cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 255 results. Next

A182397 Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642.

Original entry on oeis.org

1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241
Offset: 0

Views

Author

Paul Curtz, Apr 27 2012

Keywords

Comments

In A190339 we saw that (the second Bernoulli numbers) A164555/A027642 is an eigensequence (its inverse binomial transform is the sequence signed) of the second kind, see A192456/A191302. We consider this array preceded by 1 for the second row, by 1, -3/2, for the third one; 1 is chosen and is followed by the differences of successive rows.
Hence
1 1/2 1/6 0
1 -1/2 -1/3 -1/6 -1/30
1 -3/2 1/6 1/6 2/15 1/15
1 -5/2 5/3 0 -1/30 -1/15 -8/105.
The second row is A051716/A051717.
The (reduced) triangle before the square array (T(n,m) in A190339) is a(n)/b(n)=
B(0)= 1 = 1 Redbernou1li
B(1)= -1/2 = 1 -3/2
B(2)= 1/6 = 1 -5/2 5/3
B(3)= 0 = 1 -7/2 25/6 -5/3
B(4)=-1/30 = 1 -9/2 23/3 -35/6 49/30
B(5)= 0 = 1 -11/2 73/6 -27/2 112/15 -49/30.
For the main diagonal, see A165142.
Denominator b(n) will be submitted.
This transform is valuable for every eigensequence of the second kind. For instance Leibniz's 1/n (A003506).
With increasing exponents for coefficients, polynomials CB(n,x) create Redbernou1li. See the formula.
Triangle Bernou1li for A027641/A027642 with the same denominator A080326 for every column is
1
1 -3/2
1 -5/2 10/6
1 -7/2 25/6 -10/6
1 -9/2 46/6 -35/6 49/30
1 -11/2 73/6 -81/6 224/30 -49/30.
For numerator by columns,see A000012, -A144396, A100536, Q(n)=n*(2*n^2+9*n+9)/2 , new.
Triangle Checkbernou1 with the same denominator A080326 for every row is
1/1
(2 -3)/2
(6 -15 +10)/6
(6 -21 +25 -10)/6
(30 -135 +230 -175 +49)/30
(30 -165 +365 -405 +224 -49)/30;
Hence for numerator: 1, 2-3, 16-15, 31-31, 309-310, 619-619, 8171-8166.
Absolute sum: 1, 5, 31, 62, 619, 1238, 17337. Reduced division by A080326:
1, 5/2, 31/6, 31/3, 619/30, 619/15, 5779/70, = A172030(n+1)/A172031(n+1).

Crossrefs

Cf. A028246 (Worpitzky), A085737/A085738 (Conway-Sloane), A051714/A051715 (Akiyama-Tanigawa), A192456/A191302 for other triangles that lead to the Bernoulli numbers.

Formula

CB(0,x) = 1,
CB(1,x) = 1 - 3*x/2,
CB(n,x) = (1-x)*CB(n-1,x) + B(n)*x^n , n > 1.

A228151 Denominators of r(n) = r(n-1) + r(n-2) + B_(n-2), where B_n is the n-th Bernoulli number A027641(n)/A027642(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 5, 30, 105, 70, 35, 70, 231, 2310, 143, 30030, 15015, 10010, 85085, 170170, 373065, 25194, 323323, 1939938, 22309287, 14872858, 168245, 74364290, 15935205, 223092870, 1078282205, 588153930, 20056049013, 5142576670, 393255863, 9550499530
Offset: 0

Views

Author

Paul Curtz, Aug 13 2013

Keywords

Comments

r(n): 0, 0, 1, 1/2, 5/3, 13/6, 19/5, 179/30, 1028/105, 1103/70, 893/35,... = A227500(n)/a(n). a(0)=a(1)=1 is a choice.

Crossrefs

Cf. A227500: numerators of r(n), where a(n) is named c(n).

Programs

  • Magma
    t:=40; r:=[n le 2 select 0 else Self(n-1)+Self(n-2)+BernoulliNumber(n-3): n in [1..t]]; [n le 2 select 1 else Denominator(r[n]): n in [1..t]]; // Bruno Berselli, Sep 05 2013
  • PARI
    r(n) = if (n<=1, 0, r(n-1) + r(n-2) + bernfrac(n-2));
    a(n) = if (n<=1, 1, denominator(r(n))); \\ Michel Marcus, Aug 24 2013
    

Extensions

More terms from Michel Marcus, Aug 24 2013

A250289 Numbers n such that the numerator of Bernoulli(n) (A027641(n)) is a semiprime.

Original entry on oeis.org

20, 24, 26, 34, 38, 40, 64, 72, 74, 114, 118, 144, 192
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Examples

			a(1) = 20 so the numerator of Bernoulli(20) = 174611 = 283 * 617 is a semiprime.
		

Crossrefs

Cf. A092132.

A288873 Numerators of scaled Bernoulli numbers 4^n*B(n), with B(n) = A027641(n)/A027642(n).

Original entry on oeis.org

1, -2, 8, 0, -128, 0, 2048, 0, -32768, 0, 2621440, 0, -5796528128, 0, 939524096, 0, -7767448354816, 0, 1507258642989056, 0, -95993412418797568, 0, 7516375836686024704, 0, -33265288504730187726848, 0, 19259875741830735724544, 0, -855664510723636131971203072, 0, 4966694343692730467779807805440
Offset: 0

Views

Author

Wolfdieter Lang, Jul 05 2017

Keywords

Comments

The denominators seem to be given in A141459.
See A285863 for comments on B(d;n) = d^n*B(n), for n >= 0, with e.g.f. d*x/(exp(d*x) - 1).

Examples

			The rationals r(n) begin: 1, -2, 8/3, 0, -128/15, 0, 2048/21, 0, -32768/15, 0, 2621440/33, 0, -5796528128/1365, 0, 939524096/3, 0, -7767448354816/255, 0, 1507258642989056/399, 0, -95993412418797568/165, ...
		

Crossrefs

Cf. A141459, A027641/A027642, (-1)^n*A239275(n)/A141459(n) (B(2;n)), A285863/A285068 (B(3;n)).

Programs

  • Maple
    seq(numer(4^n*bernoulli(n)),n=0..28); # Peter Luschny, Jul 17 2017
  • Mathematica
    Table[4^n BernoulliB[n] // Numerator, {n, 0, 30}] (* Jean-François Alcover, Jul 14 2018 *)
  • PARI
    a(n) = numerator(4^n*bernfrac(n)); \\ Michel Marcus, Jul 06 2017
    
  • Python
    from sympy import bernoulli
    def a(n): return -2 if n == 1 else (4**n * bernoulli(n)).numerator
    [a(n) for n in range(31)]  # Indranil Ghosh, Jul 06 2017

Formula

a(n) = numerator(r(n)), with the rationals r(n) = 4^n*A027641(n)/A027642(n), n >= 0.
E.g.f. of {r(n)}_{n>=0}: 4*x/(exp(4*x) - 1).

A343829 Distinct values of gcd(B(2*j), B(2*j+2)) in the order of their appearance, where B(k) = A027641(k).

Original entry on oeis.org

1, 587, 491, 37, 103, 59, 131, 67, 283, 101, 691, 157, 617, 593, 149, 233, 683, 271, 263, 307, 577, 653, 379, 257, 467, 293, 21719, 541, 1721, 631, 3617, 409, 839, 463
Offset: 1

Views

Author

Robert G. Wilson v, Apr 30 2021

Keywords

Comments

Conjecture: all terms greater than 1 are irregular primes (A000928) or a product of irregular primes.

Crossrefs

Programs

  • Mathematica
    a = Numerator@ BernoulliB@ 2; b = Numerator@ BernoulliB@ 4; k = 6; lst = {}; While[k < 75001, a = b; b = Numerator@ BernoulliB@ k; g = GCD[a, b]; If[ !MemberQ[ lst, g], AppendTo[lst, g]]; k += 2]; lst

A000012 The simplest sequence of positive numbers: the all 1's sequence.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 16 1994

Keywords

Comments

Number of ways of writing n as a product of primes.
Number of ways of writing n as a sum of distinct powers of 2.
Continued fraction for golden ratio A001622.
Partial sums of A000007 (characteristic function of 0). - Jeremy Gardiner, Sep 08 2002
An example of an infinite sequence of positive integers whose distinct pairwise concatenations are all primes! - Don Reble, Apr 17 2005
Binomial transform of A000007; inverse binomial transform of A000079. - Philippe Deléham, Jul 07 2005
A063524(a(n)) = 1. - Reinhard Zumkeller, Oct 11 2008
For n >= 0, let M(n) be the matrix with first row = (n n+1) and 2nd row = (n+1 n+2). Then a(n) = absolute value of det(M(n)). - K.V.Iyer, Apr 11 2009
The partial sums give the natural numbers (A000027). - Daniel Forgues, May 08 2009
From Enrique Pérez Herrero, Sep 04 2009: (Start)
a(n) is also tau_1(n) where tau_2(n) is A000005.
a(n) is a completely multiplicative arithmetical function.
a(n) is both squarefree and a perfect square. See A005117 and A000290. (End)
Also smallest divisor of n. - Juri-Stepan Gerasimov, Sep 07 2009
Also decimal expansion of 1/9. - Enrique Pérez Herrero, Sep 18 2009; corrected by Klaus Brockhaus, Apr 02 2010
a(n) is also the number of complete graphs on n nodes. - Pablo Chavez (pchavez(AT)cmu.edu), Sep 15 2009
Totally multiplicative sequence with a(p) = 1 for prime p. Totally multiplicative sequence with a(p) = a(p-1) for prime p. - Jaroslav Krizek, Oct 18 2009
n-th prime minus phi(prime(n)); number of divisors of n-th prime minus number of perfect partitions of n-th prime; the number of perfect partitions of n-th prime number; the number of perfect partitions of n-th noncomposite number. - Juri-Stepan Gerasimov, Oct 26 2009
For all n>0, the sequence of limit values for a(n) = n!*Sum_{k>=n} k/(k+1)!. Also, a(n) = n^0. - Harlan J. Brothers, Nov 01 2009
a(n) is also the number of 0-regular graphs on n vertices. - Jason Kimberley, Nov 07 2009
Differences between consecutive n. - Juri-Stepan Gerasimov, Dec 05 2009
From Matthew Vandermast, Oct 31 2010: (Start)
1) When sequence is read as a regular triangular array, T(n,k) is the coefficient of the k-th power in the expansion of (x^(n+1)-1)/(x-1).
2) Sequence can also be read as a uninomial array with rows of length 1, analogous to arrays of binomial, trinomial, etc., coefficients. In a q-nomial array, T(n,k) is the coefficient of the k-th power in the expansion of ((x^q -1)/(x-1))^n, and row n has a sum of q^n and a length of (q-1)*n + 1. (End)
The number of maximal self-avoiding walks from the NW to SW corners of a 2 X n grid.
When considered as a rectangular array, A000012 is a member of the chain of accumulation arrays that includes the multiplication table A003991 of the positive integers. The chain is ... < A185906 < A000007 < A000012 < A003991 < A098358 < A185904 < A185905 < ... (See A144112 for the definition of accumulation array.) - Clark Kimberling, Feb 06 2011
a(n) = A007310(n+1) (Modd 3) := A193680(A007310(n+1)), n>=0. For general Modd n (not to be confused with mod n) see a comment on A203571. The nonnegative members of the three residue classes Modd 3, called [0], [1], and [2], are shown in the array A088520, if there the third row is taken as class [0] after inclusion of 0. - Wolfdieter Lang, Feb 09 2012
Let M = Pascal's triangle without 1's (A014410) and V = a variant of the Bernoulli numbers A027641 but starting [1/2, 1/6, 0, -1/30, ...]. Then M*V = [1, 1, 1, 1, ...]. - Gary W. Adamson, Mar 05 2012
As a lower triangular array, T is an example of the fundamental generalized factorial matrices of A133314. Multiplying each n-th diagonal by t^n gives M(t) = I/(I-t*S) = I + t*S + (t*S)^2 + ... where S is the shift operator A129184, and T = M(1). The inverse of M(t) is obtained by multiplying the first subdiagonal of T by -t and the other subdiagonals by zero, so A167374 is the inverse of T. Multiplying by t^n/n! gives exp(t*S) with inverse exp(-t*S). - Tom Copeland, Nov 10 2012
The original definition of the meter was one ten-millionth of the distance from the Earth's equator to the North Pole. According to that historical definition, the length of one degree of latitude, that is, 60 nautical miles, would be exactly 111111.111... meters. - Jean-François Alcover, Jun 02 2013
Deficiency of 2^n. - Omar E. Pol, Jan 30 2014
Consider n >= 1 nonintersecting spheres each with surface area S. Define point p on sphere S_i to be a "public point" if and only if there exists a point q on sphere S_j, j != i, such that line segment pq INTERSECT S_i = {p} and pq INTERSECT S_j = {q}; otherwise, p is a "private point". The total surface area composed of exactly all private points on all n spheres is a(n)*S = S. ("The Private Planets Problem" in Zeitz.) - Rick L. Shepherd, May 29 2014
For n>0, digital roots of centered 9-gonal numbers (A060544). - Colin Barker, Jan 30 2015
Product of nonzero digits in base-2 representation of n. - Franklin T. Adams-Watters, May 16 2016
Alternating row sums of triangle A104684. - Wolfdieter Lang, Sep 11 2016
A fixed point of the run length transform. - Chai Wah Wu, Oct 21 2016
Length of period of continued fraction for sqrt(A002522) or sqrt(A002496). - A.H.M. Smeets, Oct 10 2017
a(n) is also the determinant of the (n+1) X (n+1) matrix M defined by M(i,j) = binomial(i,j) for 0 <= i,j <= n, since M is a lower triangular matrix with main diagonal all 1's. - Jianing Song, Jul 17 2018
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = min(i,j) for 1 <= i,j <= n (see Xavier Merlin reference). - Bernard Schott, Dec 05 2018
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = tau(gcd(i,j)) for 1 <= i,j <= n (see De Koninck & Mercier reference). - Bernard Schott, Dec 08 2020

Examples

			1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))) = A001622.
1/9 = 0.11111111111111...
From _Wolfdieter Lang_, Feb 09 2012: (Start)
Modd 7 for nonnegative odd numbers not divisible by 3:
A007310: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, ...
Modd 3:  1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
(End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 692 pp. 90 and 297, Ellipses, Paris, 2004.
  • Xavier Merlin, Méthodix Algèbre, Exercice 1-a), page 153, Ellipses, Paris, 1995.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 277, 284.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
  • Paul Zeitz, The Art and Craft of Mathematical Problem Solving, The Great Courses, The Teaching Company, 2010 (DVDs and Course Guidebook, Lecture 6: "Pictures, Recasting, and Points of View", pp. 32-34).

Crossrefs

Programs

  • Haskell
    a000012 = const 1
    a000012_list = repeat 1 -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [1 : n in [0..100]];
    
  • Maple
    seq(1, i=0..150);
  • Mathematica
    Array[1 &, 50] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
  • Maxima
    makelist(1, n, 1, 30); /* Martin Ettl, Nov 07 2012 */
    
  • PARI
    {a(n) = 1};
    
  • Python
    print([1 for n in range(90)]) # Michael S. Branicky, Apr 04 2022

Formula

a(n) = 1.
G.f.: 1/(1-x).
E.g.f.: exp(x).
G.f.: Product_{k>=0} (1 + x^(2^k)). - Zak Seidov, Apr 06 2007
Completely multiplicative with a(p^e) = 1.
Regarded as a square array by antidiagonals, g.f. 1/((1-x)(1-y)), e.g.f. Sum T(n,m) x^n/n! y^m/m! = e^{x+y}, e.g.f. Sum T(n,m) x^n y^m/m! = e^y/(1-x). Regarded as a triangular array, g.f. 1/((1-x)(1-xy)), e.g.f. Sum T(n,m) x^n y^m/m! = e^{xy}/(1-x). - Franklin T. Adams-Watters, Feb 06 2006
Dirichlet g.f.: zeta(s). - Ilya Gutkovskiy, Aug 31 2016
a(n) = Sum_{l=1..n} (-1)^(l+1)*2*cos(Pi*l/(2*n+1)) = 1 identically in n >= 1 (for n=0 one has 0 from the undefined sum). From the Jolley reference, (429) p. 80. Interpretation: consider the n segments between x=0 and the n positive zeros of the Chebyshev polynomials S(2*n, x) (see A049310). Then the sum of the lengths of every other segment starting with the one ending in the largest zero (going from the right to the left) is 1. - Wolfdieter Lang, Sep 01 2016
As a lower triangular matrix, T = M*T^(-1)*M = M*A167374*M, where M(n,k) = (-1)^n A130595(n,k). Note that M = M^(-1). Cf. A118800 and A097805. - Tom Copeland, Nov 15 2016

A000027 The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

For some authors, the terms "natural numbers" and "counting numbers" include 0, i.e., refer to the nonnegative integers A001477; the term "whole numbers" frequently also designates the whole set of (signed) integers A001057.
a(n) is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = n (cf. A007378).
Inverse Euler transform of A000219.
The rectangular array having A000027 as antidiagonals is the dispersion of the complement of the triangular numbers, A000217 (which triangularly form column 1 of this array). The array is also the transpose of A038722. - Clark Kimberling, Apr 05 2003
For nonzero x, define f(n) = floor(nx) - floor(n/x). Then f=A000027 if and only if x=tau or x=-tau. - Clark Kimberling, Jan 09 2005
Numbers of form (2^i)*k for odd k (i.e., n = A006519(n)*A000265(n)); thus n corresponds uniquely to an ordered pair (i,k) where i=A007814, k=A000265 (with A007814(2n)=A001511(n), A007814(2n+1)=0). - Lekraj Beedassy, Apr 22 2006
If the offset were changed to 0, we would have the following pattern: a(n)=binomial(n,0) + binomial(n,1) for the present sequence (number of regions in 1-space defined by n points), A000124 (number of regions in 2-space defined by n straight lines), A000125 (number of regions in 3-space defined by n planes), A000127 (number of regions in 4-space defined by n hyperplanes), A006261, A008859, A008860, A008861, A008862 and A008863, where the last six sequences are interpreted analogously and in each "... by n ..." clause an offset of 0 has been assumed, resulting in a(0)=1 for all of them, which corresponds to the case of not cutting with a hyperplane at all and therefore having one region. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Define a number of points on a straight line to be in general arrangement when no two points coincide. Then these are the numbers of regions defined by n points in general arrangement on a straight line, when an offset of 0 is assumed. For instance, a(0)=1, since using no point at all leaves one region. The sequence satisfies the recursion a(n) = a(n-1) + 1. This has the following geometrical interpretation: Suppose there are already n-1 points in general arrangement, thus defining the maximal number of regions on a straight line obtainable by n-1 points, and now one more point is added in general arrangement. Then it will coincide with no other point and act as a dividing wall thereby creating one new region in addition to the a(n-1)=(n-1)+1=n regions already there, hence a(n)=a(n-1)+1. Cf. the comments on A000124 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
The sequence a(n)=n (for n=1,2,3) and a(n)=n+1 (for n=4,5,...) gives to the rank (minimal cardinality of a generating set) for the semigroup I_n\S_n, where I_n and S_n denote the symmetric inverse semigroup and symmetric group on [n]. - James East, May 03 2007
The sequence a(n)=n (for n=1,2), a(n)=n+1 (for n=3) and a(n)=n+2 (for n=4,5,...) gives the rank (minimal cardinality of a generating set) for the semigroup PT_n\T_n, where PT_n and T_n denote the partial transformation semigroup and transformation semigroup on [n]. - James East, May 03 2007
"God made the integers; all else is the work of man." This famous quotation is a translation of "Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk," spoken by Leopold Kronecker in a lecture at the Berliner Naturforscher-Versammlung in 1886. Possibly the first publication of the statement is in Heinrich Weber's "Leopold Kronecker," Jahresberichte D.M.V. 2 (1893) 5-31. - Clark Kimberling, Jul 07 2007
Binomial transform of A019590, inverse binomial transform of A001792. - Philippe Deléham, Oct 24 2007
Writing A000027 as N, perhaps the simplest one-to-one correspondence between N X N and N is this: f(m,n) = ((m+n)^2 - m - 3n + 2)/2. Its inverse is given by I(k)=(g,h), where g = k - J(J-1)/2, h = J + 1 - g, J = floor((1 + sqrt(8k - 7))/2). Thus I(1)=(1,1), I(2)=(1,2), I(3)=(2,1) and so on; the mapping I fills the first-quadrant lattice by successive antidiagonals. - Clark Kimberling, Sep 11 2008
a(n) is also the mean of the first n odd integers. - Ian Kent, Dec 23 2008
Equals INVERTi transform of A001906, the even-indexed Fibonacci numbers starting (1, 3, 8, 21, 55, ...). - Gary W. Adamson, Jun 05 2009
These are also the 2-rough numbers: positive integers that have no prime factors less than 2. - Michael B. Porter, Oct 08 2009
Totally multiplicative sequence with a(p) = p for prime p. Totally multiplicative sequence with a(p) = a(p-1) + 1 for prime p. - Jaroslav Krizek, Oct 18 2009
Triangle T(k,j) of natural numbers, read by rows, with T(k,j) = binomial(k,2) + j = (k^2-k)/2 + j where 1 <= j <= k. In other words, a(n) = n = binomial(k,2) + j where k is the largest integer such that binomial(k,2) < n and j = n - binomial(k,2). For example, T(4,1)=7, T(4,2)=8, T(4,3)=9, and T(4,4)=10. Note that T(n,n)=A000217(n), the n-th triangular number. - Dennis P. Walsh, Nov 19 2009
Hofstadter-Conway-like sequence (see A004001): a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = 1, a(2) = 2. - Jaroslav Krizek, Dec 11 2009
a(n) is also the dimension of the irreducible representations of the Lie algebra sl(2). - Leonid Bedratyuk, Jan 04 2010
Floyd's triangle read by rows. - Paul Muljadi, Jan 25 2010
Number of numbers between k and 2k where k is an integer. - Giovanni Teofilatto, Mar 26 2010
Generated from a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1), r = 2; in an infinite set, row 2 of the array shown in A178568. - Gary W. Adamson, May 29 2010
1/n = continued fraction [n]. Let barover[n] = [n,n,n,...] = 1/k. Then k - 1/k = n. Example: [2,2,2,...] = (sqrt(2) - 1) = 1/k, with k = (sqrt(2) + 1). Then 2 = k - 1/k. - Gary W. Adamson, Jul 15 2010
Number of n-digit numbers the binary expansion of which contains one run of 1's. - Vladimir Shevelev, Jul 30 2010
From Clark Kimberling, Jan 29 2011: (Start)
Let T denote the "natural number array A000027":
1 2 4 7 ...
3 5 8 12 ...
6 9 13 18 ...
10 14 19 25 ...
T(n,k) = n+(n+k-2)*(n+k-1)/2. See A185787 for a list of sequences based on T, such as rows, columns, diagonals, and sub-arrays. (End)
The Stern polynomial B(n,x) evaluated at x=2. See A125184. - T. D. Noe, Feb 28 2011
The denominator in the Maclaurin series of log(2), which is 1 - 1/2 + 1/3 - 1/4 + .... - Mohammad K. Azarian, Oct 13 2011
As a function of Bernoulli numbers B_n (cf. A027641: (1, -1/2, 1/6, 0, -1/30, 0, 1/42, ...)): let V = a variant of B_n changing the (-1/2) to (1/2). Then triangle A074909 (the beheaded Pascal's triangle) * [1, 1/2, 1/6, 0, -1/30, ...] = the vector [1, 2, 3, 4, 5, ...]. - Gary W. Adamson, Mar 05 2012
Number of partitions of 2n+1 into exactly two parts. - Wesley Ivan Hurt, Jul 15 2013
Integers n dividing u(n) = 2u(n-1) - u(n-2); u(0)=0, u(1)=1 (Lucas sequence A001477). - Thomas M. Bridge, Nov 03 2013
For this sequence, the generalized continued fraction a(1)+a(1)/(a(2)+a(2)/(a(3)+a(3)/(a(4)+...))), evaluates to 1/(e-2) = A194807. - Stanislav Sykora, Jan 20 2014
Engel expansion of e-1 (A091131 = 1.71828...). - Jaroslav Krizek, Jan 23 2014
a(n) is the number of permutations of length n simultaneously avoiding 213, 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
a(n) is also the number of permutations simultaneously avoiding 213, 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
a(n) = least k such that 2*Pi - Sum_{h=1..k} 1/(h^2 - h + 3/16) < 1/n. - Clark Kimberling, Sep 28 2014
a(n) = least k such that Pi^2/6 - Sum_{h=1..k} 1/h^2 < 1/n. - Clark Kimberling, Oct 02 2014
Determinants of the spiral knots S(2,k,(1)). a(k) = det(S(2,k,(1))). These knots are also the torus knots T(2,k). - Ryan Stees, Dec 15 2014
As a function, the restriction of the identity map on the nonnegative integers {0,1,2,3...}, A001477, to the positive integers {1,2,3,...}. - M. F. Hasler, Jan 18 2015
See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0: For k=1, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, Apr 24 2015
a(n) is the number of compositions of n+2 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Does not satisfy Benford's law [Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Parametrization for the finite multisubsets of the positive integers, where, for p_j the j-th prime, n = Product_{j} p_j^(e_j) corresponds to the multiset containing e_j copies of j ('Heinz encoding' -- see A056239, A003963, A289506, A289507, A289508, A289509). - Christopher J. Smyth, Jul 31 2017
The arithmetic function v_1(n,1) as defined in A289197. - Robert Price, Aug 22 2017
For n >= 3, a(n)=n is the least area that can be obtained for an irregular octagon drawn in a square of n units side, whose sides are parallel to the axes, with 4 vertices that coincide with the 4 vertices of the square, and the 4 remaining vertices having integer coordinates. See Affaire de Logique link. - Michel Marcus, Apr 28 2018
a(n+1) is the order of rowmotion on a poset defined by a disjoint union of chains of length n. - Nick Mayers, Jun 08 2018
Number of 1's in n-th generation of 1-D Cellular Automata using Rules 50, 58, 114, 122, 178, 186, 206, 220, 238, 242, 250 or 252 in the Wolfram numbering scheme, started with a single 1. - Frank Hollstein, Mar 25 2019
(1, 2, 3, 4, 5, ...) is the fourth INVERT transform of (1, -2, 3, -4, 5, ...). - Gary W. Adamson, Jul 15 2019

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 1.
  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 25.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 22.
  • W. Fulton and J. Harris, Representation theory: a first course, (1991), page 149. [From Leonid Bedratyuk, Jan 04 2010]
  • I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.
  • R. E. Schwartz, You Can Count on Monsters: The First 100 numbers and Their Characters, A. K. Peters and MAA, 2010.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A001477 = nonnegative numbers.
Partial sums of A000012.
Cf. A026081 = integers in reverse alphabetical order in U.S. English, A107322 = English name for number and its reverse have the same number of letters, A119796 = zero through ten in alphabetical order of English reverse spelling, A005589, etc. Cf. A185787 (includes a list of sequences based on the natural number array A000027).
Cf. Boustrophedon transforms: A000737, A231179;
Cf. A038722 (mirrored when seen as triangle), A056011 (boustrophedon).
Cf. A048993, A048994, A000110 (see the Feb 03 2015 formula).

Programs

Formula

a(2k+1) = A005408(k), k >= 0, a(2k) = A005843(k), k >= 1.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
Another g.f.: Sum_{n>0} phi(n)*x^n/(1-x^n) (Apostol).
When seen as an array: T(k, n) = n+1 + (k+n)*(k+n+1)/2. Main diagonal is 2n*(n+1)+1 (A001844), antidiagonal sums are n*(n^2+1)/2 (A006003). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
G.f.: x/(1-x)^2. E.g.f.: x*exp(x). a(n)=n. a(-n)=-a(n).
Series reversion of g.f. A(x) is x*C(-x)^2 where C(x) is the g.f. of A000108. - Michael Somos, Sep 04 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 4*u*v. - Michael Somos, Oct 03 2006
Convolution of A000012 (the all-ones sequence) with itself. - Tanya Khovanova, Jun 22 2007
a(n) = 2*a(n-1)-a(n-2); a(1)=1, a(2)=2. a(n) = 1+a(n-1). - Philippe Deléham, Nov 03 2008
a(n) = A000720(A000040(n)). - Juri-Stepan Gerasimov, Nov 29 2009
a(n+1) = Sum_{k=0..n} A101950(n,k). - Philippe Deléham, Feb 10 2012
a(n) = Sum_{d | n} phi(d) = Sum_{d | n} A000010(d). - Jaroslav Krizek, Apr 20 2012
G.f.: x * Product_{j>=0} (1+x^(2^j))^2 = x * (1+2*x+x^2) * (1+2*x^2+x^4) * (1+2*x^4+x^8) * ... = x + 2x^2 + 3x^3 + ... . - Gary W. Adamson, Jun 26 2012
a(n) = det(binomial(i+1,j), 1 <= i,j <= n). - Mircea Merca, Apr 06 2013
E.g.f.: x*E(0), where E(k) = 1 + 1/(x - x^3/(x^2 + (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 03 2013
From Wolfdieter Lang, Oct 09 2013: (Start)
a(n) = Product_{k=1..n-1} 2*sin(Pi*k/n), n > 1.
a(n) = Product_{k=1..n-1} (2*sin(Pi*k/(2*n)))^2, n > 1.
These identities are used in the calculation of products of ratios of lengths of certain lines in a regular n-gon. For the first identity see the Gradstein-Ryshik reference, p. 62, 1.392 1., bringing the first factor there to the left hand side and taking the limit x -> 0 (L'Hôpital). The second line follows from the first one. Thanks to Seppo Mustonen who led me to consider n-gon lengths products. (End)
a(n) = Sum_{j=0..k} (-1)^(j-1)*j*binomial(n,j)*binomial(n-1+k-j,k-j), k>=0. - Mircea Merca, Jan 25 2014
a(n) = A052410(n)^A052409(n). - Reinhard Zumkeller, Apr 06 2014
a(n) = Sum_{k=1..n^2+2*n} 1/(sqrt(k)+sqrt(k+1)). - Pierre CAMI, Apr 25 2014
a(n) = floor(1/sin(1/n)) = floor(cot(1/(n+1))) = ceiling(cot(1/n)). - Clark Kimberling, Oct 08 2014
a(n) = floor(1/(log(n+1)-log(n))). - Thomas Ordowski, Oct 10 2014
a(k) = det(S(2,k,1)). - Ryan Stees, Dec 15 2014
a(n) = 1/(1/(n+1) + 1/(n+1)^2 + 1/(n+1)^3 + ...). - Pierre CAMI, Jan 22 2015
a(n) = Sum_{m=0..n-1} Stirling1(n-1,m)*Bell(m+1), for n >= 1. This corresponds to Bell(m+1) = Sum_{k=0..m} Stirling2(m, k)*(k+1), for m >= 0, from the fact that Stirling2*Stirling1 = identity matrix. See A048993, A048994 and A000110. - Wolfdieter Lang, Feb 03 2015
a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k*(2n-k). In addition, surprisingly, a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k^2*(2n-k)^2. - Charlie Marion, Jan 05 2016
G.f.: x/(1-x)^2 = (x * r(x) *r(x^3) * r(x^9) * r(x^27) * ...), where r(x) = (1 + x + x^2)^2 = (1 + 2x + 3x^2 + 2x^3 + x^4). - Gary W. Adamson, Jan 11 2017
a(n) = floor(1/(Pi/2-arctan(n))). - Clark Kimberling, Mar 11 2020
a(n) = Sum_{d|n} mu(n/d)*sigma(d). - Ridouane Oudra, Oct 03 2020
a(n) = Sum_{k=1..n} phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
a(n) = S(n-1, 2), with the Chebyshev S-polynomials A049310. - Wolfdieter Lang, Mar 09 2023
From Peter Bala, Nov 02 2024: (Start)
For positive integer m, a(n) = (1/m)* Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k * (2*m*n - k) = (1/m) * Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k^2 * (2*m*n - k)^2 (the case m = 1 is given above).
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * k * binomial(3*n+k, 2*k). (End)

Extensions

Links edited by Daniel Forgues, Oct 07 2009.

A000007 The characteristic function of {0}: a(n) = 0^n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Changing the offset to 1 gives the arithmetical function a(1) = 1, a(n) = 0 for n > 1, the identity function for Dirichlet multiplication (see Apostol). - N. J. A. Sloane
Changing the offset to 1 makes this the decimal expansion of 1. - N. J. A. Sloane, Nov 13 2014
Hankel transform (see A001906 for definition) of A000007 (powers of 0), A000012 (powers of 1), A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A000420 (powers of 7), A001018 (powers of 8), A001019 (powers of 9), A011557 (powers of 10), A001020 (powers of 11), etc. - Philippe Deléham, Jul 07 2005
This is the identity sequence with respect to convolution. - David W. Wilson, Oct 30 2006
a(A000004(n)) = 1; a(A000027(n)) = 0. - Reinhard Zumkeller, Oct 12 2008
The alternating sum of the n-th row of Pascal's triangle gives the characteristic function of 0, a(n) = 0^n. - Daniel Forgues, May 25 2010
The number of maximal self-avoiding walks from the NW to SW corners of a 1 X n grid. - Sean A. Irvine, Nov 19 2010
Historically there has been some disagreement as to whether 0^0 = 1. Graphing x^0 seems to support that conclusion, but graphing 0^x instead suggests that 0^0 = 0. Euler and Knuth have argued in favor of 0^0 = 1. For some calculators, 0^0 triggers an error, while in Mathematica, 0^0 is Indeterminate. - Alonso del Arte, Nov 15 2011
Another consequence of changing the offset to 1 is that then this sequence can be described as the sum of Moebius mu(d) for the divisors d of n. - Alonso del Arte, Nov 28 2011
With the convention 0^0 = 1, 0^n = 0 for n > 0, the sequence a(n) = 0^|n-k|, which equals 1 when n = k and is 0 for n >= 0, has g.f. x^k. A000007 is the case k = 0. - George F. Johnson, Mar 08 2013
A fixed point of the run length transform. - Chai Wah Wu, Oct 21 2016

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 30.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Characteristic function of {g}: this sequence (g = 0), A063524 (g = 1), A185012 (g = 2), A185013 (g = 3), A185014 (g = 4), A185015 (g = 5), A185016 (g = 6), A185017 (g = 7). - Jason Kimberley, Oct 14 2011
Characteristic function of multiples of g: this sequence (g = 0), A000012 (g = 1), A059841 (g = 2), A079978 (g = 3), A121262 (g = 4), A079998 (g = 5), A079979 (g = 6), A082784 (g = 7). - Jason Kimberley, Oct 14 2011

Programs

  • Haskell
    a000007 = (0 ^)
    a000007_list = 1 : repeat 0
    -- Reinhard Zumkeller, May 07 2012, Mar 27 2012
    
  • Magma
    [1] cat [0:n in [1..100]]; // Sergei Haller, Dec 21 2006
    
  • Maple
    A000007 := proc(n) if n = 0 then 1 else 0 fi end: seq(A000007(n), n=0..20);
    spec := [A, {A=Z} ]: seq(combstruct[count](spec, size=n+1), n=0..20);
  • Mathematica
    Table[If[n == 0, 1, 0], {n, 0, 99}]
    Table[Boole[n == 0], {n, 0, 99}] (* Michael Somos, Aug 25 2012 *)
    Join[{1},LinearRecurrence[{1},{0},102]] (* Ray Chandler, Jul 30 2015 *)
    PadRight[{1},120,0] (* Harvey P. Dale, Jul 18 2024 *)
  • PARI
    {a(n) = !n};
    
  • Python
    def A000007(n): return int(n==0) # Chai Wah Wu, Feb 04 2022

Formula

Multiplicative with a(p^e) = 0. - David W. Wilson, Sep 01 2001
a(n) = floor(1/(n + 1)). - Franz Vrabec, Aug 24 2005
As a function of Bernoulli numbers (cf. A027641: (1, -1/2, 1/6, 0, -1/30, ...)), triangle A074909 (the beheaded Pascal's triangle) * B_n as a vector = [1, 0, 0, 0, 0, ...]. - Gary W. Adamson, Mar 05 2012
a(n) = Sum_{k = 0..n} exp(2*Pi*i*k/(n+1)) is the sum of the (n+1)th roots of unity. - Franz Vrabec, Nov 09 2012
a(n) = (1-(-1)^(2^n))/2. - Luce ETIENNE, May 05 2015
a(n) = 1 - A057427(n). - Alois P. Heinz, Jan 20 2016
From Ilya Gutkovskiy, Sep 02 2016: (Start)
Binomial transform of A033999.
Inverse binomial transform of A000012. (End)

A000051 a(n) = 2^n + 1.

Original entry on oeis.org

2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 8589934593
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequence L(2,3).
Length of the continued fraction for Sum_{k=0..n} 1/3^(2^k). - Benoit Cloitre, Nov 12 2003
See also A004119 for a(n) = 2a(n-1)-1 with first term = 1. - Philippe Deléham, Feb 20 2004
From the second term on (n>=1), in base 2, these numbers present the pattern 1000...0001 (with n-1 zeros), which is the "opposite" of the binary 2^n-2: (0)111...1110 (cf. A000918). - Alexandre Wajnberg, May 31 2005
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)* charpoly(A,3). - Milan Janjic, Jan 27 2010
First differences of A006127. - Reinhard Zumkeller, Apr 14 2011
The odd prime numbers in this sequence form A019434, the Fermat primes. - David W. Wilson, Nov 16 2011
Pisano period lengths: 1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 10, 2, 12, 3, 4, 1, 8, 6, 18, 4, ... . - R. J. Mathar, Aug 10 2012
Is the mentioned Pisano period lengths (see above) the same as A007733? - Omar E. Pol, Aug 10 2012
Only positive integers that are not 1 mod (2k+1) for any k>1. - Jon Perry, Oct 16 2012
For n >= 1, a(n) is the total length of the segments of the Hilbert curve after n iterations. - Kival Ngaokrajang, Mar 30 2014
Frénicle de Bessy (1657) proved that a(3) = 9 is the only square in this sequence. - Charles R Greathouse IV, May 13 2014
a(n) is the number of distinct possible sums made with at most two elements in {1,...,a(n-1)} for n > 0. - Derek Orr, Dec 13 2014
For n > 0, given any set of a(n) lattice points in R^n, there exist 2 distinct members in this set whose midpoint is also a lattice point. - Melvin Peralta, Jan 28 2017
Also the number of independent vertex sets, irredundant sets, and vertex covers in the (n+1)-star graph. - Eric W. Weisstein, Aug 04 and Sep 21 2017
Also the number of maximum matchings in the 2(n-1)-crossed prism graph. - Eric W. Weisstein, Dec 31 2017
Conjecture: For any integer n >= 0, a(n) is the permanent of the (n+1) X (n+1) matrix with M(j, k) = -floor((j - k - 1)/(n + 1)). This conjecture is inspired by the conjecture of Zhi-Wei Sun in A036968. - Peter Luschny, Sep 07 2021

References

  • Paul Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 60, 244.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.

Crossrefs

Apart from the initial 1, identical to A094373.
See A008776 for definitions of Pisot sequences.
Column 2 of array A103438.
Cf. A007583 (a((n-1)/2)/3 for odd n).

Programs

  • Haskell
    a000051 = (+ 1) . a000079
    a000051_list = iterate ((subtract 1) . (* 2)) 2
    -- Reinhard Zumkeller, May 03 2012
    
  • Magma
    [2^n+1: n in [0..40]]; // G. C. Greubel, Jan 18 2025
  • Maple
    A000051:=-(-2+3*z)/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
    a := n -> add(binomial(n,k)*bernoulli(n-k,1)*2^(k+1)/(k+1),k=0..n); # Peter Luschny, Apr 20 2009
  • Mathematica
    Table[2^n + 1, {n,0,40}]
    2^Range[0,40] + 1 (* Eric W. Weisstein, Jul 17 2017 *)
    LinearRecurrence[{3, -2}, {2, 3}, 40] (* Eric W. Weisstein, Sep 21 2017 *)
  • PARI
    a(n)=2^n+1
    
  • PARI
    first(n) = Vec((2 - 3*x)/((1 - x)*(1 - 2*x)) + O(x^n)) \\ Iain Fox, Dec 31 2017
    
  • Python
    def A000051(n): return (1<Chai Wah Wu, Dec 21 2022
    

Formula

a(n) = 2*a(n-1) - 1 = 3*a(n-1) - 2*a(n-2).
G.f.: (2-3*x)/((1-x)*(1-2*x)).
First differences of A052944. - Emeric Deutsch, Mar 04 2004
a(0) = 1, then a(n) = (Sum_{i=0..n-1} a(i)) - (n-2). - Gerald McGarvey, Jul 10 2004
Inverse binomial transform of A007689. Also, V sequence in Lucas sequence L(3, 2). - Ross La Haye, Feb 07 2005
a(n) = A127904(n+1) for n>0. - Reinhard Zumkeller, Feb 05 2007
Equals binomial transform of [2, 1, 1, 1, ...]. - Gary W. Adamson, Apr 23 2008
a(n) = A000079(n)+1. - Omar E. Pol, May 18 2008
E.g.f.: exp(x) + exp(2*x). - Mohammad K. Azarian, Jan 02 2009
a(n) = A024036(n)/A000225(n). - Reinhard Zumkeller, Feb 14 2009
From Peter Luschny, Apr 20 2009: (Start)
A weighted binomial sum of the Bernoulli numbers A027641/A027642 with A027641(1)=1 (which amounts to the definition B_{n} = B_{n}(1)).
a(n) = Sum_{k=0..n} C(n,k)*B_{n-k}*2^(k+1)/(k+1). (See also A052584.) (End)
a(n) is the a(n-1)-th odd number for n >= 1. - Jaroslav Krizek, Apr 25 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n)*A000225(n) = A000225(2*n).
a(n) = A173786(n,0). (End)
If p[i]=Fibonacci(i-4) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise, then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n+2) = a(n) + a(n+1) + A000225(n). - Ivan N. Ianakiev, Jun 24 2012
a(A006521(n)) mod A006521(n) = 0. - Reinhard Zumkeller, Jul 17 2014
a(n) = 3*A007583((n-1)/2) for n odd. - Eric W. Weisstein, Jul 17 2017
Sum_{n>=0} 1/a(n) = A323482. - Amiram Eldar, Nov 11 2020

A027642 Denominator of Bernoulli number B_n.

Original entry on oeis.org

1, 2, 6, 1, 30, 1, 42, 1, 30, 1, 66, 1, 2730, 1, 6, 1, 510, 1, 798, 1, 330, 1, 138, 1, 2730, 1, 6, 1, 870, 1, 14322, 1, 510, 1, 6, 1, 1919190, 1, 6, 1, 13530, 1, 1806, 1, 690, 1, 282, 1, 46410, 1, 66, 1, 1590, 1, 798, 1, 870, 1, 354, 1, 56786730, 1
Offset: 0

Views

Author

Keywords

Comments

Row products of A138243. - Mats Granvik, Mar 08 2008
From Gary W. Adamson, Aug 09 2008: (Start)
Equals row products of triangle A143343 and for a(n) > 1, row products of triangle A080092.
Julius Worpitzky's 1883 algorithm for generating Bernoulli numbers is described in A028246. (End)
The sequence of denominators of B_n is defined here by convention, not by necessity. The convention amounts to mapping 0 to the rational number 0/1. It might be more appropriate to regard numerators and denominators of the Bernoulli numbers as independent sequences N_n and D_n which combine to B_n = N_n / D_n. This is suggested by the theorem of Clausen which describes the denominators as the sequence D_n = 1, 2, 6, 2, 30, 2, 42, ... which combines with N_n = 1, -1, 1, 0, -1, 0, ... to the sequence of Bernoulli numbers. (Cf. A141056 and A027760.) - Peter Luschny, Apr 29 2009

Examples

			The sequence of Bernoulli numbers B_n (n = 0, 1, 2, ...) begins 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, -691/2730, 0, 7/6, 0, -3617/510, ... [Clarified by _N. J. A. Sloane_, Jun 02 2025]
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.
  • Jacob Bernoulli, Ars Conjectandi, Basel: Thurneysen Brothers, 1713. See page 97.
  • Thomas Clausen, "Lehrsatz aus einer Abhandlung Über die Bernoullischen Zahlen", Astr. Nachr. 17 (1840), 351-352 (see P. Luschny link).
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 106-108.
  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 230.
  • L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 137.
  • Roger Plymen, The Great Prime Number Race, AMS, 2020. See pp. 8-10.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 161.

Crossrefs

See A027641 (numerators) for full list of references, links, formulas, etc.

Programs

  • Haskell
    a027642 n = a027642_list !! n
    a027642_list = 1 : map (denominator . sum) (zipWith (zipWith (%))
       (zipWith (map . (*)) (tail a000142_list) a242179_tabf) a106831_tabf)
    -- Reinhard Zumkeller, Jul 04 2014
    
  • Magma
    [Denominator(Bernoulli(n)): n in [0..150]]; // Vincenzo Librandi, Mar 29 2011
    
  • Maple
    (-1)^n*sum( (-1)^'m'*'m'!*stirling2(n,'m')/('m'+1),'m'=0..n);
    A027642 := proc(n) denom(bernoulli(n)) ; end: # Zerinvary Lajos, Apr 08 2009
  • Mathematica
    Table[ Denominator[ BernoulliB[n]], {n, 0, 68}] (* Robert G. Wilson v, Oct 11 2004 *)
    Denominator[ Range[0, 68]! CoefficientList[ Series[x/(E^x - 1), {x, 0, 68}], x]]
    (* Alternative code using Clausen Theorem: *)
    A027642[k_Integer]:=If[EvenQ[k],Times@@Table[Max[1,Prime[i]*Boole[Divisible[k,Prime[i]-1]]],{i,1,PrimePi[2k]}],1+KroneckerDelta[k,1]]; (* Enrique Pérez Herrero, Jul 15 2010 *)
    a[0] = 1; a[1] = 2; a[n_?OddQ] = 1; a[n_] := Times @@ Select[Divisors[n] + 1, PrimeQ]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 12 2012, after Ilan Vardi, when direct computation for large n is unfeasible *)
  • PARI
    a(n)=if(n<0, 0, denominator(bernfrac(n)))
    
  • PARI
    a(n) = if(n == 0 || (n > 1 && n % 2), 1, vecprod(select(x -> isprime(x), apply(x -> x + 1, divisors(n))))); \\ Amiram Eldar, Apr 24 2024
    
  • Python
    from sympy import bernoulli
    [bernoulli(i).denominator for i in range(51)] # Indranil Ghosh, Mar 18 2017
  • Sage
    def A027642_list(len):
        f, R, C = 1, [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            f *= n
            for k in range(n, 0, -1):
                C[k] = C[k-1] / (k+1)
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*f).denominator())
        return R
    A027642_list(62) # Peter Luschny, Feb 20 2016
    

Formula

E.g.f: x/(exp(x) - 1); take denominators.
Let E(x) be the e.g.f., then E(x) = U(0), where U(k) = 2*k + 1 - x*(2*k+1)/(x + (2*k+2)/(1 + x/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Jun 25 2012
E.g.f.: x/(exp(x)-1) = E(0) where E(k) = 2*k+1 - x/(2 + x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 16 2013
E.g.f.: x/(exp(x)-1) = 2*E(0) - 2*x, where E(k)= x + (k+1)/(1 + 1/(1 - x/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 10 2013
E.g.f.: x/(exp(x)-1) = (1-x)/E(0), where E(k) = 1 - x*(k+1)/(x*(k+1) + (k+2-x)*(k+1-x)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 21 2013
E.g.f.: conjecture: x/(exp(x)-1) = T(0)/2 - x, where T(k) = 8*k+2 + x/( 1 - x/( 8*k+6 + x/( 1 - x/T(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2013
a(2*n) = 2*A001897(n) = A002445(n) = 3*A277087(n) for n >= 1. Jonathan Sondow, Dec 14 2016
Previous Showing 11-20 of 255 results. Next