for the row sums and for the alternating row sums (see comments above). The Riordan (Bell) A- and Z-sequences (defined in a W. Lang link under A006232, with references) have o.g.f.s 1-x*c(x^2) and -x*c(x^2), with the o.g.f. of the Catalan numbers A000108. Together they lead to a recurrence given in the formula section. - Wolfdieter Lang, Nov 04 2011
The determinant of the N x N matrix S(N,[x[1], ..., x[N]]) with elements S(m-1,x[n]), for n, m = 1, 2, ..., N, and for any x[n], is identical with the determinant of V(N,[x[1], ..., x[N]]) with elements x[n]^(m-1) (a Vandermondian, which equals Product_{1 <= i < j<= N} (x[j] - x[i])). This is a special instance of a theorem valid for any N >= 1 and any monic polynomial system p(m,x), m>=0, with p(0,x) = 1. For this theorem see the Vein-Dale reference, p. 59. Thanks to L. Edson Jeffery for an email asking for a proof of the non-singularity of the matrix S(N,[x[1], ...., x[N]]) if and only if the x[j], j = 1..N, are pairwise distinct. - Wolfdieter Lang, Aug 26 2013
These S polynomials also appear in the context of modular forms. The rescaled Hecke operator T*n = n^((1-k)/2)*T_n acting on modular forms of weight k satisfies T*(p^n) = S(n, T*p), for each prime p and positive integer n. See the Koecher-Krieg reference, p. 223. - _Wolfdieter Lang, Jan 22 2016
For a shifted o.g.f. (mod signs), its compositional inverse, and connections to Motzkin and Fibonacci polynomials, non-crossing partitions and other combinatorial structures, see A097610. - Tom Copeland, Jan 23 2016
From M. Sinan Kul, Jan 30 2016; edited by Wolfdieter Lang, Jan 31 2016 and Feb 01 2016: (Start)
Solutions of the Diophantine equation u^2 + v^2 - k*u*v = 1 for integer k given by (u(k,n), v(k,n)) = (S(n,k), S(n-1,k)) because of the Cassini-Simson identity: S(n,x)^2 - S(n+1,x)*S(n-1, x) = 1, after use of the S-recurrence. Note that S(-n, x) = -S(-n-2, x), n >= 1, and the periodicity of some S(n, k) sequences.
Hence another way to obtain the row polynomials would be to take powers of the matrix [x, -1; 1,0]: S(n, x) = (([x, -1; 1, 0])^n)[1,1], n >= 0.
See also a Feb 01 2016 comment on A115139 for a well-known S(n, x) sum formula.
Then we have with the present T triangle
A039834(n) = -i^(n+1)*T(n-1, k) where i is the imaginary unit and n >= 0.
A051286(n) = Sum_{i=0..n} T(n,i)^2 (see the Philippe Deléham, Nov 21 2005 formula),
A181545(n) = Sum_{i=0..n+1} abs(T(n,i)^3),
A181546(n) = Sum_{i=0..n+1} T(n,i)^4,
A181547(n) = Sum_{i=0..n+1} abs(T(n,i)^5).
S(n, 0) = A056594(n), and for k = 1..10 the sequences S(n-1, k) with offset n = 0 are A128834, A001477, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189.
(End)
For more on the Diophantine equation presented by Kul, see the Ismail paper. - Tom Copeland, Jan 31 2016
The o.g.f. for the Legendre polynomials L(n,x) is 1 / sqrt(1- 2x*z + z^2), and squaring it gives the o.g.f. of U(n,x), A053117, so Sum_{k=0..n} L(k,x/2) L(n-k,x/2) = S(n,x). This gives S(n,x) = L(n/2,x/2)^2 + 2*Sum_{k=0..n/2-1} L(k,x/2) L(n-k,x/2) for n even and S(n,x) = 2*Sum_{k=0..(n-1)/2} L(k,x/2) L(n-k,x/2) for odd n. For a connection to elliptic curves and modular forms, see A053117. For the normalized Legendre polynomials, see A100258. For other properties and relations to other polynomials, see Allouche et al. - Tom Copeland, Feb 04 2016
LG(x,h1,h2) = -log(1 - h1*x + h2*x^2) = Sum_{n>0} F(n,-h1,h2,0,..,0) x^n/n is a log series generator of the bivariate row polynomials of A127672 with A127672(0,0) = 0 and where F(n,b1,b2,..,bn) are the Faber polynomials of A263916. Exp(LG(x,h1,h2)) = 1 / (1 - h1*x + h2*x^2 ) is the o.g.f. of the bivariate row polynomials of this entry. - Tom Copeland, Feb 15 2016 (Instances of the bivariate o.g.f. for this entry are on pp. 5 and 18 of Sunada. - Tom Copeland, Jan 18 2021)
For distinct odd primes p and q the Legendre symbol can be written as Legendre(q,p) = Product_{k=1..P} S(q-1, 2*cos(2*Pi*k/p)), with P = (p-1)/2. See the Lemmermeyer reference, eq. (8.1) on p. 236. Using the zeros of S(q-1, x) (see above) one has S(q-1, x) = Product_{l=1..Q} (x^2 - (2*cos(Pi*l/q))^2), with Q = (q-1)/2. Thus S(q-1, 2*cos(2*Pi*k/p)) = ((-4)^Q)*Product_{l=1..Q} (sin^2(2*Pi*k/p) - sin^2(Pi*l/q)) = ((-4)^Q)*Product_{m=1..Q} (sin^2(2*Pi*k/p) - sin^2(2*Pi*m/q)). For the proof of the last equality see a W. Lang comment on the triangle A057059 for n = Q and an obvious function f. This leads to Eisenstein's proof of the quadratic reciprocity law Legendre(q,p) = ((-1)^(P*Q)) * Legendre(p,q), See the Lemmermeyer reference, pp. 236-237. - Wolfdieter Lang, Aug 28 2016
For connections to generalized Fibonacci polynomials, compare their generating function on p. 5 of the Amdeberhan et al. link with the o.g.f. given above for the bivariate row polynomials of this entry. - Tom Copeland, Jan 08 2017
The formula for Ramanujan's tau function (see A000594) for prime powers is tau(p^k) = p^(11*k/2)*S(k, p^(-11/2)*tau(p)) for k >= 1, and p = A000040(n), n >= 1. See the Hardy reference, p. 164, eqs. (10.3.4) and (10.3.6) rewritten in terms of S. - Wolfdieter Lang, Jan 27 2017
From Wolfdieter Lang, May 08 2017: (Start)
The number of zeros Z(n) of the S(n, x) polynomials in the open interval (-1,+1) is 2*b(n) for even n >= 0 and 1 + 2*b(n) for odd n >= 1, where b(n) = floor(n/2) - floor((n+1)/3). This b(n) is the number of integers k in the interval (n+1)/3 < k <= floor(n/2). See a comment on the zeros of S(n, x) above, and b(n) = A008615(n-2), n >= 0. The numbers Z(n) have been proposed (with a conjecture related to A008611) by Michel Lagneau, as the number of zeros of Fibonacci polynomials on the imaginary axis (-I,+I), with I=sqrt(-1). They are Z(n) = A008611(n-1), n >= 0, with A008611(-1) = 0. Also Z(n) = A194960(n-4), n >= 0. Proof using the A008611 version. A194960 follows from this.
In general the number of zeros Z(a;n) of S(n, x) for n >= 0 in the open interval (-a,+a) for a from the interval (0,2) (x >= 2 never has zeros, and a=0 is trivial: Z(0;n) = 0) is with b(a;n) = floor(n//2) - floor((n+1)*arccos(a/2)/Pi), as above Z(a;n) = 2*b(a;n) for even n >= 0 and 1 + 2*b(a;n) for odd n >= 1. For the closed interval [-a,+a] Z(0;n) = 1 and for a from (0,1) one uses for Z(a;n) the values b(a;n) = floor(n/2) - ceiling((n+1)*arccos(a/2)/Pi) + 1. (End)
The Riordan row polynomials S(n, x) (Chebyshev S) belong to the Boas-Buck class (see a comment and references in A046521), hence they satisfy the Boas-Buck identity: (E_x - n*1)*S(n, x) = (E_x + 1)*Sum_{p=0..n-1} (1 - (-1)^p)*(-1)^((p+1)/2)*S(n-1-p, x), for n >= 0, where E_x = x*d/dx (Euler operator). For the triangle T(n, k) this entails a recurrence for the sequence of column k, given in the formula section. - Wolfdieter Lang, Aug 11 2017
The e.g.f. E(x,t) := Sum_{n>=0} (t^n/n!)*S(n,x) for the row polynomials is obtained via inverse Laplace transformation from the above given o.g.f. as E(x,t) = ((1/xm)*exp(t/xm) - (1/xp)*exp(t/xp) )/(xp - xm) with xp = (x + sqrt(x^2-4))/2 and xm = (x - sqrt(x^2-4))/2. - Wolfdieter Lang, Nov 08 2017
From Wolfdieter Lang, Apr 12 2018: (Start)
Factorization of row polynomials S(n, x), for n >= 1, in terms of C polynomials (not Chebyshev C) with coefficients given in A187360. This is obtained from the factorization into Psi polynomials (see the Jul 12 2011 comment above) but written in terms of minimal polynomials of 2*cos(2*Pi/n) with coefficients in A232624:
S(2*k, x) = Product_{2 <= d | (2*k+1)} C(d, x)*(-1)^deg(d)*C(d, -x), with deg(d) = A055034(d) the degree of C(d, x).
S(2*k+1, x) = Product_{2 <= d | 2*(k+1)} C(d, x) * Product_{3 <= 2*d + 1 | (k+1)} (-1)^(deg(2*d+1))*C(2*d+1, -x).
Note that (-1)^(deg(2*d+1))*C(2*d+1, -x)*C(2*d+1, x) pairs always appear.
The number of C factors of S(2*k, x), for k >= 0, is 2*(tau(2*k+1) - 1) = 2*(A099774(k+1) - 1) = 2*A095374(k), and for S(2*k+1, x), for k >= 0, it is tau(2*(k+1)) + tau_{odd}(k+1) - 2 = A302707(k), with tau(2*k+1) = A099774(k+1), tau(n) = A000005 and tau(2*(k+1)) = A099777(k+1).
For the reverse problem, the factorization of C polynomials into S polynomials, see A255237. (End)
The S polynomials with general initial conditions S(a,b;n,x) = x*S(a,b;n-1,x) - S(a,b;n-2,x), for n >= 1, with S(a,b;-1,x) = a and S(a,b;0,x) = b are S(a,b;n,x) = b*S(n, x) - a*S(n-1, x), for n >= -1. Recall that S(-2, x) = -1 and S(-1, x) = 0. The o.g.f. is G(a,b;z,x) = (b - a*z)/(1 - x*z + z^2). - Wolfdieter Lang, Oct 18 2019
Also the convolution triangle of A101455. - Peter Luschny, Oct 06 2022
From Wolfdieter Lang, Apr 26 2023: (Start)
Multi-section of S-polynomials: S(m*n+k, x) = S(m+k, x)*S(n-1, R(m, x)) - S(k, x)*S(n-2, R(m, x)), with R(n, x) = S(n, x) - S(n-2, x) (see A127672), S(-2, x) = -1, and S(-1, x) = 0, for n >= 0, m >= 1, and k = 0, 1, ..., m-1.
O.g.f. of {S(m*n+k, y)}_{n>=0}: G(m,k,y,x) = (S(k, y) - (S(k, y)*R(m, y) - S(m+k, y))*x)/(1 - R(m,y)*x + x^2).
See eqs. (40) and (49), with r = x or y and s =-1, of the G. Detlefs and W. Lang link at A034807. (End)
S(n, x) for complex n and complex x: S(n, x) = ((-i/2)/sqrt(1 - (x/2)^2))*(q(x/2)*exp(+n*log(q(x/2))) - (1/q(x/2))*exp(-n*log(q(x/2)))), with q(x) = x + sqrt(1 - x^2)*i. Here log(z) = |z| + Arg(z)*i, with Arg(z) from [-Pi,+Pi) (principal branch). This satisfies the recurrence relation for S because it is derived from the Binet - de Moivre formula for S. Examples: S(n/m, 0) = cos((n/m)*Pi/4), for n >= 0 and m >= 1. S(n*i, 0) = (1/2)*(1 + exp(n*Pi))*exp(-(n/2)*Pi), for n >= 0. S(1+i, 2+i) = 0.6397424847... + 1.0355669490...*i. Thanks to Roberto Alfano for asking a question leading to this formula. - Wolfdieter Lang, Jun 05 2023
Lim_{n->oo} S(n, x)/S(n-1, x) = r(x) = (x - sqrt(x^2 -4))/2, for |x| >= 2. For x = +-2, this limit is +-1. - Wolfdieter Lang, Nov 15 2023

Examples

			The triangle T(n, k) begins:
  n\k  0  1   2   3   4   5   6    7   8   9  10  11
  0:   1
  1:   0  1
  2:  -1  0   1
  3:   0 -2   0   1
  4:   1  0  -3   0   1
  5:   0  3   0  -4   0   1
  6:  -1  0   6   0  -5   0   1
  7:   0 -4   0  10   0  -6   0    1
  8:   1  0 -10   0  15   0  -7    0   1
  9:   0  5   0 -20   0  21   0   -8   0   1
  10: -1  0  15   0 -35   0  28    0  -9   0   1
  11:  0 -6   0  35   0 -56   0   36   0 -10   0   1
  ... Reformatted and extended by _Wolfdieter Lang_, Oct 24 2012
For more rows see the link.
E.g., fourth row {0,-2,0,1} corresponds to polynomial S(3,x)= -2*x + x^3.
From _Wolfdieter Lang_, Jul 12 2011: (Start)
Zeros of S(3,x) with rho(4)= 2*cos(Pi/4) = sqrt(2):
  +- t(1,sqrt(2)) = +- sqrt(2) and
  +- t(2,sqrt(2)) = +- 0.
Factorization of S(3,x) in terms of Psi polynomials:
S(3,x) = (2^3)*Psi(4,x/2)*Psi(8,x/2) = x*(x^2-2).
(End)
From _Wolfdieter Lang_, Nov 04 2011: (Start)
A- and Z- sequence recurrence:
T(4,0) = - (C(0)*T(3,1) + C(1)*T(3,3)) = -(-2 + 1) = +1,
T(5,3) = -3 - 1*1 = -4.
(End)
Boas-Buck recurrence for column k = 2, n = 6: S(6, 2) = (3/4)*(0 - 2* S(4 ,2) + 0 + 2*S(2, 2)) = (3/4)*(-2*(-3) + 2) = 6. - _Wolfdieter Lang_, Aug 11 2017
From _Wolfdieter Lang_, Apr 12 2018: (Start)
Factorization into C polynomials (see the Apr 12 2018 comment):
S(4, x) = 1 - 3*x^2 + x^4 = (-1 + x + x^2)*(-1 - x + x^2) = (-C(5, -x)) * C(5, x); the number of factors is 2 = 2*A095374(2).
S(5, x) = 3*x - 4*x^3 + x^5 = x*(-1 + x)*(1 + x)*(-3 + x^2) = C(2, x)*C(3, x)*(-C(3, -x))*C(6, x); the number of factors is 4 = A302707(2). (End)
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 164.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, p. 223.
  • Franz Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer, 2000.
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990, pp. 60 - 61.
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Cf. A000005, A000217, A000292, A000332, A000389, A001227, A007318, A008611, A008615, A101455, A010892, A011973, A053112 (without zeros), A053117, A053119 (reflection), A053121 (inverse triangle), A055034, A097610, A099774, A099777, A100258, A112552 (first column clipped), A127672, A168561 (absolute values), A187360. A194960, A232624, A255237.
Triangles of coefficients of Chebyshev's S(n,x+k) for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967.

Programs

  • Magma
    A049310:= func< n,k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >;
    [A049310(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
  • Maple
    A049310 := proc(n,k): binomial((n+k)/2,(n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2 end: seq(seq(A049310(n,k), k=0..n),n=0..11); # Johannes W. Meijer, Aug 08 2011
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 06 2022
  • Mathematica
    t[n_, k_] /; EvenQ[n+k] = ((-1)^((n+k)/2+k))*Binomial[(n+k)/2, k]; t[n_, k_] /; OddQ[n+k] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]][[;; 86]] (* Jean-François Alcover, Jul 05 2011 *)
    Table[Coefficient[(-I)^n Fibonacci[n + 1, - I x], x, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Clark Kimberling, Aug 02 2011; corrected by Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[ChebyshevU[Range[0, 10], -x/2], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[Table[(-I)^n Fibonacci[n + 1, -I x], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
  • PARI
    {T(n, k) = if( k<0 || k>n || (n + k)%2, 0, (-1)^((n + k)/2 + k) * binomial((n + k)/2, k))} /* Michael Somos, Jun 24 2002 */
    
  • SageMath
    @CachedFunction
    def A049310(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A049310(n-1,k-1) - A049310(n-2,k)
    for n in (0..9): [A049310(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    

Formula

T(n,k) := 0 if n < k or n+k odd, otherwise ((-1)^((n+k)/2+k))*binomial((n+k)/2, k); T(n, k) = -T(n-2, k)+T(n-1, k-1), T(n, -1) := 0 =: T(-1, k), T(0, 0)=1, T(n, k)= 0 if n < k or n+k odd; g.f. k-th column: (1 / (1 + x^2)^(k + 1)) * x^k. - Michael Somos, Jun 24 2002
T(n,k) = binomial((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Aug 28 2005
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Nov 21 2005
Recurrence for the (unsigned) Fibonacci polynomials: F(1)=1, F(2)=x; for n > 2, F(n) = x*F(n-1) + F(n-2).
From Wolfdieter Lang, Nov 04 2011: (Start)
The Riordan A- and Z-sequences, given in a comment above, lead together to the recurrence:
T(n,k) = 0 if n < k, if k=0 then T(0,0)=1 and
T(n,0)= -Sum_{i=0..floor((n-1)/2)} C(i)*T(n-1,2*i+1), otherwise T(n,k) = T(n-1,k-1) - Sum_{i=1..floor((n-k)/2)} C(i)*T(n-1,k-1+2*i), with the Catalan numbers C(n)=A000108(n).
(End)
The row polynomials satisfy also S(n,x) = 2*(T(n+2, x/2) - T(n, x/2))/(x^2-4) with the Chebyshev T-polynomials. Proof: Use the trace formula 2*T(n, x/2) = S(n, x) - S(n-2, x) (see the Dec 02 2010 comment above) and the S-recurrence several times. This is a formula which expresses the S- in terms of the T-polynomials. - Wolfdieter Lang, Aug 07 2014
From Tom Copeland, Dec 06 2015: (Start)
The non-vanishing, unsigned subdiagonals Diag_(2n) contain the elements D(n,k) = Sum_{j=0..k} D(n-1,j) = (k+1) (k+2) ... (k+n) / n! = binomial(n+k,n), so the o.g.f. for the subdiagonal is (1-x)^(-(n+1)). E.g., Diag_4 contains D(2,3) = D(1,0) + D(1,1) + D(1,2) + D(1,3) = 1 + 2 + 3 + 4 = 10 = binomial(5,2). Diag_4 is shifted A000217; Diag_6, shifted A000292: Diag_8, shifted A000332; and Diag_10, A000389.
The non-vanishing antidiagonals are signed rows of the Pascal triangle A007318.
For a reversed, unsigned version with the zeros removed, see A011973. (End)
The Boas-Buck recurrence (see a comment above) for the sequence of column k is: S(n, k) = ((k+1)/(n-k))*Sum_{p=0..n-1-k} (1 - (-1)^p)*(-1)^((p+1)/2) * S(n-1-p, k), for n > k >= 0 and input S(k, k) = 1. - Wolfdieter Lang, Aug 11 2017
The m-th row consecutive nonzero entries in order are (-1)^c*(c+b)!/c!b! with c = m/2, m/2-1, ..., 0 and b = m-2c if m is even and with c = (m-1)/2, (m-1)/2-1, ..., 0 with b = m-2c if m is odd. For the 8th row starting at a(36) the 5 consecutive nonzero entries in order are 1,-10,15,-7,1 given by c = 4,3,2,1,0 and b = 0,2,4,6,8. - Richard Turk, Aug 20 2017
O.g.f.: exp( Sum_{n >= 0} 2*T(n,x/2)*t^n/n ) = 1 + x*t + (-1 + x^2)*t^2 + (-2*x + x^3)*t^3 + (1 - 3*x^2 + x^4)*t^4 + ..., where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Aug 15 2022

A001109 a(n)^2 is a triangular number: a(n) = 6*a(n-1) - a(n-2) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214, 46611179, 271669860, 1583407981, 9228778026, 53789260175, 313506783024, 1827251437969, 10650001844790, 62072759630771, 361786555939836, 2108646576008245, 12290092900109634, 71631910824649559, 417501372047787720
Offset: 0

Views

Author

Keywords

Comments

8*a(n)^2 + 1 = 8*A001110(n) + 1 = A055792(n+1) is a perfect square. - Gregory V. Richardson, Oct 05 2002
For n >= 2, A001108(n) gives exactly the positive integers m such that 1,2,...,m has a perfect median. The sequence of associated perfect medians is the present sequence. Let a_1,...,a_m be an (ordered) sequence of real numbers, then a term a_k is a perfect median if Sum_{j=1..k-1} a_j = Sum_{j=k+1..m} a_j. See Puzzle 1 in MSRI Emissary, Fall 2005. - Asher Auel, Jan 12 2006
(a(n), b(n)) where b(n) = A082291(n) are the integer solutions of the equation 2*binomial(b,a) = binomial(b+2,a). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de); comment revised by Michael Somos, Apr 07 2003
This sequence gives the values of y in solutions of the Diophantine equation x^2 - 8y^2 = 1. It also gives the values of the product xy where (x,y) satisfies x^2 - 2y^2 = +-1, i.e., a(n) = A001333(n)*A000129(n). a(n) also gives the inradius r of primitive Pythagorean triangles having legs whose lengths are consecutive integers, with corresponding semiperimeter s = a(n+1) = {A001652(n) + A046090(n) + A001653(n)}/2 and area rs = A029549(n) = 6*A029546(n). - Lekraj Beedassy, Apr 23 2003 [edited by Jon E. Schoenfield, May 04 2014]
n such that 8*n^2 = floor(sqrt(8)*n*ceiling(sqrt(8)*n)). - Benoit Cloitre, May 10 2003
For n > 0, ratios a(n+1)/a(n) may be obtained as convergents to continued fraction expansion of 3+sqrt(8): either successive convergents of [6;-6] or odd convergents of [5;1, 4]. - Lekraj Beedassy, Sep 09 2003
a(n+1) + A053141(n) = A001108(n+1). Generating floretion: - 2'i + 2'j - 'k + i' + j' - k' + 2'ii' - 'jj' - 2'kk' + 'ij' + 'ik' + 'ji' + 'jk' - 2'kj' + 2e ("jes" series). - Creighton Dement, Dec 16 2004
Kekulé numbers for certain benzenoids (see the Cyvin-Gutman reference). - Emeric Deutsch, Jun 19 2005
Number of D steps on the line y=x in all Delannoy paths of length n (a Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1)). Example: a(2)=6 because in the 13 (=A001850(2)) Delannoy paths of length 2, namely (DD), (D)NE, (D)EN, NE(D), NENE, NEEN, NDE, NNEE, EN(D), ENNE, ENEN, EDN and EENN, we have altogether six D steps on the line y=x (shown between parentheses). - Emeric Deutsch, Jul 07 2005
Define a T-circle to be a first-quadrant circle with integral radius that is tangent to the x- and y-axes. Such a circle has coordinates equal to its radius. Let C(0) be the T-circle with radius 1. Then for n > 0, define C(n) to be the smallest T-circle that does not intersect C(n-1). C(n) has radius a(n+1). Cf. A001653. - Charlie Marion, Sep 14 2005
Numbers such that there is an m with t(n+m)=2t(m), where t(n) are the triangular numbers A000217. For instance, t(20)=2*t(14)=210, so 6 is in the sequence. - Floor van Lamoen, Oct 13 2005
One half the bisection of the Pell numbers (A000129). - Franklin T. Adams-Watters, Jan 08 2006
Pell trapezoids: for n > 0, a(n) = (A000129(n-1)+A000129(n+1))*A000129(n)/2; see also A084158. - Charlie Marion, Apr 01 2006
Tested for 2 < p < 27: If and only if 2^p - 1 (the Mersenne number M(p)) is prime then M(p) divides a(2^(p-1)). - Kenneth J Ramsey, May 16 2006
If 2^p - 1 is prime then M(p) divides a(2^(p-1)-1). - Kenneth J Ramsey, Jun 08 2006; comment corrected by Robert Israel, Mar 18 2007
If 8*n+5 and 8*n+7 are twin primes then their product divides a(4*n+3). - Kenneth J Ramsey, Jun 08 2006
If p is an odd prime, then if p == 1 or 7 (mod 8), then a((p-1)/2) == 0 (mod p) and a((p+1)/2) == 1 (mod p); if p == 3 or 5 (mod 8), then a((p-1)/2) == 1 (mod p) and a((p+1)/2) == 0 (mod p). Kenneth J Ramsey's comment about twin primes follows from this. - Robert Israel, Mar 18 2007
a(n)*(a(n+b) - a(b-2)) = (a(n+1)+1)*(a(n+b-1) - a(b-1)). This identity also applies to any series a(0) = 0 a(1) = 1 a(n) = b*a(n-1) - a(n-2). - Kenneth J Ramsey, Oct 17 2007
For n < 0, let a(n) = -a(-n). Then (a(n+j) + a(k+j)) * (a(n+b+k+j) - a(b-j-2)) = (a(n+j+1) + a(k+j+1)) * (a(n+b+k+j-1) - a(b-j-1)). - Charlie Marion, Mar 04 2011
Sequence gives y values of the Diophantine equation: 0+1+2+...+x = y^2. If (a,b) and (c,d) are two consecutive solutions of the Diophantine equation: 0+1+2+...+x = y^2 with aMohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: 0+1+2+...+x = y^2 with p < r then r = 3*p+4*q+1 and s = 2*p+3*q+1. - Mohamed Bouhamida, Sep 02 2009
a(n)/A002315(n) converges to cos^2(Pi/8) (see A201488). - Gary Detlefs, Nov 25 2009
Binomial transform of A086347. - Johannes W. Meijer, Aug 01 2010
If x=a(n), y=A055997(n+1) and z = x^2+y, then x^4 + y^3 = z^2. - Bruno Berselli, Aug 24 2010
In general, if b(0)=1, b(1)=k and for n > 1, b(n) = 6*b(n-1) - b(n-2), then
for n > 0, b(n) = a(n)*k-a(n-1); e.g.,
for k=2, when b(n) = A038725(n), 2 = 1*2 - 0, 11 = 6*2 - 1, 64 = 35*2 - 6, 373 = 204*2 - 35;
for k=3, when b(n) = A001541(n), 3 = 1*3 - 0, 17 = 6*3 - 1; 99 = 35*3 - 6; 577 = 204*3 - 35;
for k=4, when b(n) = A038723(n), 4 = 1*4 - 0, 23 = 6*4 - 1; 134 = 35*4 - 6; 781 = 204*4 - 35;
for k=5, when b(n) = A001653(n), 5 = 1*5 - 0, 29 = 6*5 - 1; 169 = 35*5 - 6; 985 = 204*5 - 35.
- Charlie Marion, Dec 08 2010
See a Wolfdieter Lang comment on A001653 on a sequence of (u,v) values for Pythagorean triples (x,y,z) with x=|u^2-v^2|, y=2*u*v and z=u^2+v^2, with u odd and v even, generated from (u(0)=1,v(0)=2), the triple (3,4,5), by a substitution rule given there. The present a(n) appears there as b(n). The corresponding generated triangles have catheti differing by one length unit. - Wolfdieter Lang, Mar 06 2012
a(n)*a(n+2k) + a(k)^2 and a(n)*a(n+2k+1) + a(k)*a(k+1) are triangular numbers. Generalizes description of sequence. - Charlie Marion, Dec 03 2012
a(n)*a(n+2k) + a(k)^2 is the triangular square A001110(n+k). a(n)*a(n+2k+1) + a(k)*a(k+1) is the triangular oblong A029549(n+k). - Charlie Marion, Dec 05 2012
From Richard R. Forberg, Aug 30 2013: (Start)
The squares of a(n) are the result of applying triangular arithmetic to the squares, using A001333 as the "guide" on what integers to square, as follows:
a(2n)^2 = A001333(2n)^2 * (A001333(2n)^2 - 1)/2;
a(2n+1)^2 = A001333(2n+1)^2 * (A001333(2n+1)^2 + 1)/2. (End)
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,5}. - Milan Janjic, Jan 25 2015
Panda and Rout call these "balancing numbers" and note that the period of the sequence modulo a prime p is the same as that modulo p^2 when p = 13, 31, 1546463. But these are precisely the p in A238736 such that p^2 divides A000129(p - (2/p)), where (2/p) is a Jacobi symbol. In light of the above observation by Franklin T. Adams-Watters that the present sequence is one half the bisection of the Pell numbers, i.e., a(n) = A000129(2*n)/2, it follows immediately that modulo a fixed prime p, or any power thereof, the period of a(n) is half that of A000129(n). - John Blythe Dobson, Mar 06 2015
The triangular number = square number identity Tri((T(n, 3) - 1)/2) = S(n-1, 6)^2 with Tri, T, and S given in A000217, A053120 and A049310, is the special case k = 1 of the k-family of identities Tri((T(n, 2*k+1) - 1)/2) = Tri(k)*S(n-1, 2*(2*k+1))^2, k >= 0, n >= 0, with S(-1, x) = 0. For k=2 see A108741(n) for S(n-1, 10)^2. This identity boils down to the identities S(n-1, 2*x)^2 = (T(2*n, x) - 1)/(2*(x^2-1)) and 2*T(n, x)^2 - 1 = T(2*n, x) with x = 2*k+1. - Wolfdieter Lang, Feb 01 2016
a(2)=6 is perfect. For n=2*k, k > 0, k not equal to 1, a(n) is a multiple of a(2) and since every multiple (beyond 1) of a perfect number is abundant, then a(n) is abundant. sigma(a(4)) = 504 > 408 = 2*a(4). For n=2*k+1, k > 0, a(n) mod 10 = A000012(n), so a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. So for n=2k+1, k > 0, a(n) is deficient. sigma(a(5)) = 1260 < 2378 = 2*a(5). - Muniru A Asiru, Apr 14 2016
Behera & Panda call these the balancing numbers, and A001541 are the balancers. - Michel Marcus, Nov 07 2017
In general, a second-order linear recurrence with constant coefficients having a signature of (c,d) will be duplicated by a third-order recurrence having a signature of (x,c^2-c*x+d,-d*x+c*d). The formulas of Olivares and Bouhamida in the formula section which have signatures of (7,-7,1) and (5,5,-1), respectively, are specific instances of this general rule for x = 7 and x = 5. - Gary Detlefs, Jan 29 2021
Note that 6 is the largest triangular number in the sequence, because it is proved that 8 and 9 are the largest perfect powers which are consecutive (Catalan's conjecture). 0 and 1 are also in the sequence because they are also perfect powers and 0*1/2 = 0^2 and 8*9/2 = (2*3)^2. - Metin Sariyar, Jul 15 2021

Examples

			G.f. = x + 6*x^2 + 35*x^3 + 204*x^4 + 1189*x^5 + 6930*x^6 + 40391*x^7 + ...
6 is in the sequence since 6^2 = 36 is a triangular number: 36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8. - _Michael B. Porter_, Jul 02 2016
		

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, pp. 193, 197.
  • D. M. Burton, The History of Mathematics, McGraw Hill, (1991), p. 213.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 10.
  • P. Franklin, E. F. Beckenbach, H. S. M Coxeter, N. H. McCoy, K. Menger, and J. L. Synge, Rings And Ideals, No 8, The Carus Mathematical Monographs, The Mathematical Association of America, (1967), pp. 144-146.
  • A. Patra, G. K. Panda, and T. Khemaratchatakumthorn. "Exact divisibility by powers of the balancing and Lucas-balancing numbers." Fibonacci Quart., 59:1 (2021), 57-64; see B(n).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), this sequence (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    a:=[0,1];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Dec 18 2018
  • Haskell
    a001109 n = a001109_list !! n :: Integer
    a001109_list = 0 : 1 : zipWith (-)
       (map (* 6) $ tail a001109_list) a001109_list
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Magma
    [n le 2 select n-1 else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 25 2015
    
  • Maple
    a[0]:=1: a[1]:=6: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n],n=0..26); # Emeric Deutsch
    with (combinat):seq(fibonacci(2*n,2)/2, n=0..20); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{-1,6},#]}]&, {0,1}, 30]][[1]]  (* Harvey P. Dale, Mar 23 2011 *)
    CoefficientList[Series[x/(1-6x+x^2),{x,0,30}],x]  (* Harvey P. Dale, Mar 23 2011 *)
    LinearRecurrence[{6, -1}, {0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
    a[ n_]:= ChebyshevU[n-1, 3]; (* Michael Somos, Sep 02 2012 *)
    Table[Fibonacci[2n, 2]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
    TrigExpand@Table[Sinh[2 n ArcCsch[1]]/(2 Sqrt[2]), {n, 0, 10}] (* Federico Provvedi, Feb 01 2021 *)
  • PARI
    {a(n) = imag((3 + quadgen(32))^n)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = subst( poltchebi( abs(n+1)) - 3 * poltchebi( abs(n)), x, 3) / 8}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = polchebyshev( n-1, 2, 3)}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    is(n)=ispolygonal(n^2,3) \\ Charles R Greathouse IV, Nov 03 2016
    
  • Sage
    [lucas_number1(n,6,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n-1,3) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: x / (1 - 6*x + x^2). - Simon Plouffe in his 1992 dissertation.
a(n) = S(n-1, 6) = U(n-1, 3) with U(n, x) Chebyshev's polynomials of the second kind. S(-1, x) := 0. Cf. triangle A049310 for S(n, x).
a(n) = sqrt(A001110(n)).
a(n) = A001542(n)/2.
a(n) = sqrt((A001541(n)^2-1)/8) (cf. Richardson comment).
a(n) = 3*a(n-1) + sqrt(8*a(n-1)^2+1). - R. J. Mathar, Oct 09 2000
a(n) = A000129(n)*A001333(n) = A000129(n)*(A000129(n)+A000129(n-1)) = ceiling(A001108(n)/sqrt(2)). - Henry Bottomley, Apr 19 2000
a(n) ~ (1/8)*sqrt(2)*(sqrt(2) + 1)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 05 2002
a(n) = ((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n) / (4*sqrt(2)). - Gregory V. Richardson, Oct 13 2002. Corrected for offset 0, and rewritten. - Wolfdieter Lang, Feb 10 2015
a(2*n) = a(n)*A003499(n). 4*a(n) = A005319(n). - Mario Catalani (mario.catalani(AT)unito.it), Mar 21 2003
a(n) = floor((3+2*sqrt(2))^n/(4*sqrt(2))). - Lekraj Beedassy, Apr 23 2003
a(-n) = -a(n). - Michael Somos, Apr 07 2003
For n >= 1, a(n) = Sum_{k=0..n-1} A001653(k). - Charlie Marion, Jul 01 2003
For n > 0, 4*a(2*n) = A001653(n)^2 - A001653(n-1)^2. - Charlie Marion, Jul 16 2003
For n > 0, a(n) = Sum_{k = 0..n-1}((2*k+1)*A001652(n-1-k)) + A000217(n). - Charlie Marion, Jul 18 2003
a(2*n+1) = a(n+1)^2 - a(n)^2. - Charlie Marion, Jan 12 2004
a(k)*a(2*n+k) = a(n+k)^2 - a(n)^2; e.g., 204*7997214 = 40391^2 - 35^2. - Charlie Marion, Jan 15 2004
For j < n+1, a(k+j)*a(2*n+k-j) - Sum_{i = 0..j-1} a(2*n-(2*i+1)) = a(n+k)^2 - a(n)^2. - Charlie Marion, Jan 18 2004
From Paul Barry, Feb 06 2004: (Start)
a(n) = A000129(2*n)/2;
a(n) = ((1+sqrt(2))^(2*n) - (1-sqrt(2))^(2*n))*sqrt(2)/8;
a(n) = Sum_{i=0..n} Sum_{j=0..n} A000129(i+j)*n!/(i!*j!*(n-i-j)!)/2. (End)
E.g.f.: exp(3*x)*sinh(2*sqrt(2)*x)/(2*sqrt(2)). - Paul Barry, Apr 21 2004
A053141(n+1) + A055997(n+1) = A001541(n+1) + a(n+1). - Creighton Dement, Sep 16 2004
a(n) = Sum_{k=0..n} binomial(2*n, 2*k+1)*2^(k-1). - Paul Barry, Oct 01 2004
a(n) = A001653(n+1) - A038723(n); (a(n)) = chuseq[J]( 'ii' + 'jj' + .5'kk' + 'ij' - 'ji' + 2.5e ), apart from initial term. - Creighton Dement, Nov 19 2004, modified by Davide Colazingari, Jun 24 2016
a(n+1) = Sum_{k=0..n} A001850(k)*A001850(n-k), self convolution of central Delannoy numbers. - Benoit Cloitre, Sep 28 2005
a(n) = 7*(a(n-1) - a(n-2)) + a(n-3), a(1) = 0, a(2) = 1, a(3) = 6, n > 3. Also a(n) = ( (1 + sqrt(2) )^(2*n) - (1 - sqrt(2) )^(2*n) ) / (4*sqrt(2)). - Antonio Alberto Olivares, Oct 23 2003
a(n) = 5*(a(n-1) + a(n-2)) - a(n-3). - Mohamed Bouhamida, Sep 20 2006
Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(a(n-1),3), see second formula. - Marcos Carreira, Dec 27 2006
The perfect median m(n) can be expressed in terms of the Pell numbers P() = A000129() by m(n) = P(n + 2) * (P(n + 2) + P(n + 1)) for n >= 0. - Winston A. Richards (ugu(AT)psu.edu), Jun 11 2007
For k = 0..n, a(2*n-k) - a(k) = 2*a(n-k)*A001541(n). Also, a(2*n+1-k) - a(k) = A002315(n-k)*A001653(n). - Charlie Marion, Jul 18 2007
[A001653(n), a(n)] = [1,4; 1,5]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = Sum_{k=0..n-1} 4^k*binomial(n+k,2*k+1). - Paul Barry, Apr 20 2009
a(n+1)^2 - 6*a(n+1)*a(n) + a(n)^2 = 1. - Charlie Marion, Dec 14 2010
a(n) = A002315(m)*A011900(n-m-1) + A001653(m)*A001652(n-m-1) - a(m) = A002315(m)*A053141(n-m-1) + A001653(m)*A046090(n-m-1) + a(m) with m < n; otherwise a(n) = A002315(m)*A053141(m-n) - A001653(m)*A011900(m-n) + a(m) = A002315(m)*A053141(m-n) - A001653(m)*A046090(m-n) - a(m) = (A002315(n) - A001653(n))/2. - Kenneth J Ramsey, Oct 12 2011
16*a(n)^2 + 1 = A056771(n). - James R. Buddenhagen, Dec 09 2011
A010054(A000290(a(n))) = 1. - Reinhard Zumkeller, Dec 17 2011
In general, a(n+k)^2 - A003499(k)*a(n+k)*a(n) + a(n)^2 = a(k)^2. - Charlie Marion, Jan 11 2012
a(n+1) = Sum_{k=0..n} A101950(n,k)*5^k. - Philippe Deléham, Feb 10 2012
PSUM transform of a(n+1) is A053142. PSUMSIGN transform of a(n+1) is A084158. BINOMIAL transform of a(n+1) is A164591. BINOMIAL transform of A086347 is a(n+1). BINOMIAL transform of A057087(n-1). - Michael Somos, May 11 2012
a(n+k) = A001541(k)*a(n) + sqrt(A132592(k)*a(n)^2 + a(k)^2). Generalizes formula dated Oct 09 2000. - Charlie Marion, Nov 27 2012
a(n) + a(n+2*k) = A003499(k)*a(n+k); a(n) + a(n+2*k+1) = A001653(k+1)*A002315(n+k). - Charlie Marion, Nov 29 2012
From Peter Bala, Dec 23 2012: (Start)
Product_{n >= 1} (1 + 1/a(n)) = 1 + sqrt(2).
Product_{n >= 2} (1 - 1/a(n)) = (1/3)*(1 + sqrt(2)). (End)
G.f.: G(0)*x/(2-6*x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
G.f.: H(0)*x/2, where H(k) = 1 + 1/( 1 - x*(6-x)/(x*(6-x) + 1/H(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 18 2014
a(n) = (a(n-1)^2 - a(n-3)^2)/a(n-2) + a(n-4) for n > 3. - Patrick J. McNab, Jul 24 2015
a(n-k)*a(n+k) + a(k)^2 = a(n)^2, a(n+k) + a(n-k) = A003499(k)*a(n), for n >= k >= 0. - Alexander Samokrutov, Sep 30 2015
Dirichlet g.f.: (PolyLog(s,3+2*sqrt(2)) - PolyLog(s,3-2*sqrt(2)))/(4*sqrt(2)). - Ilya Gutkovskiy, Jun 27 2016
4*a(n)^2 - 1 = A278310(n) for n > 0. - Bruno Berselli, Nov 24 2016
From Klaus Purath, Jan 18 2020: (Start)
a(n) = (a(n-3) + a(n+3))/198.
a(n) = Sum_{i=1..n} A001653(i), n>=1.
a(n) = sinh( 2 * n * arccsch(1) ) / ( 2 * sqrt(2) ). - Federico Provvedi, Feb 01 2021
(End)
a(n) = A002965(2*n)*A002965(2*n+1). - Jon E. Schoenfield, Jan 08 2022
a(n) = A002965(4*n)/2. - Gerry Martens, Jul 14 2023
a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1)*binomial(n+k, 2*k+1)*8^k. - Peter Bala, Jul 17 2023

Extensions

Additional comments from Wolfdieter Lang, Feb 10 2000
Duplication of a formula removed by Wolfdieter Lang, Feb 10 2015

A001075 a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - a(n-2).

Original entry on oeis.org

1, 2, 7, 26, 97, 362, 1351, 5042, 18817, 70226, 262087, 978122, 3650401, 13623482, 50843527, 189750626, 708158977, 2642885282, 9863382151, 36810643322, 137379191137, 512706121226, 1913445293767, 7141075053842, 26650854921601, 99462344632562, 371198523608647
Offset: 0

Views

Author

Keywords

Comments

Chebyshev's T(n,x) polynomials evaluated at x=2.
x = 2^n - 1 is prime if and only if x divides a(2^(n-2)).
Any k in the sequence is succeeded by 2*k + sqrt{3*(k^2 - 1)}. - Lekraj Beedassy, Jun 28 2002
For all elements x of the sequence, 12*x^2 - 12 is a square. Lim_{n -> infinity} a(n)/a(n-1) = 2 + sqrt(3) = (4 + sqrt(12))/2 which preserves the kinship with the equation "12*x^2 - 12 is a square" where the initial "12" ends up appearing as a square root. - Gregory V. Richardson, Oct 10 2002
This sequence gives the values of x in solutions of the Diophantine equation x^2 - 3*y^2 = 1; the corresponding values of y are in A001353. The solution ratios a(n)/A001353(n) are obtained as convergents of the continued fraction expansion of sqrt(3): either as successive convergents of [2;-4] or as odd convergents of [1;1,2]. - Lekraj Beedassy, Sep 19 2003 [edited by Jon E. Schoenfield, May 04 2014]
a(n) is half the central value in a list of three consecutive integers, the lengths of the sides of a triangle with integer sides and area. - Eugene McDonnell (eemcd(AT)mac.com), Oct 19 2003
a(3+6*k) - 1 and a(3+6*k) + 1 are consecutive odd powerful numbers. See A076445. - T. D. Noe, May 04 2006
The intermediate convergents to 3^(1/2), beginning with 3/2, 12/7, 45/26, 168/97, comprise a strictly increasing sequence; essentially, numerators=A005320, denominators=A001075. - Clark Kimberling, Aug 27 2008
The upper principal convergents to 3^(1/2), beginning with 2/1, 7/4, 26/15, 97/56, comprise a strictly decreasing sequence; numerators=A001075, denominators=A001353. - Clark Kimberling, Aug 27 2008
a(n+1) is the Hankel transform of A000108(n) + A000984(n) = (n+2)*Catalan(n). - Paul Barry, Aug 11 2009
Also, numbers such that floor(a(n)^2/3) is a square: base 3 analog of A031149, A204502, A204514, A204516, A204518, A204520, A004275, A001541. - M. F. Hasler, Jan 15 2012
Pisano period lengths: 1, 2, 2, 4, 3, 2, 8, 4, 6, 6, 10, 4, 12, 8, 6, 8, 18, 6, 5, 12, ... - R. J. Mathar, Aug 10 2012
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 3 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 48 = 0. - Colin Barker, Feb 10 2014
From Gary W. Adamson, Jul 25 2016: (Start)
A triangle with row sums generating the sequence can be constructed by taking the production matrix M. Take powers of M, extracting the top rows.
M =
1, 1, 0, 0, 0, 0, ...
2, 0, 3, 0, 0, 0, ...
2, 0, 0, 3, 0, 0, ...
2, 0, 0, 0, 3, 0, ...
2, 0, 0, 0, 0, 3, ...
...
The triangle generated from M is:
1,
1, 1,
3, 1, 3,
11, 3, 3, 9,
41, 11, 9, 9, 27,
...
The left border is A001835 and row sums are (1, 2, 7, 26, 97, ...). (End)
Even-indexed terms are odd while odd-indexed terms are even. Indeed, a(2*n) = 2*(a(n))^2 - 1 and a(2*n+1) = 2*a(n)*a(n+1) - 2. - Timothy L. Tiffin, Oct 11 2016
For each n, a(0) divides a(n), a(1) divides a(2n+1), a(2) divides a(4*n+2), a(3) divides a(6*n+3), a(4) divides a(8*n+4), a(5) divides a(10n+5), and so on. Thus, a(k) divides a((2*n+1)*k) for each k > 0 and n >= 0. A proof of this can be found in Bhargava-Kedlaya-Ng's first solution to Problem A2 of the 76th Putnam Mathematical Competition. Links to the exam and its solutions can be found below. - Timothy L. Tiffin, Oct 12 2016
From Timothy L. Tiffin, Oct 21 2016: (Start)
If any term a(n) is a prime number, then its index n will be a power of 2. This is a consequence of the results given in the previous two comments. See A277434 for those prime terms.
a(2n) == 1 (mod 6) and a(2*n+1) == 2 (mod 6). Consequently, each odd prime factor of a(n) will be congruent to 1 modulo 6 and, thus, found in A002476.
a(n) == 1 (mod 10) if n == 0 (mod 6), a(n) == 2 (mod 10) if n == {1,-1} (mod 6), a(n) == 7 (mod 10) if n == {2,-2} (mod 6), and a(n) == 6 (mod 10) if n == 3 (mod 6). So, the rightmost digits of a(n) form a repeating cycle of length 6: 1, 2, 7, 6, 7, 2. (End)
a(A298211(n)) = A002350(3*n^2). - A.H.M. Smeets, Jan 25 2018
(2 + sqrt(3))^n = a(n) + A001353(n)*sqrt(3), n >= 0; integers in the quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 16 2018
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001834 and with any member of A001835. - René Gy, Feb 26 2018
Positive numbers k such that 3*(k-1)*(k+1) is a square. - Davide Rotondo, Oct 25 2020
a(n)*a(n+1)-1 = a(2*n+1)/2 = A001570(n) divides both a(n)^6+1 and a(n+1)^6+1. In other words, for k = a(2*n+1)/2, (k+1)^6 has divisors congruent to -1 modulo k (cf. A350916). - Max Alekseyev, Jan 23 2022

Examples

			2^6 - 1 = 63 does not divide a(2^4) = 708158977, therefore 63 is composite. 2^5 - 1 = 31 divides a(2^3) = 18817, therefore 31 is prime.
G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 97*x^4 + 362*x^5 + 1351*x^6 + 5042*x^7 + ...
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • Eugene McDonnell, "Heron's Rule and Integer-Area Triangles", Vector 12.3 (January 1996) pp. 133-142.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.

Crossrefs

Programs

  • Haskell
    a001075 n = a001075_list !! n
    a001075_list =
       1 : 2 : zipWith (-) (map (4 *) $ tail a001075_list) a001075_list
    -- Reinhard Zumkeller, Aug 11 2011
    
  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001075 := proc(n)
        orthopoly[T](n,2) ;
    end proc:
    seq(A001075(n),n=0..30) ; # R. J. Mathar, Apr 14 2018
  • Mathematica
    Table[ Ceiling[(1/2)*(2 + Sqrt[3])^n], {n, 0, 24}]
    CoefficientList[Series[(1-2*x) / (1-4*x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Dec 21 2011, after Simon Plouffe *)
    LinearRecurrence[{4,-1},{1,2},30] (* Harvey P. Dale, Aug 22 2015 *)
    Round@Table[LucasL[2n, Sqrt[2]]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    ChebyshevT[Range[0, 20], 2] (* Eric W. Weisstein, May 26 2017 *)
    a[ n_] := LucasL[2*n, x]/2 /. x->Sqrt[2]; (* Michael Somos, Sep 05 2022 *)
  • PARI
    {a(n) = subst(poltchebi(abs(n)), x, 2)};
    
  • PARI
    {a(n) = real((2 + quadgen(12))^abs(n))};
    
  • PARI
    {a(n) = polsym(1 - 4*x + x^2, abs(n))[1 + abs(n)]/2};
    
  • PARI
    a(n)=polchebyshev(n,1,2) \\ Charles R Greathouse IV, Nov 07 2016
    
  • PARI
    my(x='x+O('x^30)); Vec((1-2*x)/(1-4*x+x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • SageMath
    [lucas_number2(n,4,1)/2 for n in range(0, 25)] # Zerinvary Lajos, May 14 2009
    
  • SageMath
    def a(n):
        Q = QuadraticField(3, 't')
        u = Q.units()[0]
        return (u^n).lift().coeffs()[0]  # Ralf Stephan, Jun 19 2014
    

Formula

G.f.: (1 - 2*x)/(1 - 4*x + x^2). - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(2*x)*cosh(sqrt(3)*x).
a(n) = 4*a(n-1) - a(n-2) = a(-n).
a(n) = (S(n, 4) - S(n-2, 4))/2 = T(n, 2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U, resp. T, are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 4) = A001353(n), n >= 0. See A049310 and A053120.
a(n) = A001353(n+2) - 2*A001353(n+1).
a(n) = sqrt(1 + 3*A001353(n)) (cf. Richardson comment, Oct 10 2002).
a(n) = 2^(-n)*Sum_{k>=0} binomial(2*n, 2*k)*3^k = 2^(-n)*Sum_{k>=0} A086645(n, k)*3^k. - Philippe Deléham, Mar 01 2004
a(n) = ((2 + sqrt(3))^n + (2 - sqrt(3))^n)/2; a(n) = ceiling((1/2)*(2 + sqrt(3))^(n)).
a(n) = cosh(n * log(2 + sqrt(3))).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k)*3^k. - Paul Barry, May 08 2003
a(n+2) = 2*a(n+1) + 3*Sum_{k>=0} a(n-k)*2^k. - Philippe Deléham, Mar 03 2004
a(n) = 2*a(n-1) + 3*A001353(n-1). - Lekraj Beedassy, Jul 21 2006
a(n) = left term of M^n * [1,0] where M = the 2 X 2 matrix [2,3; 1,2]. Right term = A001353(n). Example: a(4) = 97 since M^4 * [1,0] = [A001075(4), A001353(4)] = [97, 56]. - Gary W. Adamson, Dec 27 2006
Binomial transform of A026150: (1, 1, 4, 10, 28, 76, ...). - Gary W. Adamson, Nov 23 2007
First differences of A001571. - N. J. A. Sloane, Nov 03 2009
Sequence satisfies -3 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(n) = Sum_{k=0..n} A201730(n,k)*2^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k - 4)/(x*(3*k - 1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
a(n) = Sum_{k=0..n} A238731(n,k). - Philippe Deléham, Mar 05 2014
a(n) = (-1)^n*(A125905(n) + 2*A125905(n-1)), n > 0. - Franck Maminirina Ramaharo, Nov 11 2018
a(n) = (tan(Pi/12)^n + tan(5*Pi/12)^n)/2. - Greg Dresden, Oct 01 2020
From Peter Bala, Aug 17 2022: (Start)
a(n) = (1/2)^n * [x^n] ( 4*x + sqrt(1 + 12*x^2) )^n.
The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 8*x + 4*x^2) is the g.f. of A069835.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k.
Sum_{n >= 1} 1/(a(n) - (3/2)/a(n)) = 1.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + (1/2)/a(n)) = 1/3.
Sum_{n >= 1} 1/(a(n)^2 - 3/2) = 1 - 1/sqrt(3). (End)
a(n) = binomial(2*n, n) + 2*Sum_{k > 0} binomial(2*n, n+2*k)*cos(k*Pi/3). - Greg Dresden, Oct 11 2022
2*a(n) + 2^n = 3*Sum_{k=-n..n} (-1)^k*binomial(2*n, n+6*k). - Greg Dresden, Feb 07 2023

Extensions

More terms from James Sellers, Jul 10 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A001835 a(n) = 4*a(n-1) - a(n-2), with a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 3, 11, 41, 153, 571, 2131, 7953, 29681, 110771, 413403, 1542841, 5757961, 21489003, 80198051, 299303201, 1117014753, 4168755811, 15558008491, 58063278153, 216695104121, 808717138331, 3018173449203, 11263976658481, 42037733184721, 156886956080403, 585510091136891
Offset: 0

Views

Author

Keywords

Comments

See A079935 for another version.
Number of ways of packing a 3 X 2*(n-1) rectangle with dominoes. - David Singmaster.
Equivalently, number of perfect matchings of the P_3 X P_{2(n-1)} lattice graph. - Emeric Deutsch, Dec 28 2004
The terms of this sequence are the positive square roots of the indices of the octagonal numbers (A046184) - Nicholas S. Horne (nairon(AT)loa.com), Dec 13 1999
Terms are the solutions to: 3*x^2 - 2 is a square. - Benoit Cloitre, Apr 07 2002
Gives solutions x > 0 of the equation floor(x*r*floor(x/r)) == floor(x/r*floor(x*r)) where r = 1 + sqrt(3). - Benoit Cloitre, Feb 19 2004
a(n) = L(n-1,4), where L is defined as in A108299; see also A001834 for L(n,-4). - Reinhard Zumkeller, Jun 01 2005
Values x + y, where (x, y) solves for x^2 - 3*y^2 = 1, i.e., a(n) = A001075(n) + A001353(n). - Lekraj Beedassy, Jul 21 2006
Number of 01-avoiding words of length n on alphabet {0,1,2,3} which do not end in 0. (E.g., for n = 2 we have 02, 03, 11, 12, 13, 21, 22, 23, 31, 32, 33.) - Tanya Khovanova, Jan 10 2007
sqrt(3) = 2/2 + 2/3 + 2/(3*11) + 2/(11*41) + 2/(41*153) + 2/(153*571) + ... - Gary W. Adamson, Dec 18 2007
The lower principal convergents to 3^(1/2), beginning with 1/1, 5/3, 19/11, 71/41, comprise a strictly increasing sequence; numerators = A001834, denominators = A001835. - Clark Kimberling, Aug 27 2008
From Gary W. Adamson, Jun 21 2009: (Start)
A001835 and A001353 = bisection of denominators of continued fraction [1, 2, 1, 2, 1, 2, ...]; i.e., bisection of A002530.
a(n) = determinant of an n*n tridiagonal matrix with 1's in the super- and subdiagonals and (3, 4, 4, 4, ...) as the main diagonal.
Also, the product of the eigenvalues of such matrices: a(n) = Product_{k=1..(n-1)/2)} (4 + 2*cos(2*k*Pi/n).
(End)
Let M = a triangle with the even-indexed Fibonacci numbers (1, 3, 8, 21, ...) in every column, and the leftmost column shifted up one row. a(n) starting (1, 3, 11, ...) = lim_{n->oo} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
a(n+1) is the number of compositions of n when there are 3 types of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
For n >= 2, a(n) equals the permanent of the (2*n-2) X (2*n-2) tridiagonal matrix with sqrt(2)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Primes in the sequence are apparently those in A096147. - R. J. Mathar, May 09 2013
Except for the first term, positive values of x (or y) satisfying x^2 - 4xy + y^2 + 2 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14xy + y^2 + 32 = 0. - Colin Barker, Feb 10 2014
The (1,1) element of A^n where A = (1, 1, 1; 1, 2, 1; 1, 1, 2). - David Neil McGrath, Jul 23 2014
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001834 and with any member of A001075. - René Gy, Feb 25 2018
a(n+1) is the number of spanning trees of the graph T_n, where T_n is a 2 X n grid with an additional vertex v adjacent to (1,1) and (2,1). - Kevin Long, May 04 2018
a(n)/A001353(n) is the resistance of an n-ladder graph whose edges are replaced by one-ohm resistors. The resistance in ohms is measured at two nodes at one end of the ladder. It approaches sqrt(3) - 1 for n -> oo. See A342568, A357113, and A357115 for related information. - Hugo Pfoertner, Sep 17 2022
a(n) is the number of ways to tile a 1 X (n-1) strip with three types of tiles: small isosceles right triangles (with small side length 1), 1 X 1 squares formed by joining two of those right triangles along the hypotenuse, and large isosceles right triangles (with large side length 2) formed by joining two of those right triangles along a short leg. As an example, here is one of the a(6)=571 ways to tile a 1 X 5 strip with these kinds of tiles:
| / \ |\ /| |
|/_\|\/_||. - Greg Dresden and Arjun Datta, Jun 30 2023
From Klaus Purath, May 11 2024: (Start)
For any two consecutive terms (a(n), a(n+1)) = (x,y): x^2 - 4xy + y^2 = -2 = A028872(-1). In general, the following applies to all sequences (t) satisfying t(i) = 4t(i-1) - t(i-2) with t(0) = 1 and two consecutive terms (x,y): x^2 - 4xy + y^2 = A028872(t(1)-2). This includes and interprets the Feb 04 2014 comments here and on A001075 by Colin Barker and the Dec 12 2012 comment on A001353 by Max Alekseyev. By analogy to this, for three consecutive terms (x,y,z) y^2 - xz = A028872(t(1)-2). This includes and interprets the Jul 10 2021 comment on A001353 by Bernd Mulansky.
If (t) is a sequence satisfying t(k) = 3t(k-1) + 3t(k-2) - t(k-3) or t(k) = 4t(k-1) - t(k-2) without regard to initial values and including this sequence itself, then a(n) = (t(k+2n+1) + t(k))/(t(k+n+1) + t(k+n)) always applies, as long as t(k+n+1) + t(k+n) != 0 for integer k and n >= 1. (End)
Binomial transform of 1, 0, 2, 4, 12, ... (A028860 without the initial -1) and reverse binomial transform of 1, 2, 6, 24, 108, ... (A094433 without the initial 1). - Klaus Purath, Sep 09 2024

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009).
  • Leonhard Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 375.
  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics I, p. 292.

Crossrefs

Row 3 of array A099390.
Essentially the same as A079935.
First differences of A001353.
Partial sums of A052530.
Pairwise sums of A006253.
Bisection of A002530, A005246 and A048788.
First column of array A103997.
Cf. A001519, A003699, A082841, A101265, A125077, A001353, A001542, A096147 (subsequence of primes).

Programs

  • GAP
    a:=[1,1];; for n in [3..20] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Haskell
    a001835 n = a001835_list !! n
    a001835_list =
       1 : 1 : zipWith (-) (map (4 *) $ tail a001835_list) a001835_list
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Magma
    [n le 2 select 1 else 4*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Sep 16 2016
    
  • Maple
    f:=n->((3+sqrt(3))^(2*n-1)+(3-sqrt(3))^(2*n-1))/6^n; [seq(simplify(expand(f(n))),n=0..20)]; # N. J. A. Sloane, Nov 10 2009
  • Mathematica
    CoefficientList[Series[(1-3x)/(1-4x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Jul 25 2011, after g.f. *)
    LinearRecurrence[{4,-1},{1,1},30] (* Harvey P. Dale, Jun 08 2013 *)
    Table[Round@Fibonacci[2n-1, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    Table[(3*ChebyshevT[n, 2] - ChebyshevU[n, 2])/2, {n, 0, 20}] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    {a(n) = real( (2 + quadgen(12))^n * (1 - 1 / quadgen(12)) )} /* Michael Somos, Sep 19 2008 */
    
  • PARI
    {a(n) = subst( (polchebyshev(n) + polchebyshev(n-1)) / 3, x, 2)} /* Michael Somos, Sep 19 2008 */
    
  • Sage
    [lucas_number1(n,4,1)-lucas_number1(n-1,4,1) for n in range(25)] # Zerinvary Lajos, Apr 29 2009
    
  • Sage
    [(3*chebyshev_T(n,2) - chebyshev_U(n,2))/2 for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: (1 - 3*x)/(1 - 4*x + x^2). - Simon Plouffe in his 1992 dissertation
a(1-n) = a(n).
a(n) = ((3 + sqrt(3))^(2*n - 1) + (3 - sqrt(3))^(2*n - 1))/6^n. - Dean Hickerson, Dec 01 2002
a(n) = (8 + a(n-1)*a(n-2))/a(n-3). - Michael Somos, Aug 01 2001
a(n+1) = Sum_{k=0..n} 2^k * binomial(n + k, n - k), n >= 0. - Len Smiley, Dec 09 2001
Limit_{n->oo} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 10 2002
a(n) = 2*A061278(n-1) + 1 for n > 0. - Bruce Corrigan (scentman(AT)myfamily.com), Nov 04 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n - i, i); then q(n, 2) = a(n+1). - Benoit Cloitre, Nov 10 2002
a(n+1) = Sum_{k=0..n} ((-1)^k)*((2*n+1)/(2*n + 1 - k))*binomial(2*n + 1 - k, k)*6^(n - k) (from standard T(n,x)/x, n >= 1, Chebyshev sum formula). The Smiley and Cloitre sum representation is that of the S(2*n, i*sqrt(2))*(-1)^n Chebyshev polynomial. - Wolfdieter Lang, Nov 29 2002
a(n) = S(n-1, 4) - S(n-2, 4) = T(2*n-1, sqrt(3/2))/sqrt(3/2) = S(2*(n-1), i*sqrt(2))*(-1)^(n - 1), with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x) = 0, S(-2, x) = -1, S(n, 4) = A001353(n+1), T(-1, x) = x.
a(n+1) = sqrt((A001834(n)^2 + 2)/3), n >= 0 (see Cloitre comment).
Sequence satisfies -2 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(n) = (1/6)*(3*(2 - sqrt(3))^n + sqrt(3)*(2 - sqrt(3))^n + 3*(2 + sqrt(3))^n - sqrt(3)*(2 + sqrt(3))^n) (Mathematica's solution to the recurrence relation). - Sarah-Marie Belcastro, Jul 04 2009
If p[1] = 3, p[i] = 2, (i > 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n+1) = det A. - Milan Janjic, Apr 29 2010
a(n) = (a(n-1)^2 + 2)/a(n-2). - Irene Sermon, Oct 28 2013
a(n) = A001353(n+1) - 3*A001353(n). - R. J. Mathar, Oct 30 2015
a(n) = a(n-1) + 2*A001353(n-1). - Kevin Long, May 04 2018
From Franck Maminirina Ramaharo, Nov 11 2018: (Start)
a(n) = (-1)^n*(A125905(n) + 3*A125905(n-1)), n > 0.
E.g.f.: exp^(2*x)*(3*cosh(sqrt(3)*x) - sqrt(3)*sinh(sqrt(3)*x))/3. (End)
From Peter Bala, Feb 12 2024: (Start)
For n in Z, a(n) = A001353(n) + A001353(1-n).
For n, j, k in Z, a(n)*a(n+j+k) - a(n+j)*a(n+k) = 2*A001353(j)*A001353(k). The case j = 1, k = 2 is given above. (End)

A004254 a(n) = 5*a(n-1) - a(n-2) for n > 1, a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 5, 24, 115, 551, 2640, 12649, 60605, 290376, 1391275, 6665999, 31938720, 153027601, 733199285, 3512968824, 16831644835, 80645255351, 386394631920, 1851327904249, 8870244889325, 42499896542376, 203629237822555, 975646292570399, 4674602225029440, 22397364832576801
Offset: 0

Views

Author

Keywords

Comments

Nonnegative values of y satisfying x^2 - 21*y^2 = 4; values of x are in A003501. - Wolfdieter Lang, Nov 29 2002
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 5's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2,3,4}. - Milan Janjic, Jan 25 2015
From Klaus Purath, Jul 26 2024: (Start)
For any three consecutive terms (x, y, z), y^2 - xz = 1 always applies.
a(n) = (t(i+2n) - t(i))/(t(i+n+1) - t(i+n-1)) where (t) is any recurrence t(k) = 4t(k-1) + 4t(k-2) - t(k-3) or t(k) = 5t(k-1) - t(k-2) without regard to initial values.
In particular, if the recurrence (t) of the form (4,4,-1) has the same three initial values as the current sequence, a(n) = t(n) applies.
a(n) = (t(k+1)*t(k+n) - t(k)*t(k+n+1))/(y^2 - xz) where (t) is any recurrence of the current family with signature (5,-1) and (x, y, z) are any three consecutive terms of (t), for integer k >= 0. (End)

Examples

			G.f. = x + 5*x^2 + 24*x^3 + 115*x^4 + 551*x^5 + 2640*x^6 + 12649*x^7 + ...
		

References

  • F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A004253.
Cf. A000027, A001906, A001353, A003501, A030221. a(n) = sqrt((A003501(n)^2 - 4)/21).
First differences of a(n) are in A004253, partial sums in A089817.
Cf. A004253.
INVERT transformation yields A001109. - R. J. Mathar, Sep 11 2008

Programs

  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 5*Self(n-1)-Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 19 2011
  • Maple
    A004254:=1/(1-5*z+z**2); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[n_]:=(MatrixPower[{{1,3},{1,4}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    a[ n_] := ChebyshevU[2 n - 1, Sqrt[7]/2] / Sqrt[7]; (* Michael Somos, Jan 22 2017 *)
  • PARI
    {a(n) = subst(4*poltchebi(n+1) - 10*poltchebi(n), x, 5/2) / 21}; /* Michael Somos, Dec 04 2002 */
    
  • PARI
    {a(n) = imag((5 + quadgen(84))^n) / 2^(n-1)}; /* Michael Somos, Dec 04 2002 */
    
  • PARI
    {a(n) = polchebyshev(n - 1, 2, 5/2)}; /* Michael Somos, Jan 22 2017 */
    
  • PARI
    {a(n) = simplify( polchebyshev( 2*n - 1, 2, quadgen(28)/2) / quadgen(28))}; /* Michael Somos, Jan 22 2017 */
    
  • Sage
    [lucas_number1(n,5,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    

Formula

G.f.: x/(1-5*x+x^2).
a(n) = (((5+sqrt(21))/2)^n-((5-sqrt(21))/2)^n)/sqrt(21). - Barry E. Williams, Aug 29 2000
a(n) = S(2*n-1, sqrt(7))/sqrt(7) = S(n-1, 5); S(n, x)=U(n, x/2), Chebyshev polynomials of 2nd kind, A049310.
A003501(n) = sqrt(21*a(n)^2 + 4).
a(n) = Sum_{k=0..n-1} binomial(n+k, 2*k+1)*2^k. - Paul Barry, Nov 30 2004
[A004253(n), a(n)] = [1,3; 1,4]^n * [1,0]. - Gary W. Adamson, Mar 19 2008
a(n+1) = Sum_{k=0..n} Gegenbauer_C(n-k,k+1,2). - Paul Barry, Apr 21 2009
a(n+1) = Sum_{k=0..n} A101950(n,k)*4^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = (1/3)*(3 + sqrt(21)).
Product {n >= 2} (1 - 1/a(n)) = (1/10)*(3 + sqrt(21)). (End)
From Michael Somos, Jan 22 2017: (Start)
A054493(2*n - 1) = 7 * a(n)^2 for all n in Z.
a(n) = -a(-n) for all n in Z.
0 = -1 + a(n)*(+a(n) - 5*a(n+1)) + a(n+1)*(+a(n+1)) for all n in Z. (End)
Limit_{n->oo} a(n+1)/a(n) = (5 + sqrt(21))/2 = A107905. - Wolfdieter Lang, Nov 15 2023
From Klaus Purath, Jul 26 2024: (Start)
a(n) = 4(a(n-1) + a(n-2)) - a(n-3).
a(n) = 6(a(n-1) - a(n-2)) + a(n-3).
In general, for all sequences of the form U(n) = P*U(n-1) - U(n-2) the following applies:
U(n) = (P-1)*U(n-1) + (P-1)*U(n-2) - U(n-3).
U(n) = (P+1)*U(n-1) - (P+1)*U(n-2) + U(n-3). (End)
a(n) = (5*a(n-1)+sqrt(21*a(n-1)^2+4))/2 for n>0. - Alexandru Petrescu, Apr 15 2025
From Peter Bala, May 22 2025: (Start)
Product_{n >= 1} ((a(2*n) + 1)/(a(2*n) - 1))^2 = 7/3.
Product_{n >= 1} ((a(2*n+1) + 1)/(a(2*n+1) - 1))^2 = 25/21.
The o.g.f. A(x) satisfies A(x) + A(-x) + 10*A(x)*A(-x) = 0. The o.g.f. for A097778 equals -1/x * A(sqrt(x))*A(-sqrt(x)). (End)
E.g.f.: 2*exp(5*x/2)*sinh(sqrt(21)*x/2)/sqrt(21). - Stefano Spezia, Jul 02 2025

A000212 a(n) = floor(n^2/3).

Original entry on oeis.org

0, 0, 1, 3, 5, 8, 12, 16, 21, 27, 33, 40, 48, 56, 65, 75, 85, 96, 108, 120, 133, 147, 161, 176, 192, 208, 225, 243, 261, 280, 300, 320, 341, 363, 385, 408, 432, 456, 481, 507, 533, 560, 588, 616, 645, 675, 705, 736, 768, 800, 833, 867, 901, 936
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the n X n matrix of the following form: [3 2 1 0 0 0 0 0 0 0 / 2 3 2 1 0 0 0 0 0 0 / 1 2 3 2 1 0 0 0 0 0 / 0 1 2 3 2 1 0 0 0 0 / 0 0 1 2 3 2 1 0 0 0 / 0 0 0 1 2 3 2 1 0 0 / 0 0 0 0 1 2 3 2 1 0 / 0 0 0 0 0 1 2 3 2 1 / 0 0 0 0 0 0 1 2 3 2 / 0 0 0 0 0 0 0 1 2 3]. Then for n > 2 a(n) = det M_(n-2). - Benoit Cloitre, Jun 20 2002
Largest possible size for the directed Cayley graph on two generators having diameter n - 2. - Ralf Stephan, Apr 27 2003
It seems that for n >= 2, a(n) is the maximum number of non-overlapping 1 X 3 rectangles that can be packed into an n X n square. Rectangles can only be placed parallel to the sides of the square. Verified with Lobato's tool, see links. - Dmitry Kamenetsky, Aug 03 2009
Maximum number of edges in a K4-free graph with n vertices. - Yi Yang, May 23 2012
3a(n) + 1 = y^2 if n is not 0 mod 3 and 3a(n) = y^2 otherwise. - Jon Perry, Sep 10 2012
Apart from the initial term this is the elliptic troublemaker sequence R_n(1, 3) (also sequence R_n(2, 3)) in the notation of Stange (see Table 1, p. 16). For other elliptic troublemaker sequences R_n(a, b) see the cross references below. - Peter Bala, Aug 08 2013
The number of partitions of 2n into exactly 3 parts. - Colin Barker, Mar 22 2015
a(n-1) is the maximum number of non-overlapping triples (i,k), (i+1, k+1), (i+2, k+2) in an n X n matrix. Details: The triples are distributed along the main diagonal and 2*(n-1) other diagonals. Their maximum number is floor(n/3) + 2*Sum_{k = 1..n-1} floor(k/3) = floor((n-1)^2/3). - Gerhard Kirchner, Feb 04 2017
Conjecture: a(n) is the number of intersection points of n cevians that cut a triangle into the maximum number of pieces (see A007980). - Anton Zakharov, May 07 2017
From Gus Wiseman, Oct 05 2020: (Start)
Also the number of unimodal triples (meaning the middle part is not strictly less than both of the other two) of positive integers summing to n + 1. The a(2) = 1 through a(6) = 12 triples are:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5)
(1,2,1) (1,2,2) (1,2,3) (1,2,4)
(2,1,1) (1,3,1) (1,3,2) (1,3,3)
(2,2,1) (1,4,1) (1,4,2)
(3,1,1) (2,2,2) (1,5,1)
(2,3,1) (2,2,3)
(3,2,1) (2,3,2)
(4,1,1) (2,4,1)
(3,2,2)
(3,3,1)
(4,2,1)
(5,1,1)
(End)

Examples

			G.f. = x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 12*x^6 + 16*x^7 + 21*x^8 + 27*x^9 + 33*x^10 + ...
From _Gus Wiseman_, Oct 07 2020: (Start)
The a(2) = 1 through a(6) = 12 partitions of 2*n into exactly 3 parts (Barker) are the following. The Heinz numbers of these partitions are given by the intersection of A014612 (triples) and A300061 (even sum).
  (2,1,1)  (2,2,2)  (3,3,2)  (4,3,3)  (4,4,4)
           (3,2,1)  (4,2,2)  (4,4,2)  (5,4,3)
           (4,1,1)  (4,3,1)  (5,3,2)  (5,5,2)
                    (5,2,1)  (5,4,1)  (6,3,3)
                    (6,1,1)  (6,2,2)  (6,4,2)
                             (6,3,1)  (6,5,1)
                             (7,2,1)  (7,3,2)
                             (8,1,1)  (7,4,1)
                                      (8,2,2)
                                      (8,3,1)
                                      (9,2,1)
                                      (10,1,1)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000290, A007590 (= R_n(2,4)), A002620 (= R_n(1,2)), A118015, A056827, A118013.
Cf. A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A033440, A033441, A033442, A033443, A033444.
Cf. A001353 and A004523 (first differences). A184535 (= R_n(2,5) = R_n(3,5)).
Cf. A238738. - Bruno Berselli, Apr 17 2015
Cf. A005408.
A000217(n-2) counts 3-part compositions.
A014612 ranks 3-part partitions, with strict case A007304.
A069905 counts the 3-part partitions.
A211540 counts strict 3-part partitions.
A337453 ranks strict 3-part compositions.
A001399(n-6)*4 is the strict version.
A001523 counts unimodal compositions, with strict case A072706.
A001840(n-4) is the non-unimodal version.
A001399(n-6)*2 is the strict non-unimodal version.
A007052 counts unimodal patterns.
A115981 counts non-unimodal compositions, ranked by A335373.
A011782 counts unimodal permutations.
A335373 is the complement of a ranking sequence for unimodal compositions.
A337459 ranks these compositions, with complement A337460.

Programs

  • Magma
    [Floor(n^2 / 3): n in [0..50]]; // Vincenzo Librandi, May 08 2011
    
  • Maple
    A000212:=(-1+z-2*z**2+z**3-2*z**4+z**5)/(z**2+z+1)/(z-1)**3; # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence with an additional leading 1.
    A000212 := proc(n) option remember; `if`(n<4, [0,0,1,3][n+1], a(n-1)+a(n-3) -a(n-4)+2) end; # Peter Luschny, Nov 20 2011
  • Mathematica
    Table[Quotient[n^2, 3], {n, 0, 59}] (* Michael Somos, Jan 22 2014 *)
  • PARI
    {a(n) = n^2 \ 3}; /* Michael Somos, Sep 25 2006 */
    
  • Python
    def A000212(n): return n**2//3 # Chai Wah Wu, Jun 07 2022

Formula

G.f.: x^2*(1+x)/((1-x)^2*(1-x^3)). - Franklin T. Adams-Watters, Apr 01 2002
Euler transform of length 3 sequence [ 3, -1, 1]. - Michael Somos, Sep 25 2006
G.f.: x^2 * (1 - x^2) / ((1 - x)^3 * (1 - x^3)). a(-n) = a(n). - Michael Somos, Sep 25 2006
a(n) = Sum_{k = 0..n} A011655(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = a(n-1) + a(n-3) - a(n-4) + 2 for n >= 4. - Alexander Burstein, Nov 20 2011
a(n) = a(n-3) + A005408(n-2) for n >= 3. - Alexander Burstein, Feb 15 2013
a(n) = (n-1)^2 - a(n-1) - a(n-2) for n >= 2. - Richard R. Forberg, Jun 05 2013
Sum_{n >= 2} 1/a(n) = (27 + 6*sqrt(3)*Pi + 2*Pi^2)/36. - Enrique Pérez Herrero, Jun 29 2013
0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jan 22 2014
a(n) = Sum_{k = 1..n} k^2*A049347(n+2-k). - Mircea Merca, Feb 04 2014
a(n) = Sum_{i = 1..n+1} (ceiling(i/3) + floor(i/3) - 1). - Wesley Ivan Hurt, Jun 06 2014
a(n) = Sum_{j = 1..n} Sum_{i=1..n} ceiling((i+j-n-1)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = Sum_{i = 1..n} floor(2*i/3). - Wesley Ivan Hurt, May 22 2017
a(-n) = a(n). - Paul Curtz, Jan 19 2020
a(n) = A001399(2*n - 3). - Gus Wiseman, Oct 07 2020
a(n) = (1/6)*(2*n^2 - 3 + gcd(n,3)). - Ridouane Oudra, Apr 15 2021
E.g.f.: (exp(x)*(-2 + 3*x*(1 + x)) + 2*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 24 2022
Sum_{n>=2} (-1)^n/a(n) = Pi/sqrt(3) - Pi^2/36 - 3/4. - Amiram Eldar, Dec 02 2022

Extensions

Edited by Charles R Greathouse IV, Apr 19 2010

A001834 a(0) = 1, a(1) = 5, a(n) = 4*a(n-1) - a(n-2).

Original entry on oeis.org

1, 5, 19, 71, 265, 989, 3691, 13775, 51409, 191861, 716035, 2672279, 9973081, 37220045, 138907099, 518408351, 1934726305, 7220496869, 26947261171, 100568547815, 375326930089, 1400739172541, 5227629760075, 19509779867759, 72811489710961, 271736178976085
Offset: 0

Views

Author

Keywords

Comments

Sequence also gives values of x satisfying 3*y^2 - x^2 = 2, the corresponding y being given by A001835(n+1). Moreover, quadruples(p, q, r, s) satisfying p^2 + q^2 + r^2 = s^2, where p = q and r is either p+1 or p-1, are termed nearly isosceles Pythagorean and are given by p = {x + (-1)^n}/3, r = p-(-1)^n, s = y for n > 1. - Lekraj Beedassy, Jul 19 2002
a(n)= A002531(1+2*n). - Anton Vrba (antonvrba(AT)yahoo.com), Feb 14 2007
361 written in base A001835(n+1) - 1 is the square of a(n). E.g., a(12) = 2672279, A001835(13) - 1 = 1542840. We have 361_(1542840) = 3*1542840 + 6*1542840 + 1 = 2672279^2. - Richard Choulet, Oct 04 2007
The lower principal convergents to 3^(1/2), beginning with 1/1, 5/3, 19/11, 71/41, comprise a strictly increasing sequence; numerators=A001834, denominators=A001835. - Clark Kimberling, Aug 27 2008
General recurrence is a(n) = (a(1) - 1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x + 1)^n, k = (a(1) - 3), x = (1 + sqrt((a(1) + 1)/(a(1) - 3)))/2. Examples in OEIS: a(1) = 4 gives A002878, primes in it A121534. a(1) = 5 gives A001834, primes in it A086386. a(1) = 6 gives A030221, primes in it A299109. a(1) = 7 gives A002315, primes in it A088165. a(1) = 8 gives A033890, primes in it not in OEIS (do there exist any?). a(1) = 9 gives A057080, primes in {71, 34649, 16908641, ...}. a(1) = 10 gives A057081, primes in it {389806471, 192097408520951, ...}. - Ctibor O. Zizka, Sep 02 2008
Inverse binomial transform of A030192. - Philippe Deléham, Nov 19 2009
For positive n, a(n) equals the permanent of the (2*n) X (2*n) tridiagonal matrix with sqrt(6)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
x-values in the solution to 3x^2 + 6 = y^2 (see A082841 for the y-values). - Sture Sjöstedt, Nov 25 2011
Pisano period lengths: 1, 1, 2, 4, 3, 2, 8, 4, 6, 3, 10, 4, 12, 8, 6, 8, 18, 6, 5, 12, ... - R. J. Mathar, Aug 10 2012
The aerated sequence (b(n))A100047%20for%20a%20connection%20with%20Chebyshev%20polynomials.%20-%20_Peter%20Bala">{n>=1} = [1, 0, 5, 0, 19, 0, 71, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -2, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for a connection with Chebyshev polynomials. - _Peter Bala, Mar 22 2015
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001835 and with any member of A001075. - René Gy, Feb 26 2018
From Wolfdieter Lang, Oct 15 2020: (Start)
((-1)^n)*a(n) = X(n) = (-1)^n*(S(n, 4) + S(n-1, 4)) and Y(n) = X(n-1) gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 4*X*Y = +6, for n = -oo..+oo, with Chebyshev S polynomials (see A049310), with S(-1, x) = 0, and S(-|n|, x) = - S(|n|-2, x), for |n| >= 2.
This binary indefinite quadratic form of discriminant 12, representing 6, has only this family of proper solutions (modulo sign flip), and no improper ones.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)
Floretion Algebra Multiplication Program, FAMP Code: A001834 = (4/3)vesseq[ - .25'i + 1.25'j - .25'k - .25i' + 1.25j' - .25k' + 1.25'ii' + .25'jj' - .75'kk' + .75'ij' + .25'ik' + .75'ji' - .25'jk' + .25'ki' - .25'kj' + .25e], apart from initial term

Examples

			G.f. = 1 + 5*x + 19*x^2 + 71*x^3 + 265*x^4 + 989*x^5 + 3691*x^6 + ...
		

References

  • Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • Leonhard Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 375.
  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.

Crossrefs

A bisection of sequence A002531.
Cf. A001352, A001835, A086386 (prime members).
Cf. A026150.
a(n)^2+1 = A094347(n+1).

Programs

  • Haskell
    a001834 n = a001834_list !! (n-1)
    a001834_list = 1 : 5 : zipWith (-) (map (* 4) $ tail a001834_list) a001834_list
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Magma
    I:=[1,5]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
  • Maple
    f:=n->((1+sqrt(3))^(2*n+1)+(1-sqrt(3))^(2*n+1))/2^(n+1); # N. J. A. Sloane, Nov 10 2009
  • Mathematica
    a[0] = 1; a[1] = 5; a[n_] := a[n] = 4a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 25}] (* Robert G. Wilson v, Apr 24 2004 *)
    Table[Expand[((1+Sqrt[3])^(2*n+1)+(1+Sqrt[3])^(2*n+1))/2^(n+1)],{n, 0, 20}] (* Anton Vrba, Feb 14 2007 *)
    LinearRecurrence[{4, -1}, {1, 5}, 50] (* Sture Sjöstedt, Nov 27 2011 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Numerator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A002531 *)
    a[3, 20] (* Gerry Martens, Jun 07 2015 *)
    Round@Table[LucasL[2n+1, Sqrt[2]]/Sqrt[2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    {a(n) = real( (2 + quadgen(12))^n * (1 + quadgen(12)) )}; /* Michael Somos, Sep 19 2008 */
    
  • PARI
    {a(n) = subst( polchebyshev(n-1, 2) + polchebyshev(n, 2), x, 2)}; /* Michael Somos, Sep 19 2008 */
    
  • SageMath
    [(lucas_number2(n,4,1)-lucas_number2(n-1,4,1))/2 for n in range(1, 27)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = ((1 + sqrt(3))^(2*n + 1) + (1 - sqrt(3))^(2*n + 1))/2^(n + 1). - N. J. A. Sloane, Nov 10 2009
a(n) = (1/2) * ((1 + sqrt(3))*(2 + sqrt(3))^n + (1 - sqrt(3))*(2 - sqrt(3))^n). - Dean Hickerson, Dec 01 2002
From Mario Catalani, Apr 11 2003: (Start)
With a = 2 + sqrt(3), b = 2 - sqrt(3): a(n) = (1/sqrt(2))(a^(n + 1/2) - b^(n + 1/2)).
a(n) - a(n-1) = A003500(n).
a(n) = sqrt(1 + 12*A061278(n) + 12*A061278(n)^2). (End)
a(n) = ((1 + sqrt(3))^(2*n + 1) + (1 - sqrt(3))^(2*n + 1))/2^(n + 1). - Anton Vrba, Feb 14 2007
G.f.: (1 + x)/((1 - 4*x + x^2)). Simon Plouffe in his 1992 dissertation.
a(n) = S(2*n, sqrt(6)) = S(n, 4) + S(n-1, 4); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 4) = A001353(n).
For all members x of the sequence, 3*x^2 + 6 is a square. Limit_{n->infinity} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 10 2002
a(n) = 2*A001571(n) + 1. - Bruce Corrigan (scentman(AT)myfamily.com), Nov 04 2002
Let q(n, x) = Sum_{i=0..n} x^(n - i)*binomial(2*n - i, i); then (-1)^n*q(n, -6) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = 2^(-n)*Sum_{k>=0} binomial(2*n + 1, 2*k)*3^k; see A091042. - Philippe Deléham, Mar 01 2004
a(n) = floor(sqrt(3)*A001835(n+1)). - Philippe Deléham, Mar 03 2004
a(n+1) - 2*a(n) = 3*A001835(n+1). Using the known relation A001835(n+1) = sqrt((a(n)^2 + 2)/3) it follows that a(n+1) - 2*a(n) = sqrt(3*(a(n)^2 + 2)). Therefore a(n+1)^2 + a(n)^2 - 4*a(n+1)*a(n) - 6 = 0. - Creighton Dement, Apr 18 2005
a(n) = L(n,-4)*(-1)^n, where L is defined as in A108299; see also A001835 for L(n,+4). - Reinhard Zumkeller, Jun 01 2005
a(n) = Jacobi_P(n, 1/2, -1/2, 2)/Jacobi_P(n, -1/2, 1/2, 1). - Paul Barry, Feb 03 2006
Equals binomial transform of A026150 starting (1, 4, 10, 28, 76, ...) and double binomial transform of (1, 3, 3, 9, 9, 27, 27, 81, 81, ...). - Gary W. Adamson, Nov 30 2007
Sequence satisfies 6 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(-1-n) = -a(n). - Michael Somos, Sep 19 2008
From Franck Maminirina Ramaharo, Nov 11 2018: (Start)
a(n) = (-1)^n*(5*A125905(n) + A125905(n+1)).
E.g.f.: exp(2*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). (End)
a(n) = A061278(n+1) - A061278(n-1) for n>=2. - John P. McSorley, Jun 20 2020
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 2), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n) - 2*a(n-1) = 3 * A001835(n) for n >= 1.
For arbitrary x, a(n+x)^2 - 4*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 6 with a(n) := (1/2) * ((1 + sqrt(3))*(2 + sqrt(3))^n + (1 - sqrt(3))*(2 - sqrt(3))^n) as above. The particular case x = 0 is noted above,
a(n+1/2) = sqrt(6) * A001353(n+1).
a(n+3/4) + a(n+1/4) = sqrt(6*sqrt(6) + 12) * A001353(n+1).
a(n+3/4) - a(n+1/4) = sqrt(2*sqrt(6) - 4) * A001075(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/6 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A001352(n) + 1/A001352(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(3) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 3*(1 - 2/A102206(k))). (End)
Previous Showing 11-20 of 190 results. Next