cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 190 results. Next

A002426 Central trinomial coefficients: largest coefficient of (1 + x + x^2)^n.

Original entry on oeis.org

1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953, 25653, 73789, 212941, 616227, 1787607, 5196627, 15134931, 44152809, 128996853, 377379369, 1105350729, 3241135527, 9513228123, 27948336381, 82176836301, 241813226151, 712070156203, 2098240353907, 6186675630819
Offset: 0

Views

Author

Keywords

Comments

Number of ordered trees with n + 1 edges, having root of odd degree and nonroot nodes of outdegree at most 2. - Emeric Deutsch, Aug 02 2002
Number of paths of length n with steps U = (1,1), D = (1,-1) and H = (1,0), running from (0,0) to (n,0) (i.e., grand Motzkin paths of length n). For example, a(3) = 7 because we have HHH, HUD, HDU, UDH, DUH, UHD and DHU. - Emeric Deutsch, May 31 2003
Number of lattice paths from (0,0) to (n,n) using steps (2,0), (0,2), (1,1). It appears that 1/sqrt((1 - x)^2 - 4*x^s) is the g.f. for lattice paths from (0,0) to (n,n) using steps (s,0), (0,s), (1,1). - Joerg Arndt, Jul 01 2011
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,2). - Joerg Arndt, Jul 05 2011
Binomial transform of A000984, with interpolated zeros. - Paul Barry, Jul 01 2003
Number of leaves in all 0-1-2 trees with n edges, n > 0. (A 0-1-2 tree is an ordered tree in which every vertex has at most two children.) - Emeric Deutsch, Nov 30 2003
a(n) is the number of UDU-free paths of n + 1 upsteps (U) and n downsteps (D) that start U. For example, a(2) = 3 counts UUUDD, UUDDU, UDDUU. - David Callan, Aug 18 2004
Diagonal sums of triangle A063007. - Paul Barry, Aug 31 2004
Number of ordered ballots from n voters that result in an equal number of votes for candidates A and B in a three candidate election. Ties are counted even when candidates A and B lose the election. For example, a(3) = 7 because ballots of the form (voter-1 choice, voter-2 choice, voter-3 choice) that result in equal votes for candidates A and B are the following: (A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B), (C,B,A) and (C,C,C). - Dennis P. Walsh, Oct 08 2004
a(n) is the number of weakly increasing sequences (a_1,a_2,...,a_n) with each a_i in [n]={1,2,...,n} and no element of [n] occurring more than twice. For n = 3, the sequences are 112, 113, 122, 123, 133, 223, 233. - David Callan, Oct 24 2004
Note that n divides a(n+1) - a(n). In fact, (a(n+1) - a(n))/n = A007971(n+1). - T. D. Noe, Mar 16 2005
Row sums of triangle A105868. - Paul Barry, Apr 23 2005
Number of paths of length n with steps U = (1,1), D = (1,-1) and H = (1,0), starting at (0,0), staying weakly above the x-axis (i.e., left factors of Motzkin paths) and having no H steps on the x-axis. Example: a(3) = 7 because we have UDU, UHD, UHH, UHU, UUD, UUH and UUU. - Emeric Deutsch, Oct 07 2007
Equals right border of triangle A152227; starting with offset 1, the row sums of triangle A152227. - Gary W. Adamson, Nov 29 2008
Starting with offset 1 = iterates of M * [1,1,1,...] where M = a tridiagonal matrix with [0,1,1,1,...] in the main diagonal and [1,1,1,...] in the super and subdiagonals. - Gary W. Adamson, Jan 07 2009
Hankel transform is 2^n. - Paul Barry, Aug 05 2009
a(n) is prime for n = 2, 3 and 4, with no others for n <= 10^5 (E. W. Weisstein, Mar 14 2005). It has apparently not been proved that no [other] prime central trinomials exist. - Jonathan Vos Post, Mar 19 2010
a(n) is not divisible by 3 for n whose base-3 representation contains no 2 (A005836).
a(n) = number of (n-1)-lettered words in the alphabet {1,2,3} with as many occurrences of the substring (consecutive subword) [1,2] as those of [2,1]. See the papers by Ekhad-Zeilberger and Zeilberger. - N. J. A. Sloane, Jul 05 2012
a(n) = coefficient of x^n in (1 + x + x^2)^n. - L. Edson Jeffery, Mar 23 2013
a(n) is the number of ordered pairs (A,B) of subsets of {1,2,...,n} such that (i.) A and B are disjoint and (ii.) A and B contain the same number of elements. For example, a(2) = 3 because we have: ({},{}) ; ({1},{2}) ; ({2},{1}). - Geoffrey Critzer, Sep 04 2013
Also central terms of A082601. - Reinhard Zumkeller, Apr 13 2014
a(n) is the number of n-tuples with entries 0, 1, or 2 and with the sum of entries equal to n. For n=3, the seven 3-tuples are (1,1,1), (0,1,2), (0,2,1), (1,0,2), (1,2,0), (2,0,1), and (2,1,0). - Dennis P. Walsh, May 08 2015
The series 2*a(n) + 3*a(n+1) + a(n+2) = 2*A245455(n+3) has Hankel transform of L(2n+1)*2^n, offset n = 1, L being a Lucas number, see A002878 (empirical observation). - Tony Foster III, Sep 05 2016
The series (2*a(n) + 3*a(n+1) + a(n+2))/2 = A245455(n+3) has Hankel transform of L(2n+1), offset n=1, L being a Lucas number, see A002878 (empirical observation). - Tony Foster III, Sep 05 2016
Conjecture: An integer n > 3 is prime if and only if a(n) == 1 (mod n^2). We have verified this for n up to 8*10^5, and proved that a(p) == 1 (mod p^2) for any prime p > 3 (cf. A277640). - Zhi-Wei Sun, Nov 30 2016
This is the analog for Coxeter type B of Motzkin numbers (A001006) for Coxeter type A. - F. Chapoton, Jul 19 2017
a(n) is also the number of solutions to the equation x(1) + x(2) + ... + x(n) = 0, where x(1), ..., x(n) are in the set {-1,0,1}. Indeed, the terms in (1 + x + x^2)^n that produce x^n are of the form x^i(1)*x^i(2)*...*x^i(n) where i(1), i(2), ..., i(n) are in {0,1,2} and i(1) + i(2) + ... + i(n) = n. By setting j(t) = i(t) - 1 we obtain that j(1), ..., j(n) satisfy j(1) + ... + j(n) =0 and j(t) in {-1,0,1} for all t = 1..n. - Lucien Haddad, Mar 10 2018
If n is a prime greater than 3 then a(n)-1 is divisible by n^2. - Ira M. Gessel, Aug 08 2021
Let f(m) = ceiling((q+log(q))/log(9)), where q = -log(log(27)/(2*m^2*Pi)) then f(a(n)) = n, for n > 0. - Miko Labalan, Oct 07 2024
Diagonal of the rational function 1 / (1 - x^2 - y^2 - x*y). - Ilya Gutkovskiy, Apr 23 2025

Examples

			For n = 2, (x^2 + x + 1)^2 = x^4 + 2*x^3 + 3*x^2 + 2*x + 1, so a(2) = 3. - _Michael B. Porter_, Sep 06 2016
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 78 and 163, #19.
  • L. Euler, Exemplum Memorabile Inductionis Fallacis, Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 59.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 575.
  • P. Henrici, Applied and Computational Complex Analysis. Wiley, NY, 3 vols., 1974-1986. (Vol. 1, p. 42.)
  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 579.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 74.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 6.3.8.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 22.
  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346. See p. 341.

Crossrefs

INVERT transform is A007971. Partial sums are A097893. Squares are A168597.
Main column of A027907. Column k=2 of A305161. Column k=0 of A328347. Column 1 of A201552(?).
Cf. A001006, A002878, A005043, A005717, A082758 (bisection), A273055 (bisection), A102445, A113302, A113303, A113304, A113305 (divisibility of central trinomial coefficients), A152227, A277640.

Programs

  • Haskell
    a002426 n = a027907 n n  -- Reinhard Zumkeller, Jan 22 2013
    
  • Magma
    P:=PolynomialRing(Integers()); [Max(Coefficients((1+x+x^2)^n)): n in [0..26]]; // Bruno Berselli, Jul 05 2011
    
  • Maple
    A002426 := proc(n) local k;
        sum(binomial(n, k)*binomial(n-k, k), k=0..floor(n/2));
    end proc: # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
    # Alternatively:
    a := n -> simplify(GegenbauerC(n,-n,-1/2)):
    seq(a(n), n=0..29); # Peter Luschny, May 07 2016
  • Mathematica
    Table[ CoefficientList[ Series[(1 + x + x^2)^n, {x, 0, n}], x][[ -1]], {n, 0, 27}] (* Robert G. Wilson v *)
    a=b=1; Join[{a,b}, Table[c=((2n-1)b + 3(n-1)a)/n; a=b; b=c; c, {n,2,100}]]; Table[Sqrt[-3]^n LegendreP[n,1/Sqrt[-3]],{n,0,26}] (* Wouter Meeussen, Feb 16 2013 *)
    a[ n_] := If[ n < 0, 0, 3^n Hypergeometric2F1[ 1/2, -n, 1, 4/3]]; (* Michael Somos, Jul 08 2014 *)
    Table[4^n *JacobiP[n,-n-1/2,-n-1/2,-1/2], {n,0,29}] (* Peter Luschny, May 13 2016 *)
    a[n_] := a[n] = Sum[n!/((n - 2*i)!*(i!)^2), {i, 0, n/2}]; Table[a[n], {n, 0, 29}] (* Shara Lalo and Zagros Lalo, Oct 03 2018 *)
  • Maxima
    trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k);
    makelist(trinomial(n,n),n,0,12); /* Emanuele Munarini, Mar 15 2011 */
    
  • Maxima
    makelist(ultraspherical(n,-n,-1/2),n,0,12); /* Emanuele Munarini, Dec 20 2016 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + x + x^2)^n, n))};
    
  • PARI
    /* as lattice paths: same as in A092566 but use */
    steps=[[2, 0], [0, 2], [1, 1]];
    /* Joerg Arndt, Jul 01 2011 */
    
  • PARI
    a(n)=polcoeff(sum(m=0, n, (2*m)!/m!^2 * x^(2*m) / (1-x+x*O(x^n))^(2*m+1)), n) \\ Paul D. Hanna, Sep 21 2013
    
  • Python
    from math import comb
    def A002426(n): return sum(comb(n,k)*comb(k,n-k) for k in range(n+1)) # Chai Wah Wu, Nov 15 2022
  • Sage
    A002426 = lambda n: hypergeometric([-n/2, (1-n)/2], [1], 4)
    [simplify(A002426(n)) for n in (0..29)]
    # Peter Luschny, Sep 17 2014
    
  • Sage
    def A():
        a, b, n = 1, 1, 1
        yield a
        while True:
            yield b
            n += 1
            a, b = b, ((3 * (n - 1)) * a + (2 * n - 1) * b) // n
    A002426 = A()
    print([next(A002426) for  in range(30)])  # _Peter Luschny, May 16 2016
    

Formula

G.f.: 1/sqrt(1 - 2*x - 3*x^2).
E.g.f.: exp(x)*I_0(2x), where I_0 is a Bessel function. - Michael Somos, Sep 09 2002
a(n) = 2*A027914(n) - 3^n. - Benoit Cloitre, Sep 28 2002
a(n) is asymptotic to d*3^n/sqrt(n) with d around 0.5.. - Benoit Cloitre, Nov 02 2002, d = sqrt(3/Pi)/2 = 0.4886025119... - Alec Mihailovs (alec(AT)mihailovs.com), Feb 24 2005
D-finite with recurrence: a(n) = ((2*n - 1)*a(n-1) + 3*(n - 1)*a(n-2))/n; a(0) = a(1) = 1; see paper by Barcucci, Pinzani and Sprugnoli.
Inverse binomial transform of A000984. - Vladeta Jovovic, Apr 28 2003
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(k, k/2)*(1 + (-1)^k)/2; a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*binomial(2*k, k). - Paul Barry, Jul 01 2003
a(n) = Sum_{k>=0} binomial(n, 2*k)*binomial(2*k, k). - Philippe Deléham, Dec 31 2003
a(n) = Sum_{i+j=n, 0<=j<=i<=n} binomial(n, i)*binomial(i, j). - Benoit Cloitre, Jun 06 2004
a(n) = 3*a(n-1) - 2*A005043(n). - Joost Vermeij (joost_vermeij(AT)hotmail.com), Feb 10 2005
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(k, n-k). - Paul Barry, Apr 23 2005
a(n) = (-1/4)^n*Sum_{k=0..n} binomial(2*k, k)*binomial(2*n-2*k, n-k)*(-3)^k. - Philippe Deléham, Aug 17 2005
a(n) = A111808(n,n). - Reinhard Zumkeller, Aug 17 2005
a(n) = Sum_{k=0..n} (((1 + (-1)^k)/2)*Sum_{i=0..floor((n-k)/2)} binomial(n, i)*binomial(n-i, i+k)*((k + 1)/(i + k + 1))). - Paul Barry, Sep 23 2005
a(n) = 3^n*Sum_{j=0..n} (-1/3)^j*C(n, j)*C(2*j, j); follows from (a) in A027907. - Loic Turban (turban(AT)lpm.u-nancy.fr), Aug 31 2006
a(n) = (1/2)^n*Sum_{j=0..n} 3^j*binomial(n, j)*binomial(2*n-2*j, n) = (3/2)^n*Sum_{j=0..n} (1/3)^j*binomial(n, j)*binomial(2*j, n); follows from (c) in A027907. - Loic Turban (turban(AT)lpm.u-nancy.fr), Aug 31 2006
a(n) = (1/Pi)*Integral_{x=-1..3} x^n/sqrt((3 - x)*(1 + x)) is moment representation. - Paul Barry, Sep 10 2007
G.f.: 1/(1 - x - 2x^2/(1 - x - x^2/(1 - x - x^2/(1 - ... (continued fraction). - Paul Barry, Aug 05 2009
a(n) = sqrt(-1/3)*(-1)^n*hypergeometric([1/2, n+1], [1], 4/3). - Mark van Hoeij, Nov 12 2009
a(n) = (1/Pi)*Integral_{x=-1..1} (1 + 2*x)^n/sqrt(1 - x^2) = (1/Pi)*Integral_{t=0..Pi} (1 + 2*cos(t))^n. - Eli Wolfhagen, Feb 01 2011
In general, g.f.: 1/sqrt(1 - 2*a*x + x^2*(a^2 - 4*b)) = 1/(1 - a*x)*(1 - 2*x^2*b/(G(0)*(a*x - 1) + 2*x^2*b)); G(k) = 1 - a*x - x^2*b/G(k+1); for g.f.: 1/sqrt(1 - 2*x - 3*x^2) = 1/(1 - x)*(1 - 2*x^2/(G(0)*(x - 1) + 2*x^2)); G(k) = 1 - x - x^2/G(k+1), a = 1, b = 1; (continued fraction). - Sergei N. Gladkovskii, Dec 08 2011
a(n) = Sum_{k=0..floor(n/3)} (-1)^k*binomial(2*n-3*k-1, n-3*k)*binomial(n, k). - Gopinath A. R., Feb 10 2012
G.f.: A(x) = x*B'(x)/B(x) where B(x) satisfies B(x) = x*(1 + B(x) + B(x)^2). - Vladimir Kruchinin, Feb 03 2013 (B(x) = x*A001006(x) - Michael Somos, Jul 08 2014)
G.f.: G(0), where G(k) = 1 + x*(2 + 3*x)*(4*k + 1)/(4*k + 2 - x*(2 + 3*x)*(4*k + 2)*(4*k + 3)/(x*(2 + 3*x)*(4*k + 3) + 4*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013
E.g.f.: exp(x) * Sum_{k>=0} (x^k/k!)^2. - Geoffrey Critzer, Sep 04 2013
G.f.: Sum_{n>=0} (2*n)!/n!^2*(x^(2*n)/(1 - x)^(2*n+1)). - Paul D. Hanna, Sep 21 2013
0 = a(n)*(9*a(n+1) + 9*a(n+2) - 6*a(n+3)) + a(n+1)*(3*a(n+1) + 4*a(n+2) - 3*a(n+3)) + a(n+2)*(-a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Jul 08 2014
a(n) = hypergeometric([-n/2, (1-n)/2], [1], 4). - Peter Luschny, Sep 17 2014
a(n) = A132885(n,0), that is, a(n) = A132885(A002620(n+1)). - Altug Alkan, Nov 29 2015
a(n) = GegenbauerC(n,-n,-1/2). - Peter Luschny, May 07 2016
a(n) = 4^n*JacobiP[n,-n-1/2,-n-1/2,-1/2]. - Peter Luschny, May 13 2016
From Alexander Burstein, Oct 03 2017: (Start)
G.f.: A(4*x) = B(-x)*B(3*x), where B(x) is the g.f. of A000984.
G.f.: A(2*x)*A(-2*x) = B(x^2)*B(9*x^2).
G.f.: A(x) = 1 + x*M'(x)/M(x), where M(x) is the g.f. of A001006. (End)
a(n) = Sum_{i=0..n/2} n!/((n - 2*i)!*(i!)^2). [Cf. Lalo and Lalo link. It is Luschny's terminating hypergeometric sum.] - Shara Lalo and Zagros Lalo, Oct 03 2018
From Peter Bala, Feb 07 2022: (Start)
a(n)^2 = Sum_{k = 0..n} (-3)^(n-k)*binomial(2*k,k)^2*binomial(n+k,n-k) and has g.f. Sum_{n >= 0} binomial(2*n,n)^2*x^n/(1 + 3*x)^(2*n+1). Compare with the g.f. for a(n) given above by Hanna.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all prime p and positive integers n and k.
Conjecture: The stronger congruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all prime p >= 5 and positive integers n and k. (End)
a(n) = A005043(n) + A005717(n) for n >= 1. - Amiram Eldar, May 17 2024
For even n, a(n) = (n-1)!!* 2^{n/2}/ (n/2)!* 2F1(-n/2,-n/2;1/2;1/4). For odd n, a(n) = n!! *2^(n/2-1/2) / (n/2-1/2)! * 2F1(1/2-n/2,1/2-n/2;3/2;1/4). - R. J. Mathar, Mar 19 2025

A001792 a(n) = (n+2)*2^(n-1).

Original entry on oeis.org

1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816, 6144, 13312, 28672, 61440, 131072, 278528, 589824, 1245184, 2621440, 5505024, 11534336, 24117248, 50331648, 104857600, 218103808, 452984832, 939524096, 1946157056, 4026531840, 8321499136, 17179869184, 35433480192
Offset: 0

Views

Author

Keywords

Comments

Number of parts in all compositions (ordered partitions) of n + 1. For example, a(2) = 8 because in 3 = 2 + 1 = 1 + 2 = 1 + 1 + 1 we have 8 parts. Also number of compositions (ordered partitions) of 2n + 1 with exactly 1 odd part. For example, a(2) = 8 because the only compositions of 5 with exactly 1 odd part are 5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1 = 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1. - Emeric Deutsch, May 10 2001
Binomial transform of natural numbers [1, 2, 3, 4, ...].
For n >= 1 a(n) is also the determinant of the n X n matrix with 3's on the diagonal and 1's elsewhere. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001
The arithmetic mean of first n terms of the sequence is 2^(n-1). - Amarnath Murthy, Dec 25 2001, corrected by M. F. Hasler, Dec 17 2016
Also the number of "winning paths" of length n across an n X n Hex board. Satisfies the recursion a(n) = 2a(n-1) + 2^(n-2). - David Molnar (molnar(AT)stolaf.edu), Apr 10 2002
Diagonal in A053218. - Benoit Cloitre, May 08 2002
Let M_n be the n X n matrix m_(i, j) = 1 + abs(i-j) then det(M_n) = (-1)^(n-1)*a(n-1). - Benoit Cloitre, May 28 2002
Absolute value of determinant of n X n matrix of form: [1 2 3 4 5 / 2 1 2 3 4 / 3 2 1 2 3 / 4 3 2 1 2 / 5 4 3 2 1]. - Benoit Cloitre, Jun 20 2002
Number of ones in all (n+1)-bit integers (cf. A000120). - Ralf Stephan, Aug 02 2003
This sequence also emerges as a floretion force transform of powers of 2 (see program code). Define a(-1) = 0 (as the sequence is returned by FAMP). Then a(n-1) + A098156(n+1) = 2*a(n) (conjecture). - Creighton Dement, Mar 14 2005
This sequence gives the absolute value of the determinant of the Toeplitz matrix with first row containing the first n integers. - Paul Max Payton, May 23 2006
Equals sums of rows right of left edge of A102363 divided by three, + 2^K. - David G. Williams (davidwilliams(AT)paxway.com), Oct 08 2007
If X_1, X_2, ..., X_n are 2-blocks of a (2n+1)-set X then, for n >= 1, a(n) is the number of (n+1)-subsets of X intersecting each X_i, (i = 1, 2, ..., n). - Milan Janjic, Nov 18 2007
Also, a(n-1) is the determinant of the n X n matrix with A[i, j] = n - |i-j|. - M. F. Hasler, Dec 17 2008
1/2 the number of permutations of 1 .. (n+2) arranged in a circle with exactly one local maximum. - R. H. Hardin, Apr 19 2009
The first corrector line for transforming 2^n offset 0 with a leading 1 into the Fibonacci sequence. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
a(n) is the number of runs of consecutive 1's in all binary sequences of length (n+1). - Geoffrey Critzer, Jul 02 2009
Let X_j (0 < j <= 2^n) all the subsets of N_n; m(i, j) := if {i} in X_j then 1 else 0. Let A = transpose(M).M; Then a(i, j) = (number of elements)|X_i intersect X_j|. Determinant(X*I-A) = (X-(n+1)*2^(n-2))*(X-2^(n-2))^(n-1)*X^(2^n-n).
Eigenvector for (n+1)*2^(n-2) is V_i=|X_i|.
Sum_{k=1..2^n} |X_i intersect X_k|*|X_k| = (n+1)*2^(n-2)*|X_i|.
Eigenvectors for 2^(n-2) are {line(M)[i] - line(M)[j], 1 <= i, j <= n}. - CLARISSE Philippe (clarissephilippe(AT)yahoo.fr), Mar 24 2010
The sequence b(n) = 2*A001792(n), for n >= 1 with b(0) = 1, is an elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 187, 190, 250 and 442, lead to the b(n) sequence. For the corner squares these vectors lead to the companion sequence A134401. - Johannes W. Meijer, Aug 15 2010
Equals partial sums of A045623: (1, 2, 5, 12, 28, ...); where A045623 = the convolution square of (1, 1, 2, 4, 8, 16, 32, ...). - Gary W. Adamson, Oct 26 2010
Equals (1, 2, 4, 8, 16, ...) convolved with (1, 1, 2, 4, 8, 16, ...); e.g., a(3) = 20 = (1, 1, 2, 4) dot (8, 4, 2, 1) = (8 + 4 + 4 + 4). - Gary W. Adamson, Oct 26 2010
This sequence seems to give the first x+1 nonzero terms in the sequence derived by subtracting the m-th term in the x_binacci sequence (where the first term is one and the y-th term is the sum of x terms immediately preceding it) from 2^(m-2). - Dylan Hamilton, Nov 03 2010
Recursive formulas for a(n) are in many cases derivable from its property wherein delta^k(a(n)) - a(n) = k*2^n where delta^k(a(n)) represents the k-th forward difference of a(n). Provable with a difference table and a little induction. - Ethan Beihl, May 02 2011
Let f(n,k) be the sum of numbers in the subsets of size k of {1, 2, ..., n}. Then a(n-1) is the average of the numbers f(n, 0), ... f(n, n). Example: (f(3, 1), f(3, 2), f(3, 3)) = (6, 12, 6), with average (6+12+6)/3. - Clark Kimberling, Feb 24 2012
a(n) is the number of length-2n binary sequences that contain a subsequence of ones with length n or more. To derive this result, note that there are 2^n sequences where the initial one of the subsequence occurs at entry one. If the initial one of the subsequence occurs at entry 2, 3, ..., or n + 1, there are 2^(n-1) sequences since a zero must precede the initial one. Hence a(n) = 2^n + n*2^(n-1)=(n+2)2^(n-1). An example is given in the example section below. - Dennis P. Walsh, Oct 25 2012
As the total number of parts in all compositions of n+1 (see the first line in Comments) the equivalent sequence for partitions is A006128. On the other hand, as the first differences of A001787 (see the first line in Crossrefs) the equivalent sequence for partitions is A138879. - Omar E. Pol, Aug 28 2013
a(n) is the number of spanning trees of the complete tripartite graph K_{n,1,1}. - James Mahoney, Oct 24 2013
a(n-1) = denominator of the mean (2n/(n+1), after reduction), of the compositions of n; numerator is given by A022998(n). - Clark Kimberling, Mar 11 2014
From Tom Copeland, Nov 09 2014: (Start)
The shifted array belongs to an interpolated family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the interpolating o.g.f. (1-sqrt(1-4x/(1+(1-t)x)))/2 and inverse x(1-x)/(1+(t-1)x(1-x)). See A091867 for more info on this family. Here the interpolation is t=-3 (mod signs in the results).
Let C(x) = (1 - sqrt(1-4x))/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1+t*x) with inverse P(x,-t).
Shifted o.g.f: G(x) = x*(1-x)/(1 - 4x*(1-x)) = P[Cinv(x),-4].
Inverse o.g.f: Ginv(x) = [1 - sqrt(1 - 4*x/(1+4x))]/2 = C[P(x, 4)] (signed shifted A001700). Cf. A030528. (End)
For n > 0, element a(n) of the sequence is equal to the gradients of the (n-1)-th row of Pascal triangle multiplied with the square of the integers from n+1,...,1. I.e., row 3 of Pascal's triangle 1,3,3,1 has gradients 1,2,0,-2,-1, so a(4) = 1*(5^2) + 2*(4^2) + 0*(3^2) - 2*(2^2) - 1*(1^2) = 48. - Jens Martin Carlsson, May 18 2017
Number of self-avoiding paths connecting all the vertices of a convex (n+2)-gon. - Ivaylo Kortezov, Jan 19 2020
a(n-1) is the total number of elements of subsets of {1,2,..,n} that contain n. For example, for n = 3, a(2) = 8, and the subsets of {1,2,3} that contain 3 are {3}, {1,3}, {2,3}, {1,2,3}, with a total of 8 elements. - Enrique Navarrete, Aug 01 2020

Examples

			a(0) = 1, a(1) = 2*1 + 1 = 3, a(2) = 2*3 + 2 = 8, a(3) = 2*8 + 4 = 20, a(4) = 2*20 + 8 = 48, a(5) = 2*48 + 16 = 112, a(6) = 2*112 + 32 = 256, ... - _Philippe Deléham_, Apr 19 2009
a(2) = 8 since there are 8 length-4 binary sequences with a subsequence of ones of length 2 or more, namely, 1111, 1110, 1101, 1011, 0111, 1100, 0110, and 0011. - _Dennis P. Walsh_, Oct 25 2012
G.f. = 1 + 3*x + 8*x^2 + 20*x^3 + 48*x^4 + 112*x^5 + 256*x^6 + 576*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. M. Stepin and A. T. Tagi-Zade, Words with restrictions, pp. 67-74 of Kvant Selecta: Combinatorics I, Amer. Math. Soc., 2001 (G_n on p. 70).

Crossrefs

First differences of A001787.
a(n) = A049600(n, 1), a(n) = A030523(n + 1, 1).
Cf. A053113.
Row sums of triangles A008949 and A055248.
a(n) = -A039991(n+2, 2).
If the exponent E in a(n) = Sum_{m=0..n} (Sum_{k=0..m} C(n,k))^E is 1, 2, 3, 4, 5 we get A001792, A003583, A007403, A294435, A294436 respectively.

Programs

  • GAP
    List([0..35],n->(n+2)*2^(n-1)); # Muniru A Asiru, Sep 25 2018
    
  • Haskell
    a001792 n = a001792_list !! n
    a001792_list = scanl1 (+) a045623_list
    -- Reinhard Zumkeller, Jul 21 2013
    
  • Magma
    [(n+2)*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Nov 10 2014
    
  • Maple
    A001792 := n-> (n+2)*2^(n-1);
    spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/4, n=2..30); # Zerinvary Lajos, Oct 09 2006
    A001792:=-(-3+4*z)/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, which gives the sequence without the initial 1
    G(x):=1/exp(2*x)*(1-x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(abs(f[n]),n=0..28 ); # Zerinvary Lajos, Apr 17 2009
    a := n -> hypergeom([-n, 2], [1], -1);
    seq(round(evalf(a(n),32)), n=0..31); # Peter Luschny, Aug 02 2014
  • Mathematica
    matrix[n_Integer /; n >= 1] := Table[Abs[p - q] + 1, {q, n}, {p, n}]; a[n_Integer /; n >= 1] := Abs[Det[matrix[n]]] (* Josh Locker (joshlocker(AT)macfora.com), Apr 29 2004 *)
    g[n_,m_,r_] := Binomial[n - 1, r - 1] Binomial[m + 1, r] r; Table[1 + Sum[g[n, k - n, r], {r, 1, k}, {n, 1, k - 1}], {k, 1, 29}] (* Geoffrey Critzer, Jul 02 2009 *)
    a[n_] := (n + 2)*2^(n - 1); a[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
    LinearRecurrence[{4, -4}, {1, 3}, 40] (* Harvey P. Dale, Aug 29 2011 *)
    CoefficientList[Series[(1 - x) / (1 - 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
    b[i_]:=i; a[n_]:=Abs[Det[ToeplitzMatrix[Array[b, n], Array[b, n]]]]; Array[a, 40] (* Stefano Spezia, Sep 25 2018 *)
    a[n_]:=Hypergeometric2F1[2,-n+1,1,-1];Array[a,32] (* Giorgos Kalogeropoulos, Jan 04 2022 *)
  • PARI
    A001792(n)=(n+2)<<(n-1) \\ M. F. Hasler, Dec 17 2008
    
  • Python
    for n in range(0,40): print(int((n+2)*2**(n-1)), end=' ') # Stefano Spezia, Oct 16 2018

Formula

a(n) = (n+2)*2^(n-1).
G.f.: (1 - x)/(1 - 2*x)^2 = 2F1(1,3;2;2x).
a(n) = 4*a(n-1) - 4*a(n-2).
G.f. (-1 + (1-2*x)^(-2))/(x*2^2). - Wolfdieter Lang
a(n) = A018804(2^n). - Matthew Vandermast, Mar 01 2003
a(n) = Sum_{k=0..n+2} binomial(n+2, 2k)*k. - Paul Barry, Mar 06 2003
a(n) = (1/4)*A001787(n+2). - Emeric Deutsch, May 24 2003
With a leading 0, this is ((n+1)2^n - 0^n)/4 = Sum_{m=0..n} binomial(n - 1, m - 1)*m, the binomial transform of A004526(n+1). - Paul Barry, Jun 05 2003
a(n) = Sum_{k=0..n} binomial(n, k)*(k + 1). - Lekraj Beedassy, Jun 24 2004
a(n) = A000244(n) - A066810(n). - Ross La Haye, Apr 29 2006
Row sums of triangle A130585. - Gary W. Adamson, Jun 06 2007
Equals A125092 * [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, Nov 16 2007
a(n) = (n+1)*2^n - n*2^(n-1). Equals A128064 * A000079. - Gary W. Adamson, Dec 28 2007
G.f.: F(3, 1; 2; 2x). - Paul Barry, Sep 03 2008
a(n) = 1 + Sum_{k=1..n} (n - k + 4)2^(n - k - 1). This follows from the result that the number of parts equal to k in all compositions of n is (n - k + 3)2^(n - k - 2) for 0 < k < n. - Geoffrey Critzer, Sep 21 2008
a(n) = 2^(n-1) + 2 a(n-1) ; a(n-1) = det(n - |i - j|){i, j = 1..n}. - _M. F. Hasler, Dec 17 2008
a(n) = 2*a(n-1) + 2^(n-1). - Philippe Deléham, Apr 19 2009
a(n) = A164910(2^n). - Gary W. Adamson, Aug 30 2009
a(n) = Sum_{i=1..2^n} gcd(i, 2^n) = A018804(2^n). So we have: 2^0 * phi(2^n) + ... + 2^n * phi(2^0) = (n + 2)*2^(n-1), where phi is the Euler totient function. - Jeffrey R. Goodwin, Nov 11 2011
a(n) = Sum_{j=0..n} Sum_{i=0..n} binomial(n, i + j). - Yalcin Aktar, Jan 17 2012
Eigensequence of an infinite lower triangular matrix with 2^n as the left border and the rest 1's. - Gary W. Adamson, Jan 30 2012
G.f.: 1 + 2*x*U(0) where U(k) = 1 + (k + 1)/(2 - 8*x/(4*x + (k + 1)/U(k + 1))); (continued fraction, 3 - step). - Sergei N. Gladkovskii, Oct 19 2012
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n,j). - Peter Luschny, Dec 03 2013
a(n) = Hyper2F1([-n, 2], [1], -1). - Peter Luschny, Aug 02 2014
G.f.: 1 / (1 - 3*x / (1 + x / (3 - 4*x))). - Michael Somos, Aug 26 2015
a(n) = -A053120(2+n, n), n >= 0, the negative of the third (sub)diagonal of the triangle of Chebyshev's T polynomials. - Wolfdieter Lang, Nov 26 2019
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=0} 1/a(n) = 8*log(2) - 4.
Sum_{n>=0} (-1)^n/a(n) = 4 - 8*log(3/2). (End)
E.g.f.: exp(2*x)*(1 + x). - Stefano Spezia, Jun 11 2021

A039599 Triangle formed from even-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 14, 28, 20, 7, 1, 42, 90, 75, 35, 9, 1, 132, 297, 275, 154, 54, 11, 1, 429, 1001, 1001, 637, 273, 77, 13, 1, 1430, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 4862, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,n) with steps E = (1,0) and N = (0,1) which touch but do not cross the line x - y = k and only situated above this line; example: T(3,2) = 5 because we have EENNNE, EENNEN, EENENN, ENEENN, NEEENN. - Philippe Deléham, May 23 2005
The matrix inverse of this triangle is the triangular matrix T(n,k) = (-1)^(n+k)* A085478(n,k). - Philippe Deléham, May 26 2005
Essentially the same as A050155 except with a leading diagonal A000108 (Catalan numbers) 1, 1, 2, 5, 14, 42, 132, 429, .... - Philippe Deléham, May 31 2005
Number of Grand Dyck paths of semilength n and having k downward returns to the x-axis. (A Grand Dyck path of semilength n is a path in the half-plane x>=0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1)). Example: T(3,2)=5 because we have u(d)uud(d),uud(d)u(d),u(d)u(d)du,u(d)duu(d) and duu(d)u(d) (the downward returns to the x-axis are shown between parentheses). - Emeric Deutsch, May 06 2006
Riordan array (c(x),x*c(x)^2) where c(x) is the g.f. of A000108; inverse array is (1/(1+x),x/(1+x)^2). - Philippe Deléham, Feb 12 2007
The triangle may also be generated from M^n*[1,0,0,0,0,0,0,0,...], where M is the infinite tridiagonal matrix with all 1's in the super and subdiagonals and [1,2,2,2,2,2,2,...] in the main diagonal. - Philippe Deléham, Feb 26 2007
Inverse binomial matrix applied to A124733. Binomial matrix applied to A089942. - Philippe Deléham, Feb 26 2007
Number of standard tableaux of shape (n+k,n-k). - Philippe Deléham, Mar 22 2007
From Philippe Deléham, Mar 30 2007: (Start)
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y):
(0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970
(1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877;
(1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598;
(2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954;
(3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791;
(4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. (End)
The table U(n,k) = Sum_{j=0..n} T(n,j)*k^j is given in A098474. - Philippe Deléham, Mar 29 2007
Sequence read mod 2 gives A127872. - Philippe Deléham, Apr 12 2007
Number of 2n step walks from (0,0) to (2n,2k) and consisting of step u=(1,1) and d=(1,-1) and the path stays in the nonnegative quadrant. Example: T(3,0)=5 because we have uuuddd, uududd, ududud, uduudd, uuddud; T(3,1)=9 because we have uuuudd, uuuddu, uuudud, ududuu, uuduud, uduudu, uudduu, uduuud, uududu; T(3,2)=5 because we have uuuuud, uuuudu, uuuduu, uuduuu, uduuuu; T(3,3)=1 because we have uuuuuu. - Philippe Deléham, Apr 16 2007, Apr 17 2007, Apr 18 2007
Triangular matrix, read by rows, equal to the matrix inverse of triangle A129818. - Philippe Deléham, Jun 19 2007
Let Sum_{n>=0} a(n)*x^n = (1+x)/(1-mx+x^2) = o.g.f. of A_m, then Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n. Related expansions of A_m are: A099493, A033999, A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, A097783, A077416, A126866, A028230, A161591, for m=-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, respectively. - Philippe Deléham, Nov 16 2009
The Kn11, Kn12, Fi1 and Fi2 triangle sums link the triangle given above with three sequences; see the crossrefs. For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 20 2011
4^n = (n-th row terms) dot (first n+1 odd integer terms). Example: 4^4 = 256 = (14, 28, 20, 7, 1) dot (1, 3, 5, 7, 9) = (14 + 84 + 100 + 49 + 9) = 256. - Gary W. Adamson, Jun 13 2011
The linear system of n equations with coefficients defined by the first n rows solve for diagonal lengths of regular polygons with N= 2n+1 edges; the constants c^0, c^1, c^2, ... are on the right hand side, where c = 2 + 2*cos(2*Pi/N). Example: take the first 4 rows relating to the 9-gon (nonagon), N = 2*4 + 1; with c = 2 + 2*cos(2*Pi/9) = 3.5320888.... The equations are (1,0,0,0) = 1; (1,1,0,0) = c; (2,3,1,0) = c^2; (5,9,5,1) = c^3. The solutions are 1, 2.53208..., 2.87938..., and 1.87938...; the four distinct diagonal lengths of the 9-gon (nonagon) with edge = 1. (Cf. comment in A089942 which uses the analogous operations but with c = 1 + 2*cos(2*Pi/9).) - Gary W. Adamson, Sep 21 2011
Also called the Lobb numbers, after Andrew Lobb, are a natural generalization of the Catalan numbers, given by L(m,n)=(2m+1)*Binomial(2n,m+n)/(m+n+1), where n >= m >= 0. For m=0, we get the n-th Catalan number. See added reference. - Jayanta Basu, Apr 30 2013
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n, 2*k). T(n, k) appears in the formula for the (2*n)-th power of the algebraic number rho(N):= 2*cos(Pi/N) = R(N, 2) in terms of the odd-indexed diagonal/side length ratios R(N, 2*k+1) = S(2*k, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310):
rho(N)^(2*n) = Sum_{k=0..n} T(n, k)*R(N, 2*k+1), n >= 0, identical in N > = 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears.
For the odd powers of rho(n) see A039598. (End)
Unsigned coefficients of polynomial numerators of Eqn. 2.1 of the Chakravarty and Kodama paper, defining the polynomials of A067311. - Tom Copeland, May 26 2016
The triangle is the Riordan square of the Catalan numbers in the sense of A321620. - Peter Luschny, Feb 14 2023

Examples

			Triangle T(n, k) begins:
  n\k     0     1     2     3     4     5    6   7   8  9
  0:      1
  1:      1     1
  2:      2     3     1
  3:      5     9     5     1
  4:     14    28    20     7     1
  5:     42    90    75    35     9     1
  6:    132   297   275   154    54    11    1
  7:    429  1001  1001   637   273    77   13   1
  8:   1430  3432  3640  2548  1260   440  104  15   1
  9:   4862 11934 13260  9996  5508  2244  663 135  17  1
  ... Reformatted by _Wolfdieter Lang_, Dec 21 2015
From _Paul Barry_, Feb 17 2011: (Start)
Production matrix begins
  1, 1,
  1, 2, 1,
  0, 1, 2, 1,
  0, 0, 1, 2, 1,
  0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 0, 1, 2, 1 (End)
From _Wolfdieter Lang_, Sep 20 2013: (Start)
Example for rho(N) = 2*cos(Pi/N) powers:
n=2: rho(N)^4 = 2*R(N,1) + 3*R(N,3) + 1*R(N, 5) =
  2 + 3*S(2, rho(N)) + 1*S(4, rho(N)), identical in N >= 1. For N=4 (the square with only one distinct diagonal), the degree delta(4) = 2, hence R(4, 3) and R(4, 5) can be reduced, namely to R(4, 1) = 1 and R(4, 5) = -R(4,1) = -1, respectively. Therefore, rho(4)^4 =(2*cos(Pi/4))^4 = 2 + 3 -1 = 4. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.

Crossrefs

Row sums: A000984.
Triangle sums (see the comments): A000958 (Kn11), A001558 (Kn12), A088218 (Fi1, Fi2).

Programs

  • Magma
    /* As triangle */ [[Binomial(2*n, k+n)*(2*k+1)/(k+n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 16 2015
    
  • Maple
    T:=(n,k)->(2*k+1)*binomial(2*n,n-k)/(n+k+1): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, May 06 2006
    T := proc(n, k) option remember; if k = n then 1 elif k > n then 0 elif k = 0 then T(n-1, 0) + T(n-1,1) else T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..9) od; # Peter Luschny, Feb 14 2023
  • Mathematica
    Table[Abs[Differences[Table[Binomial[2 n, n + i], {i, 0, n + 1}]]], {n, 0,7}] // Flatten (* Geoffrey Critzer, Dec 18 2011 *)
    Join[{1},Flatten[Table[Binomial[2n-1,n-k]-Binomial[2n-1,n-k-2],{n,10},{k,0,n}]]] (* Harvey P. Dale, Dec 18 2011 *)
    Flatten[Table[Binomial[2*n,m+n]*(2*m+1)/(m+n+1),{n,0,9},{m,0,n}]] (* Jayanta Basu, Apr 30 2013 *)
  • PARI
    a(n, k) = (2*n+1)/(n+k+1)*binomial(2*k, n+k)
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(a(y, x), ", ")); print(""))
    trianglerows(10) \\ Felix Fröhlich, Jun 24 2016
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of the triangle
    def A039599_triangle(n) :
        D = [0]*(n+2); D[1] = 1
        b = True ; h = 1
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            if b : print([D[z] for z in (1..h-1)])
            b = not b
    A039599_triangle(10)  # Peter Luschny, May 01 2012
    

Formula

T(n,k) = C(2*n-1, n-k) - C(2*n-1, n-k-2), n >= 1, T(0,0) = 1.
From Emeric Deutsch, May 06 2006: (Start)
T(n,k) = (2*k+1)*binomial(2*n,n-k)/(n+k+1).
G.f.: G(t,z)=1/(1-(1+t)*z*C), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function. (End)
The following formulas were added by Philippe Deléham during 2003 to 2009: (Start)
Triangle T(n, k) read by rows; given by A000012 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
T(n, k) = C(2*n, n-k)*(2*k+1)/(n+k+1). Sum(k>=0; T(n, k)*T(m, k) = A000108(n+m)); A000108: numbers of Catalan.
T(n, 0) = A000108(n); T(n, k) = 0 if k>n; for k>0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
T(n, k) = A009766(n+k, n-k) = A033184(n+k+1, 2k+1).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+1) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
T(0, 0) = 1, T(n, k) = 0 if n<0 or n=1, T(n, k) = T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1).
a(n) + a(n+1) = 1 + A000108(m+1) if n = m*(m+3)/2; a(n) + a(n+1) = A039598(n) otherwise.
T(n, k) = A050165(n, n-k).
Sum_{j>=0} T(n-k, j)*A039598(k, j) = A028364(n, k).
Matrix inverse of the triangle T(n, k) = (-1)^(n+k)*binomial(n+k, 2*k) = (-1)^(n+k)*A085478(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000108(n), A000984(n), A007854(n), A076035(n), A076036(n) for x = 0, 1, 2, 3, 4.
Sum_{k=0..n} (2*k+1)*T(n, k) = 4^n.
T(n, k)*(-2)^(n-k) = A114193(n, k).
Sum_{k>=h} T(n,k) = binomial(2n,n-h).
Sum_{k=0..n} T(n,k)*5^k = A127628(n).
Sum_{k=0..n} T(n,k)*7^k = A115970(n).
T(n,k) = Sum_{j=0..n-k} A106566(n+k,2*k+j).
Sum_{k=0..n} T(n,k)*6^k = A126694(n).
Sum_{k=0..n} T(n,k)*A000108(k) = A007852(n+1).
Sum_{k=0..floor(n/2)} T(n-k,k) = A000958(n+1).
Sum_{k=0..n} T(n,k)*(-1)^k = A000007(n).
Sum_{k=0..n} T(n,k)*(-2)^k = (-1)^n*A064310(n).
T(2*n,n) = A126596(n).
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x=1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{j>=0} T(n,j)*binomial(j,k) = A116395(n,k).
T(n,k) = Sum_{j>=0} A106566(n,j)*binomial(j,k).
T(n,k) = Sum_{j>=0} A127543(n,j)*A038207(j,k).
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A101490(n+1).
T(n,k) = A053121(2*n,2*k).
Sum_{k=0..n} T(n,k)*sin((2*k+1)*x) = sin(x)*(2*cos(x))^(2*n).
T(n,n-k) = Sum_{j>=0} (-1)^(n-j)*A094385(n,j)*binomial(j,k).
Sum_{j>=0} A110506(n,j)*binomial(j,k) = Sum_{j>=0} A110510(n,j)*A038207(j,k) = T(n,k)*2^(n-k).
Sum_{j>=0} A110518(n,j)*A027465(j,k) = Sum_{j>=0} A110519(n,j)*A038207(j,k) = T(n,k)*3^(n-k).
Sum_{k=0..n} T(n,k)*A001045(k) = A049027(n), for n>=1.
Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n if Sum_{k>=0} a(k)*x^k = (1+x)/(x^2-m*x+1).
Sum_{k=0..n} T(n,k)*A040000(k) = A001700(n).
Sum_{k=0..n} T(n,k)*A122553(k) = A051924(n+1).
Sum_{k=0..n} T(n,k)*A123932(k) = A051944(n).
Sum_{k=0..n} T(n,k)*k^2 = A000531(n), for n>=1.
Sum_{k=0..n} T(n,k)*A000217(k) = A002457(n-1), for n>=1.
Sum{j>=0} binomial(n,j)*T(j,k)= A124733(n,k).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k=0..n} T(n,k)*A005043(k) = A127632(n).
Sum_{k=0..n} T(n,k)*A132262(k) = A089022(n).
T(n,k) + T(n,k+1) = A039598(n,k).
T(n,k) = A128899(n,k)+A128899(n,k+1).
Sum_{k=0..n} T(n,k)*A015518(k) = A076025(n), for n>=1. Also Sum_{k=0..n} T(n,k)*A015521(k) = A076026(n), for n>=1.
Sum_{k=0..n} T(n,k)*(-1)^k*x^(n-k) = A033999(n), A000007(n), A064062(n), A110520(n), A132863(n), A132864(n), A132865(n), A132866(n), A132867(n), A132869(n), A132897(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*(-1)^(k+1)*A000045(k) = A109262(n), A000045:= Fibonacci numbers.
Sum_{k=0..n} T(n,k)*A000035(k)*A016116(k) = A143464(n).
Sum_{k=0..n} T(n,k)*A016116(k) = A101850(n).
Sum_{k=0..n} T(n,k)*A010684(k) = A100320(n).
Sum_{k=0..n} T(n,k)*A000034(k) = A029651(n).
Sum_{k=0..n} T(n,k)*A010686(k) = A144706(n).
Sum_{k=0..n} T(n,k)*A006130(k-1) = A143646(n), with A006130(-1)=0.
T(n,2*k)+T(n,2*k+1) = A118919(n,k).
Sum_{k=0..j} T(n,k) = A050157(n,j).
Sum_{k=0..2} T(n,k) = A026012(n); Sum_{k=0..3} T(n,k)=A026029(n).
Sum_{k=0..n} T(n,k)*A000045(k+2) = A026671(n).
Sum_{k=0..n} T(n,k)*A000045(k+1) = A026726(n).
Sum_{k=0..n} T(n,k)*A057078(k) = A000012(n).
Sum_{k=0..n} T(n,k)*A108411(k) = A155084(n).
Sum_{k=0..n} T(n,k)*A057077(k) = 2^n = A000079(n).
Sum_{k=0..n} T(n,k)*A057079(k) = 3^n = A000244(n).
Sum_{k=0..n} T(n,k)*(-1)^k*A011782(k) = A000957(n+1).
(End)
T(n,k) = Sum_{j=0..k} binomial(k+j,2j)*(-1)^(k-j)*A000108(n+j). - Paul Barry, Feb 17 2011
Sum_{k=0..n} T(n,k)*A071679(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
Sum_{k=0..n} T(n,k)*(2*k+1)^2 = (4*n+1)*binomial(2*n,n). - Werner Schulte, Jul 22 2015
Sum_{k=0..n} T(n,k)*(2*k+1)^3 = (6*n+1)*4^n. - Werner Schulte, Jul 22 2015
Sum_{k=0..n} (-1)^k*T(n,k)*(2*k+1)^(2*m) = 0 for 0 <= m < n (see also A160562). - Werner Schulte, Dec 03 2015
T(n,k) = GegenbauerC(n-k,-n+1,-1) - GegenbauerC(n-k-1,-n+1,-1). - Peter Luschny, May 13 2016
T(n,n-2) = A014107(n). - R. J. Mathar, Jan 30 2019
T(n,n-3) = n*(2*n-1)*(2*n-5)/3. - R. J. Mathar, Jan 30 2019
T(n,n-4) = n*(n-1)*(2*n-1)*(2*n-7)/6. - R. J. Mathar, Jan 30 2019
T(n,n-5) = n*(n-1)*(2*n-1)*(2*n-3)*(2*n-9)/30. - R. J. Mathar, Jan 30 2019

Extensions

Corrected by Philippe Deléham, Nov 26 2009, Dec 14 2009

A007317 Binomial transform of Catalan numbers.

Original entry on oeis.org

1, 2, 5, 15, 51, 188, 731, 2950, 12235, 51822, 223191, 974427, 4302645, 19181100, 86211885, 390248055, 1777495635, 8140539950, 37463689775, 173164232965, 803539474345, 3741930523740, 17481709707825, 81912506777200, 384847173838501, 1812610804416698
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A002212 (the restricted hexagonal polyominoes with n cells). Number of Schroeder paths (i.e., consisting of steps U=(1,1),D=(1,-1),H=(2,0) and never going below the x-axis) from (0,0) to (2n-2,0), with no peaks at even level. Example: a(3)=5 because among the six Schroeder paths from (0,0) to (4,0) only UUDD has a peak at an even level. - Emeric Deutsch, Dec 06 2003
Number of binary trees of weight n where leaves have positive integer weights. Non-commutative Non-associative version of partitions of n. - Michael Somos, May 23 2005
Appears also as the number of Euler trees with total weight n (associated with even switching class of matrices of order 2n). - David Garber, Sep 19 2005
Number of symmetric hex trees with 2n-1 edges; also number of symmetric hex trees with 2n-2 edges. A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a median child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference). A hex tree is symmetric if it is identical with its reflection in a bisector through the root. - Emeric Deutsch, Dec 19 2006
The Hankel transform of [1, 2, 5, 15, 51, 188, ...] is [1, 1, 1, 1, 1, ...], see A000012 ; the Hankel transform of [2, 5, 15, 51, 188, 731, ...] is [2, 5, 13, 34, 89, ...], see A001519. - Philippe Deléham, Dec 19 2006
a(n) = number of 321-avoiding partitions of [n]. A partition is 321-avoiding if the permutation obtained from its canonical form (entries in each block listed in increasing order and blocks listed in increasing order of their first entries) is 321-avoiding. For example, the only partition of [5] that fails to be 321-avoiding is 15/24/3 because the entries 5,4,3 in the permutation 15243 form a 321 pattern. - David Callan, Jul 22 2008
The sequence 1,1,2,5,15,51,188,... has Hankel transform A001519. - Paul Barry, Jan 13 2009
From Gary W. Adamson, May 17 2009: (Start)
Equals INVERT transform of A033321: (1, 1, 2, 6, 21, 79, 311, ...).
Equals INVERTi transform of A002212: (1, 3, 10, 36, 137, ...).
Convolved with A026378, (1, 4, 17, 75, 339, ...) = A026376: (1, 6, 30, 144, ...)
(End)
a(n) is the number of vertices of the composihedron CK(n). The composihedra are a sequence of convex polytopes used to define maps of certain homotopy H-spaces. They are cellular quotients of the multiplihedra and cellular covers of the cubes. - Stefan Forcey (sforcey(AT)gmail.com), Dec 17 2009
a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps at level 0 come in 2 colors and those at a higher level come in 3 colors. Example: a(4)=15 because we have 2^3 = 8 paths of shape UHD, 2 paths of shape HUD, 2 paths of shape UDH, and 3 paths of shape UHD; here U=(1,1), H=(1,0), and D=(1,-1). - Emeric Deutsch, May 02 2011
REVERT transform of (1, 2, -3, 5, -8, 13, -21, 34, ... ) where the entries are Fibonacci numbers, A000045. Equivalently, coefficients in the series reversion of x(1-x)/(1+x-x^2). This means that the substitution of the gf (1-x-(1-6x+5x^2)^(1/2))/(2(1-x)) for x in x(1-x)/(1+x-x^2) will simplify to x. - David Callan, Nov 11 2012
The number of plane trees with nodes that have positive integer weights and whose total weight is n. - Brad R. Jones, Jun 12 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x)= [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)].
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)] = (x-x^2) / (1 + x - x^2).
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].
(End)
Starting with offset 0, a(n) is also the number of Schröder paths of semilength n avoiding UH (an up step directly followed by a long horizontal step). Example: a(2)=5 because among the six possible Schröder paths of semilength 2 only UHD contains UH. - Valerie Roitner, Jul 23 2020

Examples

			a(3)=5 since {3, (1+2), (1+(1+1)), (2+1), ((1+1)+1)} are the five weighted binary trees of weight 3.
G.f. = x + 2*x^2 + 5*x^3 + 15*x^4 + 51*x^5 + 188*x^6 + 731*x^7 + 2950*x^8 + 12235*x^9 + ... _Michael Somos_, Jan 17 2018
		

References

  • J. Brunvoll et al., Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298, Eq. 15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A181768 for another version. - N. J. A. Sloane, Nov 12 2010
First column of triangle A104259. Row sums of absolute values of A091699.
Number of vertices of multiplihedron A121988.
m-th binomial transform of the Catalan numbers: A126930 (m = -2), A005043 (m = -1), A000108 (m = 0), A064613 (m = 2), A104455 (m = 3), A104498 (m = 4) and A154623 (m = 5).

Programs

  • Maple
    G := (1-sqrt(1-4*z/(1-z)))*1/2: Gser := series(G, z = 0, 30): seq(coeff(Gser, z, n), n = 1 .. 26); # Emeric Deutsch, Aug 12 2007
    seq(round(evalf(JacobiP(n-1,1,-n-1/2,9)/n,99)),n=1..25); # Peter Luschny, Sep 23 2014
  • Mathematica
    Rest@ CoefficientList[ InverseSeries[ Series[(y - y^2)/(1 + y - y^2), {y, 0, 26}], x], x] (* then A(x)=y(x); note that InverseSeries[Series[y-y^2, {y, 0, 24}], x] produces A000108(x) *) (* Len Smiley, Apr 10 2000 *)
    Range[0, 25]! CoefficientList[ Series[ Exp[ 3x] (BesselI[0, 2x] - BesselI[1, 2x]), {x, 0, 25}], x] (* Robert G. Wilson v, Apr 15 2011 *)
    a[n_] := Sum[ Binomial[n, k]*CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 07 2012 *)
    Rest[CoefficientList[Series[3/2 - (1/2) Sqrt[(1 - 5 x)/(1 - x)], {x, 0, 40}], x]] (* Vincenzo Librandi, Nov 03 2014 *)
    Table[Hypergeometric2F1[1/2, -n+1, 2, -4], {n, 1, 30}] (* Vaclav Kotesovec, May 12 2022 *)
  • PARI
    {a(n) = my(A); if( n<2, n>0, A=vector(n); for(j=1,n, A[j] = 1 + sum(k=1,j-1, A[k]*A[j-k])); A[n])}; /* Michael Somos, May 23 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( (x - x^2) / (1 + x - x^2) + x * O(x^n)), n))}; /* Michael Somos, May 23 2005 */
    
  • PARI
    /* Offset = 0: */ {a(n)=local(A=1+x);for(i=1,n, A=sum(m=0,n, x^m*sum(k=0,m,A^k)+x*O(x^n))); polcoeff(A,n)} \\ Paul D. Hanna

Formula

(n+2)*a(n+2) = (6n+4)*a(n+1) - 5n*a(n).
G.f.: 3/2-(1/2)*sqrt((1-5*x)/(1-x)) [Gessel-Kim]. - N. J. A. Sloane, Jul 05 2014
G.f. for sequence doubled: (1/(2*x))*(1+x-(1-x)^(-1)*(1-x^2)^(1/2)*(1-5*x^2)^(1/2)).
a(n) = hypergeom([1/2, -n], [2], -4), n=0, 1, 2...; Integral representation as n-th moment of a positive function on a finite interval of the positive half-axis: a(n)=int(x^n*sqrt((5-x)/(x-1))/(2*Pi), x=1..5), n=0, 1, 2... This representation is unique. - Karol A. Penson, Sep 24 2001
a(1)=1, a(n)=1+sum(i=1, n-1, a(i)*a(n-i)). - Benoit Cloitre, Mar 16 2004
a(n) = Sum_{k=0..n} (-1)^k*3^(n-k)*binomial(n, k)*binomial(k, floor(k/2)) [offset 0]. - Paul Barry, Jan 27 2005
G.f. A(x) satisfies 0=f(x, A(x)) where f(x, y)=x-(1-x)(y-y^2). - Michael Somos, May 23 2005
G.f. A(x) satisfies 0=f(x, A(x), A(A(x))) where f(x, y, z)=x(z-z^2)+(x-1)y^2 . - Michael Somos, May 23 2005
G.f. (for offset 0): (-1+x+(1-6*x+5*x^2)^(1/2))/(2*(-x+x^2)).
G.f. =z*c(z/(1-z))/(1-z) = 1/2 - (1/2)sqrt(1-4z/(1-z)), where c(z)=(1-sqrt(1-4z))/(2z) is the Catalan function (follows from Michael Somos' first comment). - Emeric Deutsch, Aug 12 2007
G.f.: 1/(1-2x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-.... (continued fraction). - Paul Barry, Apr 19 2009
a(n) = Sum_{k, 0<=k<=n} A091965(n,k)*(-1)^k. - Philippe Deléham, Nov 28 2009
E.g.f.: exp(3x)*(I_0(2x)-I_1(2x)), where I_k(x) is a modified Bessel function of the first kind. - Emanuele Munarini, Apr 15 2011
If we prefix sequence with an additional term a(0)=1, g.f. is (3-3*x-sqrt(1-6*x+5*x^2))/(2*(1-x)). [See Kim, 2011] - N. J. A. Sloane, May 13 2011
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
2, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 2, 1, 0, 0, ...
1, 1, 1, 2, 1, 0, ...
1, 1, 1, 1, 2, 1, ...
1, 1, 1, 1, 1, 2, ...
... (End)
G.f. satisfies: A(x) = Sum_{n>=0} x^n * (1 - A(x)^(n+1))/(1 - A(x)); offset=0. - Paul D. Hanna, Nov 07 2011
G.f.: 1/x - 1/x/Q(0), where Q(k)= 1 + (4*k+1)*x/((1-x)*(k+1) - x*(1-x)*(2*k+2)*(4*k+3)/(x*(8*k+6)+(2*k+3)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
G.f.: (1-x - (1-5*x)*G(0))/(2*x*(1-x)), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 25 2013
Asymptotics (for offset 0): a(n) ~ 5^(n+3/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 28 2013
G.f.: G(0)/(1-x), where G(k) = 1 + (4*k+1)*x/((k+1)*(1-x) - 2*x*(1-x)*(k+1)*(4*k+3)/(2*x*(4*k+3) + (2*k+3)*(1-x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 29 2014
a(n) = JacobiP(n-1,1,-n-1/2,9)/n. - Peter Luschny, Sep 23 2014
0 = +a(n)*(+25*a(n+1) -50*a(n+2) +15*a(n+3)) +a(n+1)*(-10*a(n+1) +31*a(n+2) -14*a(n+3)) +a(n+2)*(+2*a(n+2) +a(n+3)) for all n in Z. - Michael Somos, Jan 17 2018
a(n+1) = (2/Pi) * Integral_{x = -1..1} (m + 4*x^2)^n*sqrt(1 - x^2) dx at m = 1. In general, the integral, qua sequence in n, gives the m-th binomial transform of the Catalan numbers. - Peter Bala, Jan 26 2020

A005773 Number of directed animals of size n (or directed n-ominoes in standard position).

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046, 17303, 49721, 143365, 414584, 1201917, 3492117, 10165779, 29643870, 86574831, 253188111, 741365049, 2173243128, 6377181825, 18730782252, 55062586341, 161995031226, 476941691177, 1405155255055, 4142457992363
Offset: 0

Views

Author

Keywords

Comments

This sequence, with first term a(0) deleted, appears to be determined by the conditions that the diagonal and first superdiagonal of U are {1,1,1,1,...} and {2,3,4,5,...,n+1,...} respectively, where A=LU is the LU factorization of the Hankel matrix A given by [{a(1),a(2),...}, {a(2),a(3),...}, ..., {a(n),a(n+1),...}, ...]. - John W. Layman, Jul 21 2000
Also the number of base 3 n-digit numbers (not starting with 0) with digit sum n. For the analogous sequence in base 10 see A071976, see example. - John W. Layman, Jun 22 2002
Also number of paths in an n X n grid from (0,0) to the line x=n-1, using only steps U=(1,1), H=(1,0) and D=(1,-1) (i.e., left factors of length n-1 of Motzkin paths, palindromic Motzkin paths of length 2n-2 or 2n-1). Example: a(3)=5, namely, HH, UD, HU, UH and UU. Also number of ordered trees with n edges and having nonroot nodes of outdegree at most 2. - Emeric Deutsch, Aug 01 2002
Number of symmetric Dyck paths of semilength 2n-1 with no peaks at even level. Example: a(3)=5 because we have UDUDUDUDUD, UDUUUDDDUD, UUUUUDDDDD, UUUDUDUDDD and UUUDDUUDDD, where U=(1,1) and D=(1,-1). Also number of symmetric Dyck paths of semilength 2n with no peaks at even level. Example: a(3)=5 because we have UDUDUDUDUDUD, UDUUUDUDDDUD, UUUDUDUDUDDD, UUUUUDUDDDDD and UUUDDDUUUDDD. - Emeric Deutsch, Nov 21 2003
a(n) is the sum of the (n-1)-st central trinomial coefficient and its predecessor. Example: a(4) = 6 + 7 and (1 + x + x^2)^3 = ... + 6*x^2 + 7*x^3 + ... . - David Callan, Feb 07 2004
a(n) is the number of UDU-free paths of n upsteps (U) and n downsteps (D) that start U (n>=1). Example: a(2)=2 counts UUDD, UDDU. - David Callan, Aug 18 2004
a(n) is also the number of Grand-Dyck paths of semilength n starting with an up-step and avoiding the pattern DUD. - David Bevan, Nov 19 2019
Hankel transform of a(n+1) = [1,2,5,13,35,96,...] gives A000012 = [1,1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
Equals row sums of triangle A136787 starting (1, 2, 5, 13, 35, ...). - Gary W. Adamson, Jan 21 2008
a(n) is the number of permutations on [n] that avoid the patterns 1-23-4 and 1-3-2, where the omission of a dash in a pattern means the permutation entries must be adjacent. Example: a(4) = 13 counts all 14 (Catalan number) (1-3-2)-avoiding permutations on [4] except 1234. - David Callan, Jul 22 2008
a(n) is also the number of involutions of length 2n-2 which are invariant under the reverse-complement map and have no decreasing subsequences of length 4. - Eric S. Egge, Oct 21 2008
Hankel transform is A010892. - Paul Barry, Jan 19 2009
a(n) is the number of Dyck words of semilength n with no DUUU. For example, a(4) = 14-1 = 13 because there is only one Dyck 4-word containing DUUU, namely UDUUUDDD. - Eric Rowland, Apr 21 2009
Inverse binomial transform of A024718. - Philippe Deléham, Dec 13 2009
Let w(i, j, n) denote walks in N^2 which satisfy the multivariate recurrence
w(i, j, n) = w(i - 1, j, n - 1) + w(i, j - 1, n - 1) + w(i + 1, j - 1,n - 1) with boundary conditions w(0,0,0) = 1 and w(i,j,n) = 0 if i or j or n is < 0. Let alpha(n) the number of such walks of length n, alpha(n) = Sum_{i = 0..n, j=0..n} w(i, j, n). Then a(n+1) = alpha(n). - Peter Luschny, May 21 2011
Number of length-n strings [d(0),d(1),d(2),...,d(n-1)] where 0 <= d(k) <= k and abs(d(k) - d(k-1)) <= 1 (smooth factorial numbers, see example). - Joerg Arndt, Nov 10 2012
a(n) is the number of n-multisets of {1,...,n} containing no pair of consecutive integers (e.g., 111, 113, 133, 222, 333 for n=3). - David Bevan, Jun 10 2013
a(n) is also the number of n-multisets of [n] in which no integer except n occurs exactly once (e.g., 111, 113, 222, 223, 333 for n=3). - David Bevan, Nov 19 2019
Number of minimax elements in the affine Weyl group of the Lie algebra so(2n+1) or the Lie algebra sp(2n). See Panyushev 2005. Cf. A245455. - Peter Bala, Jul 22 2014
The shifted, signed array belongs to an interpolated family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the interpolating (here t=-2) o.g.f. G(x,t) = (1-sqrt(1-4x/(1+(1-t)x)))/2 and inverse o.g.f. Ginv(x,t) = x(1-x)/(1+(t-1)x(1-x)) (A057682). See A091867 for more info on this family. - Tom Copeland, Nov 09 2014
Alternatively, this sequence corresponds to the number of positive walks with n steps {-1,0,1} starting at the origin, ending at any altitude, and staying strictly above the x-axis. - David Nguyen, Dec 01 2016
Let N be a squarefree number with n prime factors: p_1 < p_2 < ... < p_n. Let D be its set of divisors, E the subset of D X D made of the (d_1, d_2) for which, provided that we know which p_i are in d_1, which p_i are in d_2, d_1 <= d_2 is provable without needing to know the numerical values of the p_i. It appears that a(n+1) is the number of (d_1, d_2) in E such that d_1 and d_2 are coprime. - Luc Rousseau, Aug 21 2017
Number of ordered rooted trees with n non-root nodes and all non-root nodes having outdegrees 1 or 2. - Andrew Howroyd, Dec 04 2017
a(n) is the number of compositions (ordered partitions) of n where there are A001006(k-1) sorts of part k (see formula by Andrew Howroyd, Dec 04 2017). - Joerg Arndt, Jan 26 2024

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 96*x^6 + 267*x^7 + ...
a(3) = 5, a(4) = 13; since the top row of M^3 = (5, 5, 2, 1, ...)
From _Eric Rowland_, Sep 25 2021: (Start)
There are a(4) = 13 directed animals of size 4:
  O
  O    O    O    OO              O         O
  O    O    OO   O    OO   O    OO   OOO   O    O    OO    O
  O    OO   O    O    OO   OOO  O    O    OO   OOO  OO   OOO  OOOO
(End)
From _Joerg Arndt_, Nov 10 2012: (Start)
There are a(4)=13 smooth factorial numbers of length 4 (dots for zeros):
[ 1]   [ . . . . ]
[ 2]   [ . . . 1 ]
[ 3]   [ . . 1 . ]
[ 4]   [ . . 1 1 ]
[ 5]   [ . . 1 2 ]
[ 6]   [ . 1 . . ]
[ 7]   [ . 1 . 1 ]
[ 8]   [ . 1 1 . ]
[ 9]   [ . 1 1 1 ]
[10]   [ . 1 1 2 ]
[11]   [ . 1 2 1 ]
[12]   [ . 1 2 2 ]
[13]   [ . 1 2 3 ]
(End)
From _Joerg Arndt_, Nov 22 2012: (Start)
There are a(4)=13 base 3 4-digit numbers (not starting with 0) with digit sum 4:
[ 1]   [ 2 2 . . ]
[ 2]   [ 2 1 1 . ]
[ 3]   [ 1 2 1 . ]
[ 4]   [ 2 . 2 . ]
[ 5]   [ 1 1 2 . ]
[ 6]   [ 2 1 . 1 ]
[ 7]   [ 1 2 . 1 ]
[ 8]   [ 2 . 1 1 ]
[ 9]   [ 1 1 1 1 ]
[10]   [ 1 . 2 1 ]
[11]   [ 2 . . 2 ]
[12]   [ 1 1 . 2 ]
[13]   [ 1 . 1 2 ]
(End)
		

References

  • J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 237.
  • T. Mansour, Combinatorics of Set Partitions, Discrete Mathematics and Its Applications, CRC Press, 2013, p. 377.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.46a.
  • R. P. Stanley, Catalan Numbers, Cambridge, 2015, p. 132.

Crossrefs

See also A005775. Inverse of A001006. Also sum of numbers in row n+1 of array T in A026300. Leading column of array in A038622.
The right edge of the triangle A062105.
Column k=3 of A295679.
Interpolates between Motzkin numbers (A001006) and Catalan numbers (A000108). Cf. A054391, A054392, A054393, A055898.
Except for the first term a(0), sequence is the binomial transform of A001405.
a(n) = A002426(n-1) + A005717(n-1) if n > 0. - Emeric Deutsch, Aug 14 2002

Programs

  • Haskell
    a005773 n = a005773_list !! n
    a005773_list = 1 : f a001006_list [] where
       f (x:xs) ys = y : f xs (y : ys) where
         y = x + sum (zipWith (*) a001006_list ys)
    -- Reinhard Zumkeller, Mar 30 2012
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2*x/(3*x-1+Sqrt(1-2*x-3*x^2)) )); // G. C. Greubel, Apr 05 2019
  • Maple
    seq( sum(binomial(i-1, k)*binomial(i-k, k), k=0..floor(i/2)), i=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
    A005773:=proc(n::integer)
    local i, j, A, istart, iend, KartProd, Liste, Term, delta;
        A:=0;
        for i from 0 to n do
            Liste[i]:=NULL;
            istart[i]:=0;
            iend[i]:=n-i+1:
            for j from istart[i] to iend[i] do
                Liste[i]:=Liste[i], j;
            end do;
            Liste[i]:=[Liste[i]]:
        end do;
        KartProd:=cartprod([seq(Liste[i], i=1..n)]);
        while not KartProd[finished] do
            Term:=KartProd[nextvalue]();
            delta:=1;
            for i from 1 to n-1 do
                if (op(i, Term) - op(i+1, Term))^2 >= 2 then
                    delta:=0;
                    break;
                end if;
            end do;
            A:=A+delta;
        end do;
    end proc; # Thomas Wieder, Feb 22 2009:
    # n -> [a(0),a(1),..,a(n)]
    A005773_list := proc(n) local W, m, j, i;
    W := proc(i, j, n) option remember;
    if min(i, j, n) < 0 or max(i, j) > n then 0
    elif n = 0 then if i = 0 and j = 0 then 1 else 0 fi
    else W(i-1,j,n-1)+W(i,j-1,n-1)+W(i+1,j-1,n-1) fi end:
    [1,seq(add(add(W(i,j,m),i=0..m),j=0..m),m=0..n-1)] end:
    A005773_list(27); # Peter Luschny, May 21 2011
    A005773 := proc(n)
        option remember;
        if n <= 1 then
            1 ;
        else
            2*n*procname(n-1)+3*(n-2)*procname(n-2) ;
            %/n ;
        end if;
    end proc:
    seq(A005773(n),n=0..10) ; # R. J. Mathar, Jul 25 2017
  • Mathematica
    CoefficientList[Series[(2x)/(3x-1+Sqrt[1-2x-3x^2]), {x,0,40}], x] (* Harvey P. Dale, Apr 03 2011 *)
    a[0]=1; a[n_] := Sum[k/n*Sum[Binomial[n, j]*Binomial[j, 2*j-n-k], {j, 0, n}], {k, 1, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *)
    A005773[n_] := 2 (-1)^(n+1) JacobiP[n - 1, 3, -n -1/2, -7] / (n^2 + n); A005773[0] := 1; Table[A005773[n], {n, 0, 27}] (* Peter Luschny, May 25 2021 *)
  • PARI
    a(n)=if(n<2,n>=0,(2*n*a(n-1)+3*(n-2)*a(n-2))/n)
    
  • PARI
    for(n=0, 27, print1(if(n==0, 1, sum(k=0, n-1, (-1)^(n - 1 + k)*binomial(n - 1, k)*binomial(2*k + 1, k + 1))),", ")) \\ Indranil Ghosh, Mar 14 2017
    
  • PARI
    Vec(1/(1-serreverse(x*(1-x)/(1-x^3) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
    
  • Sage
    def da():
        a, b, c, d, n = 0, 1, 1, -1, 1
        yield 1
        yield 1
        while True:
            yield b + (-1)^n*d
            n += 1
            a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
            c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
    A005773 = da()
    print([next(A005773) for  in range(28)]) # _Peter Luschny, May 16 2016
    
  • Sage
    (2*x/(3*x-1+sqrt(1-2*x-3*x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 05 2019
    

Formula

G.f.: 2*x/(3*x-1+sqrt(1-2*x-3*x^2)). - Len Smiley
Also a(0)=1, a(n) = Sum_{k=0..n-1} M(k)*a(n-k-1), where M(n) are the Motzkin numbers (A001006).
D-finite with recurrence n*a(n) = 2*n*a(n-1) + 3*(n-2)*a(n-2), a(0)=a(1)=1. - Michael Somos, Feb 02 2002
G.f.: 1/2+(1/2)*((1+x)/(1-3*x))^(1/2). Related to Motzkin numbers A001006 by a(n+1) = 3*a(n) - A001006(n-1) [see Yaqubi Lemma 2.6].
a(n) = Sum_{q=0..n} binomial(q, floor(q/2))*binomial(n-1, q) for n > 0. - Emeric Deutsch, Aug 15 2002
From Paul Barry, Jun 22 2004: (Start)
a(n+1) = Sum_{k=0..n} (-1)^(n+k)*C(n, k)*C(2*k+1, k+1).
a(n) = 0^n + Sum_{k=0..n-1} (-1)^(n+k-1)*C(n-1, k)*C(2*k+1, k+1). (End)
a(n+1) = Sum_{k=0..n} (-1)^k*3^(n-k)*binomial(n, k)*A000108(k). - Paul Barry, Jan 27 2005
Starting (1, 2, 5, 13, ...) gives binomial transform of A001405 and inverse binomial transform of A001700. - Gary W. Adamson, Aug 31 2007
Starting (1, 2, 5, 13, 35, 96, ...) gives row sums of triangle A132814. - Gary W. Adamson, Aug 31 2007
G.f.: 1/(1-x/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-... (continued fraction). - Paul Barry, Jan 19 2009
G.f.: 1+x/(1-2*x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-.... (continued fraction). - Paul Barry, Jan 19 2009
a(n) = Sum_{l_1=0..n+1} Sum_{l_2=0..n}...Sum_{l_i=0..n-i}...Sum_{l_n=0..1} delta(l_1,l_2,...,l_i,...,l_n) where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any (l_i - l_(i+1))^2 >= 2 for i=1..n-1 and delta(l_1,l_2,..., l_i,...,l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
INVERT transform of offset Motzkin numbers (A001006): (a(n)){n>=1}=(1,1,2,4,9,21,...). - _David Callan, Aug 27 2009
A005773(n) = ((n+3)*A001006(n+1) + (n-3)*A001006(n)) * (n+2)/(18*n) for n > 0. - Mark van Hoeij, Jul 02 2010
a(n) = Sum_{k=1..n} (k/n * Sum_{j=0..n} binomial(n,j)*binomial(j,2*j-n-k)). - Vladimir Kruchinin, Sep 06 2010
a(0) = 1; a(n+1) = Sum_{t=0..n} n!/((n-t)!*ceiling(t/2)!*floor(t/2)!). - Andrew S. Hays, Feb 02 2011
a(n) = leftmost column term of M^n*V, where M = an infinite quadradiagonal matrix with all 1's in the main, super and subdiagonals, [1,0,0,0,...] in the diagonal starting at position (2,0); and rest zeros. V = vector [1,0,0,0,...]. - Gary W. Adamson, Jun 16 2011
From Gary W. Adamson, Jul 29 2011: (Start)
a(n) = upper left term of M^n, a(n+1) = sum of top row terms of M^n; M = an infinite square production matrix in which the main diagonal is (1,1,0,0,0,...) as follows:
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, ...
1, 1, 1, 0, 1, 0, ...
1, 1, 1, 1, 0, 1, ...
1, 1, 1, 1, 1, 0, ... (End)
Limit_{n->oo} a(n+1)/a(n) = 3.0 = lim_{n->oo} (1 + 2*cos(Pi/n)). - Gary W. Adamson, Feb 10 2012
a(n) = A025565(n+1) / 2 for n > 0. - Reinhard Zumkeller, Mar 30 2012
With first term deleted: E.g.f.: a(n) = n! * [x^n] exp(x)*(BesselI(0, 2*x) + BesselI(1, 2*x)). - Peter Luschny, Aug 25 2012
G.f.: G(0)/2 + 1/2, where G(k) = 1 + 2*x*(4*k+1)/( (2*k+1)*(1+x) - x*(1+x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1+x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
a(n) ~ 3^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Jul 30 2013
For n > 0, a(n) = (-1)^(n+1) * hypergeom([3/2, 1-n], [2], 4). - Vladimir Reshetnikov, Apr 25 2016
a(n) = GegenbauerC(n-2,-n+1,-1/2) + GegenbauerC(n-1,-n+1,-1/2) for n >= 1. - Peter Luschny, May 12 2016
0 = a(n)*(+9*a(n+1) + 18*a(n+2) - 9*a(n+3)) + a(n+1)*(-6*a(n+1) + 7*a(n+2) - 2*a(n+3)) + a(n+2)*(-2*a(n+2) + a(n+3)) for n >= 0. - Michael Somos, Dec 01 2016
G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A001006. - Andrew Howroyd, Dec 04 2017
a(n) = (-1)^(n + 1)*2*JacobiP(n - 1, 3, -n - 1/2, -7)/(n^2 + n). - Peter Luschny, May 25 2021
a(n+1) = A005043(n) + 2*A005717(n) for n >= 1. - Peter Bala, Feb 11 2022
a(n) = Sum_{k=0..n-1} A064189(n-1,k) for n >= 1. - Alois P. Heinz, Aug 29 2022

A035263 Trajectory of 1 under the morphism 0 -> 11, 1 -> 10; parity of 2-adic valuation of 2n: a(n) = A000035(A001511(n)).

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Keywords

Comments

First Feigenbaum symbolic (or period-doubling) sequence, corresponding to the accumulation point of the 2^{k} cycles through successive bifurcations.
To construct the sequence: start with 1 and concatenate: 1,1, then change the last term (1->0; 0->1) gives: 1,0. Concatenate those 2 terms: 1,0,1,0, change the last term: 1,0,1,1. Concatenate those 4 terms: 1,0,1,1,1,0,1,1 change the last term: 1,0,1,1,1,0,1,0, etc. - Benoit Cloitre, Dec 17 2002
Let T denote the present sequence. Here is another way to construct T. Start with the sequence S = 1,0,1,,1,0,1,,1,0,1,,1,0,1,,... and fill in the successive holes with the successive terms of the sequence T (from paper by Allouche et al.). - Emeric Deutsch, Jan 08 2003 [Note that if we fill in the holes with the terms of S itself, we get A141260. - N. J. A. Sloane, Jan 14 2009]
From N. J. A. Sloane, Feb 27 2009: (Start)
In more detail: define S to be 1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1,0,1___...
If we fill the holes with S we get A141260:
1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0,
........1.........0.........1.........1.........0.......1.........1.........0...
- the result is
1..0..1.1.1..0..1.0.1..0..1.1.1..0..1.1.1..0..1.0.1.... = A141260.
But instead, if we define T recursively by filling the holes in S with the terms of T itself, we get A035263:
1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0,
........1.........0.........1.........1.........1.......0.........1.........0...
- the result is
1..0..1.1.1..0..1.0.1..0..1.1.1..0..1.1.1..0..1.1.1.0.1.0.1..0..1.1.1..0..1.0.1.. = A035263. (End)
Characteristic function of A003159, i.e., A035263(n)=1 if n is in A003159 and A035263(n)=0 otherwise (from paper by Allouche et al.). - Emeric Deutsch, Jan 15 2003
This is the sequence of R (=1), L (=0) moves in the Towers of Hanoi puzzle: R, L, R, R, R, L, R, L, R, L, R, R, R, ... - Gary W. Adamson, Sep 21 2003
Manfred Schroeder, p. 279 states, "... the kneading sequences for unimodal maps in the binary notation, 0, 1, 0, 1, 1, 1, 0, 1..., are obtained from the Morse-Thue sequence by taking sums mod 2 of adjacent elements." On p. 278, in the chapter "Self-Similarity in the Logistic Parabola", he writes, "Is there a closer connection between the Morse-Thue sequence and the symbolic dynamics of the superstable orbits? There is indeed. To see this, let us replace R by 1 and C and L by 0." - Gary W. Adamson, Sep 21 2003
Partial sums modulo 2 of the sequence 1, a(1), a(1), a(2), a(2), a(3), a(3), a(4), a(4), a(5), a(5), a(6), a(6), ... . - Philippe Deléham, Jan 02 2004
Parity of A007913, A065882 and A065883. - Philippe Deléham, Mar 28 2004
The length of n-th run of 1's in this sequence is A080426(n). - Philippe Deléham, Apr 19 2004
Also parity of A005043, A005773, A026378, A104455, A117641. - Philippe Deléham, Apr 28 2007
Equals parity of the Towers of Hanoi, or ruler sequence (A001511), where the Towers of Hanoi sequence (1, 2, 1, 3, 1, 2, 1, 4, ...) denotes the disc moved, labeled (1, 2, 3, ...) starting from the top; and the parity of (1, 2, 1, 3, ...) denotes the direction of the move, CW or CCW. The frequency of CW moves converges to 2/3. - Gary W. Adamson, May 11 2007
A conjectured identity relating to the partition sequence, A000041: p(x) = A(x) * A(x^2) when A(x) = the Euler transform of A035263 = polcoeff A174065: (1 + x + x^2 + 2x^3 + 3x^4 + 4x^5 + ...). - Gary W. Adamson, Mar 21 2010
a(n) is 1 if the number of trailing zeros in the binary representation of n is even. - Ralf Stephan, Aug 22 2013
From Gary W. Adamson, Mar 25 2015: (Start)
A conjectured identity relating to the partition sequence, A000041 as polcoeff p(x); A003159, and its characteristic function A035263: (1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, ...); and A036554 indicating n-th terms with zeros in A035263: (2, 6, 8, 10, 14, 18, 22, ...).
The conjecture states that p(x) = A(x) = A(x^2) when A(x) = polcoeffA174065 = the Euler transform of A035263 = 1/(1-x)*(1-x^3)*(1-x^4)*(1-x^5)*... = (1 + x + x^2 + 2x^3 + 3x^4 + 4x^5 + ...) and the aerated variant = the Euler transform of the complement of A035263: 1/(1-x^2)*(1-x^6)*(1-x^8)*... = (1 + x^2 + x^4 + 2x^6 + 3x^8 + 4x^10 + ...).
(End)
The conjecture above was proved by Jean-Paul Allouche on Dec 21 2013.
Regarded as a column vector, this sequence is the product of A047999 (Sierpinski's gasket) regarded as an infinite lower triangular matrix and A036497 (the Fredholm-Rueppel sequence) where the 1's have alternating signs, 1, -1, 0, 1, 0, 0, 0, -1, .... - Gary W. Adamson, Jun 02 2021
The numbers of 1's through n (A050292) can be determined by starting with the binary (say for 19 = 1 0 0 1 1) and writing: next term is twice current term if 0, otherwise twice plus 1. The result is 1, 2, 4, 9, 19. Take the difference row, = 1, 1, 2, 5, 10; and add the odd-indexed terms from the right: 5, 4, 3, 2, 1 = 10 + 2 + 1 = 13. The algorithm is the basis for determining the disc configurations in the tower of Hanoi game, as shown in the Jul 24 2021 comment of A060572. - Gary W. Adamson, Jul 28 2021

References

  • Karamanos, Kostas. "From symbolic dynamics to a digital approach." International Journal of Bifurcation and Chaos 11.06 (2001): 1683-1694. (Full version. See p. 1685)
  • Karamanos, K. (2000). From symbolic dynamics to a digital approach: chaos and transcendence. In Michel Planat (Ed.), Noise, Oscillators and Algebraic Randomness (Lecture Notes in Physics, pp. 357-371). Springer, Berlin, Heidelberg. (Short version. See p. 359)
  • Manfred R. Schroeder, "Fractals, Chaos, Power Laws", W. H. Freeman, 1991
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 892, column 2, Note on p. 84, part (a).

Crossrefs

Parity of A001511. Anti-parity of A007814.
Absolute values of first differences of A010060. Apart from signs, same as A029883. Essentially the same as A056832.
Swapping 0 and 1 gives A096268.
Cf. A033485, A050292 (partial sums), A089608, A088172, A019300, A039982, A073675, A121701, A141260, A000041, A174065, A220466, A154269 (Mobius transform).
Limit of A317957(n) for large n.

Programs

  • Haskell
    import Data.Bits (xor)
    a035263 n = a035263_list !! (n-1)
    a035263_list = zipWith xor a010060_list $ tail a010060_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Maple
    nmax:=105: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (p+1) mod 2 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 07 2013
    A035263 := n -> 1 - padic[ordp](n, 2) mod 2:
    seq(A035263(n), n=1..105); # Peter Luschny, Oct 02 2018
  • Mathematica
    a[n_] := a[n] = If[ EvenQ[n], 1 - a[n/2], 1]; Table[ a[n], {n, 1, 105}] (* Or *)
    Rest[ CoefficientList[ Series[ Sum[ x^(2^k)/(1 + (-1)^k*x^(2^k)), {k, 0, 20}], {x, 0, 105}], x]]
    f[1] := True; f[x_] := Xor[f[x - 1], f[Floor[x/2]]]; a[x_] := Boole[f[x]] (* Ben Branman, Oct 04 2010 *)
    a[n_] := If[n == 0, 0, 1 - Mod[ IntegerExponent[n, 2], 2]]; (* Jean-François Alcover, Jul 19 2013, after Michael Somos *)
    Nest[ Flatten[# /. {0 -> {1, 1}, 1 -> {1, 0}}] &, {0}, 7] (* Robert G. Wilson v, Jul 23 2014 *)
    SubstitutionSystem[{0->{1,1},1->{1,0}},1,{7}][[1]] (* Harvey P. Dale, Jun 06 2022 *)
  • PARI
    {a(n) = if( n==0, 0, 1 - valuation(n, 2)%2)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    {a(n) = if( n==0, 0, n = abs(n); subst( Pol(binary(n)) - Pol(binary(n-1)), x, 1)%2)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    {a(n) = if( n==0, 0, n = abs(n); direuler(p=2, n, 1 / (1 - X^((p<3) + 1)))[n])}; /* Michael Somos, Sep 04 2006 */
    
  • Python
    def A035263(n): return (n&-n).bit_length()&1 # Chai Wah Wu, Jan 09 2023
  • Scheme
    (define (A035263 n) (let loop ((n n) (i 1)) (cond ((odd? n) (modulo i 2)) (else (loop (/ n 2) (+ 1 i)))))) ;; (Use mod instead of modulo in R6RS) Antti Karttunen, Sep 11 2017
    

Formula

Absolute values of first differences (A029883) of Thue-Morse sequence (A001285 or A010060). Self-similar under 10->1 and 11->0.
Series expansion: (1/x) * Sum_{i>=0} (-1)^(i+1)*x^(2^i)/(x^(2^i)-1). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 17 2003
a(n) = Sum_{k>=0} (-1)^k*(floor((n+1)/2^k)-floor(n/2^k)). - Benoit Cloitre, Jun 03 2003
Another g.f.: Sum_{k>=0} x^(2^k)/(1+(-1)^k*x^(2^k)). - Ralf Stephan, Jun 13 2003
a(2*n) = 1-a(n), a(2*n+1) = 1. - Ralf Stephan, Jun 13 2003
a(n) = parity of A033485(n). - Philippe Deléham, Aug 13 2003
Equals A088172 mod 2, where A088172 = 1, 2, 3, 7, 13, 26, 53, 106, 211, 422, 845, ... (first differences of A019300). - Gary W. Adamson, Sep 21 2003
a(n) = a(n-1) - (-1)^n*a(floor(n/2)). - Benoit Cloitre, Dec 02 2003
a(1) = 1 and a(n) = abs(a(n-1) - a(floor(n/2))). - Benoit Cloitre, Dec 02 2003
a(n) = 1 - A096268(n+1); A050292 gives partial sums. - Reinhard Zumkeller, Aug 16 2006
Multiplicative with a(2^k) = 1 - (k mod 2), a(p^k) = 1, p > 2. Dirichlet g.f.: Product_{n = 4 or an odd prime} (1/(1-1/n^s)). - Christian G. Bower, May 18 2005
a(-n) = a(n). a(0)=0. - Michael Somos, Sep 04 2006
Dirichlet g.f.: zeta(s)*2^s/(2^s+1). - Ralf Stephan, Jun 17 2007
a(n+1) = a(n) XOR a(ceiling(n/2)), a(1) = 1. - Reinhard Zumkeller, Jun 11 2009
Let D(x) be the generating function, then D(x) + D(x^2) == x/(1-x). - Joerg Arndt, May 11 2010
a(n) = A010060(n) XOR A010060(n+1); a(A079523(n)) = 0; a(A121539(n)) = 1. - Reinhard Zumkeller, Mar 01 2012
a((2*n-1)*2^p) = (p+1) mod 2, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 07 2013
a(n) = A000035(A001511(n)). - Omar E. Pol, Oct 29 2013
a(n) = 2-A056832(n) = (5-A089608(n))/4. - Antti Karttunen, Sep 11 2017, after Benoit Cloitre
For n >= 0, a(n+1) = M(2n) mod 2 where M(n) is the Motzkin number A001006 (see Deutsch and Sagan 2006 link). - David Callan, Oct 02 2018
a(n) = A038712(n) mod 3. - Kevin Ryde, Jul 11 2019
Given any n in the form (k * 2^m, k odd), extract k and m. Categorize the results into two outcomes of (k, m, even or odd). If (k, m) is (odd, even) substitute 1. If (odd, odd), denote the result 0. Example: 5 = (5 * 2^0), (odd, even, = 1). (6 = 3 * 2^1), (odd, odd, = 0). - Gary W. Adamson, Jun 23 2021

Extensions

Alternative description added to the name by Antti Karttunen, Sep 11 2017

A000957 Fine's sequence (or Fine numbers): number of relations of valence >= 1 on an n-set; also number of ordered rooted trees with n nodes having root of even degree.

Original entry on oeis.org

0, 1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252, 30711521221376
Offset: 0

Views

Author

Keywords

Comments

Row-sum of signed Catalan triangle A009766. - Wouter Meeussen
There are two schools of thought about the best indexing for these numbers. Deutsch and Shapiro have a(4) = 6 whereas here a(5) = 6. The formulas given here use both labelings.
From D. G. Rogers, Oct 18 2005: (Start)
I notice that you have some other zero-one evaluations of binary bracketings (such as A055395). But if you have an operation # with 0#0 = 1#0 = 1, 0#1 = 1#1 = 0, and look at the number of bracketings of a string of n 0's that come out 0, you get another instance of the Fine numbers.
For Z = 1 + x(ZW + WW) = 1 + x CW and W = x(ZZ + ZW) = xZC. Hence Z = 1 + xxCCZ, the functional equational for the g.f. of the Fine numbers. Indeed, C = Z + W = Z + xCZ.
In terms of rooted planar trees with root of even degree, this says that of all rooted planar trees, some have root of even degree (Z) and some have root of odd degree (xCZ). (End)
Hankel transform of a(n+1) = [1,0,1,2,6,18,57,186,...] is A000012 = [1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
Starting with offset 3 = iterates of M * [1,0,0,0,...] where M = a tridiagonal matrix with [0,2,2,2,...] as the main diagonal and [1,1,1,...] as the super and subdiagonals. - Gary W. Adamson, Jan 09 2009
Starting with 1 and convolved with A068875 = the Catalan numbers with offset 1. - Gary W. Adamson, May 01 2009
For a relation to non-crossing partitions of the root system A_n, see A100754. - Tom Copeland, Oct 19 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x) = [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)] = (x-2x^2)/(1-x)^2, and Fin(Cinv(x)) = P(x).
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)] = (x-x^2) / (1 + x - x^2).
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].
(End)
a(n+1) is the number of Dyck paths of semilength n avoiding UD at Level 0. For n = 3 the a(4) = 2 such Dyck paths are UUUDDD and UUDUDD. - Ran Pan, Sep 23 2015
For n >= 3, a(n) is the number of permutations pi of [n-2] such that s(pi) avoids the patterns 132, 231, and 312, where s is West's stack-sorting map. - Colin Defant, Sep 16 2018
Named after the American scientist Terrence Leon Fine (1939-2021). - Amiram Eldar, Jun 08 2021

Examples

			G.f. = x + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 57*x^7 + 186*x^8 + 622*x^9 + 2120*x^10 + ...
		

References

  • Emeric Deutsch and Louis W. Shapiro, Seventeen Catalan identities, Bull. Instit. Combin. Applic., Vol. 31 (2001), pp. 31-38.
  • Ki Hang Kim, Douglas G. Rogers and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013). - N. J. A. Sloane, Jun 05 2012
  • Louis W. Shapiro and Carol J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of A065600.
Sequence with signs: A064310.
Bisections: A138413, A138414.
Logarithmic derivative: A072547.

Programs

  • Haskell
    a000957 n = a000957_list !! n
    a000957_list = 0 : 1 :
       (map (`div` 2) $ tail $ zipWith (-) a000108_list a000957_list)
    -- Reinhard Zumkeller, Nov 12 2011
    
  • Magma
    [0,1] cat  [n le 1 select n-1 else (Catalan(n)-Self(n-1))/2: n in [1..30]]; // Vincenzo Librandi, Nov 17 2016
    
  • Maple
    t1 := (1-sqrt(1-4*x))/(3-sqrt(1-4*x)); t2 := series(t1,x,90); A000957 := n- coeff(t2,x,n);
    A000957 := proc(n): if n = 0 then 0 else add((-1)^(n+k-1)*binomial(n+k-1, n-1)*(n-k)/n, k=0..n-1) fi: end: seq(A000957(n), n=0..28); # Johannes W. Meijer, Jul 22 2013
    # third Maple program:
    a:= proc(n) option remember; `if`(n<3, n*(2-n),
          ((7*n-12)*a(n-1)+(4*n-6)*a(n-2))/(2*n))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Apr 23 2020
  • Mathematica
    Table[ Plus@@Table[ (-1)^(m+n) (n+m)!/n!/m! (n-m+1)/(n+1), {m, 0, n} ], {n, 0, 36} ] (* Wouter Meeussen *)
    a[0] = 0; a[n_] := (1/2)*(-3*(-1/2)^n + 2^(n+1)*(2n-1)!!* Hypergeometric2F1Regularized[2, 2n+1, n+2, -1]); (* Jean-François Alcover, Feb 22 2012 *)
    Table[2^n (n-2) (2n-1)!! (3 (n-1) Hypergeometric2F1[1, 3-n, 3+n, 2] - n - 2)/(n+2)! + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
  • Maxima
    C(n):=binomial(2*n,n)/(n+1);
    a(n):=if n<=0 then 0 else if n=1 then 1 else  sum(C(n-i-1)*(a(i)+a(i-1)),i,2,n-1);
    /* Vladimir Kruchinin, Apr 23 2020 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( 1 / (1 + 2 / (1 - sqrt(1 - 4*x + x*O(x^n)))), n))}; /* Michael Somos, Sep 17 2006 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( 1 / (1 + 1 / serreverse(x - x^2 + x*O(x^n))), n))}; /* Michael Somos, Sep 30 2006 */
    
  • Python
    from itertools import count, islice
    def A000957_gen(): # generator of terms
        yield from (0,1,0)
        a, c = 0, 1
        for n in count(1):
            yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1)
    A000957_list = list(islice(A000957_gen(),20)) # Chai Wah Wu, Apr 26 2023
  • Sage
    def Fine():
        f, c, n = 1, 1, 1
        yield 0
        while True:
            yield f
            n += 1
            c = c * (4*n - 6) // n
            f = (c - f) // 2
    a = Fine()
    print([next(a) for  in range(29)])  # _Peter Luschny, Nov 30 2016
    

Formula

Catalan(n) = 2*a(n+1) + a(n), n >= 1. [Corrected by Pontus von Brömssen, Jul 23 2022]
a(n) = (A064306(n-1) + (-1)^(n-1))/2^n, n >= 1.
G.f.: (1-sqrt(1-4*x))/(3-sqrt(1-4*x)) (compare g.f. for Catalan numbers, A000108). - Emeric Deutsch
a(n) ~ 4^n/(9*n*sqrt(n*Pi)). (Corrected by Peter Luschny, Oct 26 2015.)
a(n) = (2/(n-1))*Sum_{j=0..n-3}(-2)^j*(j+1)*binomial(2n-1, n-3-j), n>=2. - Emeric Deutsch, Dec 26 2003
a(n) = 3*Sum_{j=0..floor((n-1)/2)} binomial(2n-2j-2, n-1) - binomial(2n, n) for n>0. - Emeric Deutsch, Jan 28 2004
Reversion of g.f. (x-2x^2)/(1-x)^2. - Ralf Stephan, Mar 22 2004
a(n) = ((-1)^n/2^n)*(-3/4-(1/4)*sum{k=0..n, C(1/2, k)8^k})+0^n; a(n) = ((-1)^n/2^n)*(-3/4-(1/4)*sum{k=0..n, (-1)^(k-1)*2^k*(2k)!/((k!)^2*(2k-1))})+0^n. - Paul Barry, Jun 10 2005
Hankel determinant transform is 1-n. - Michael Somos, Sep 17 2006
a(n+1) = A126093(n,0). - Philippe Deléham, Mar 05 2007
a(n+1) has g.f. 1/(1-0*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(..... (continued fraction). - Paul Barry, Dec 02 2008
From Paul Barry, Jan 17 2009: (Start)
G.f.: x*c(x)/(1+x*c(x)), c(x) the g.f. of A000108;
a(n+1) = Sum_{k=0..n} (-1)^k*C(2n-k,n-k)*(k+1)/(n+1). (End)
a(n) = 3*(-1/2)^(n+1) + Gamma(n+1/2)*4^n*hypergeom([1, n+1/2],[n+2],-8) /(sqrt(Pi)*(n+1)!) (for n>0). - Mark van Hoeij, Nov 11 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1] = -1, A[i,j] = Catalan(j-i), (i<=j), and A[i,j] = 0, otherwise. Then, for n>=1, a(n+1) = (-1)^n*charpoly(A,1). - Milan Janjic, Jul 08 2010
a(n) = the upper left term in M^n, n>0; where M = the infinite square production matrix:
0, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
a(n+1) = Sum_{k=0..n} A039598(n,k)*(-2)^k. - Philippe Deléham, Nov 04 2011
D-finite with recurrence: 2*n*a(n) +(12-7*n)*a(n-1) +2*(3-2*n)*a(n-2)=0. - R. J. Mathar, Nov 15 2011
a(n) = sum(sum(2^(s-2n-2k)*(n/n+2k)binomial(n+2k, k)*binomial(s-n-1, s-2n-2k), (k=0, ..., floor((s-2n)/2)), (n=1, ..., s) with s>=2. - José Luis Ramírez Ramírez, Mar 22 2012
0 = a(n)*(16*a(n+1) + 22*a(n+2) - 20*a(n+3)) + a(n+1)*(34*a(n+1) + 53*a(n+2) - 38*a(n+3)) + a(n+2)*(10*a(n+2) + 4*a(n+3)) for all n in Z if we extend by a(0)=-1, a(-n) = -3/4 * (-2)^n if n>0. - Michael Somos, Jan 31 2014 [Corrected by Pontus von Brömssen, Aug 04 2022]
G.f. A(x) satisfies x*A'(x)/A(x) = x + 2*x^3 + 6*x^4 + 22*x^5 + ..., the o.g.f. for A072547. - Peter Bala, Oct 01 2015
a(n) = 2^n*(n-2)*(2*n-1)!!*(3*(n-1)*hypergeom([1,3-n], [3+n], 2)-n-2)/(n+2)! + 0^n. - Vladimir Reshetnikov, Oct 25 2015
a(n) = binomial(2*n,n)*(hypergeom([1,(1-n)/2,1-n/2],[1-n,3/2-n],1)*3/(4-2/n)-1) for n>=2. - Peter Luschny, Oct 26 2015
O.g.f. A(x) satisfies 1 + A(x) = (1 + 3*Sum_{n >= 1} Catalan(n)*x^n)/(1 + 2*Sum_{n >= 1} Catalan(n)*x^n) = (1 + 2*Sum_{n >= 1} binomial(2*n,n)*x^n )/(1 + 3/2*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
a(n) = Sum_{i=2..n-1} C(n-i-1)*(a(i)+a(i-1)), a(0)=0, a(1)=1, where C(n) = A000108(n). - Vladimir Kruchinin, Apr 23 2020

A126120 Catalan numbers (A000108) interpolated with 0's.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, 0, 16796, 0, 58786, 0, 208012, 0, 742900, 0, 2674440, 0, 9694845, 0, 35357670, 0, 129644790, 0, 477638700, 0, 1767263190, 0, 6564120420, 0, 24466267020, 0, 91482563640, 0, 343059613650, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 06 2007

Keywords

Comments

Inverse binomial transform of A001006.
The Hankel transform of this sequence gives A000012 = [1,1,1,1,1,...].
Counts returning walks (excursions) of length n on a 1-d integer lattice with step set {+1,-1} which stay in the chamber x >= 0. - Andrew V. Sutherland, Feb 29 2008
Moment sequence of the trace of a random matrix in G=USp(2)=SU(2). If X=tr(A) is a random variable (A distributed according to the Haar measure on G) then a(n) = E[X^n]. - Andrew V. Sutherland, Feb 29 2008
Essentially the same as A097331. - R. J. Mathar, Jun 15 2008
Number of distinct proper binary trees with n nodes. - Chris R. Sims (chris.r.sims(AT)gmail.com), Jun 30 2010
-a(n-1), with a(-1):=0, n>=0, is the Z-sequence for the Riordan array A049310 (Chebyshev S). For the definition see that triangle. - Wolfdieter Lang, Nov 04 2011
See A180874 (also A238390 and A097610) and A263916 for relations to the general Bell A036040, cycle index A036039, and cumulant expansion polynomials A127671 through the Faber polynomials. - Tom Copeland, Jan 26 2016
A signed version is generated by evaluating polynomials in A126216 that are essentially the face polynomials of the associahedra. This entry's sequence is related to an inversion relation on p. 34 of Mizera, related to Feynman diagrams. - Tom Copeland, Dec 09 2019

Examples

			G.f. = 1 + x^2 + 2*x^4 + 5*x^6 + 14*x^8 + 42*x^10 + 132*x^12 + 429*x^14 + ...
From _Gus Wiseman_, Nov 14 2022: (Start)
The a(0) = 1 through a(8) = 14 ordered binary rooted trees with n + 1 nodes (ranked by A358375):
  o  .  (oo)  .  ((oo)o)  .  (((oo)o)o)  .  ((((oo)o)o)o)
                 (o(oo))     ((o(oo))o)     (((o(oo))o)o)
                             ((oo)(oo))     (((oo)(oo))o)
                             (o((oo)o))     (((oo)o)(oo))
                             (o(o(oo)))     ((o((oo)o))o)
                                            ((o(o(oo)))o)
                                            ((o(oo))(oo))
                                            ((oo)((oo)o))
                                            ((oo)(o(oo)))
                                            (o(((oo)o)o))
                                            (o((o(oo))o))
                                            (o((oo)(oo)))
                                            (o(o((oo)o)))
                                            (o(o(o(oo))))
(End)
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Ch. 49, Hemisphere Publishing Corp., 1987.

Crossrefs

Cf. A126216.
The unordered version is A001190, ranked by A111299.
These trees (ordered binary rooted) are ranked by A358375.

Programs

  • Magma
    &cat [[Catalan(n), 0]: n in [0..30]]; // Vincenzo Librandi, Jul 28 2016
    
  • Maple
    with(combstruct): grammar := { BB = Sequence(Prod(a,BB,b)), a = Atom, b = Atom }: seq(count([BB,grammar], size=n),n=0..47); # Zerinvary Lajos, Apr 25 2007
    BB := {E=Prod(Z,Z), S=Union(Epsilon,Prod(S,S,E))}: ZL:=[S,BB,unlabeled]: seq(count(ZL, size=n), n=0..45); # Zerinvary Lajos, Apr 22 2007
    BB := [T,{T=Prod(Z,Z,Z,F,F), F=Sequence(B), B=Prod(F,Z,Z)}, unlabeled]: seq(count(BB, size=n+1), n=0..45); # valid for n> 0. # Zerinvary Lajos, Apr 22 2007
    seq(n!*coeff(series(hypergeom([],[2],x^2),x,n+2),x,n),n=0..45); # Peter Luschny, Jan 31 2015
    # Using function CompInv from A357588.
    CompInv(48, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 07 2022
  • Mathematica
    a[n_?EvenQ] := CatalanNumber[n/2]; a[n_] = 0; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Sep 10 2012 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ BesselI[ 1, 2 x] / x, {x, 0, n}]]; (* Michael Somos, Mar 19 2014 *)
    bot[n_]:=If[n==1,{{}},Join@@Table[Tuples[bot/@c],{c,Table[{k,n-k-1},{k,n-1}]}]];
    Table[Length[bot[n]],{n,10}] (* Gus Wiseman, Nov 14 2022 *)
    Riffle[CatalanNumber[Range[0,50]],0,{2,-1,2}] (* Harvey P. Dale, May 28 2024 *)
  • Python
    from math import comb
    def A126120(n): return 0 if n&1 else comb(n,m:=n>>1)//(m+1) # Chai Wah Wu, Apr 22 2024
  • Sage
    def A126120_list(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 2; R = []
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] -= D[k-1]
                h += 1; R.append(abs(D[1]))
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
        return R
    A126120_list(46) # Peter Luschny, Jun 03 2012
    

Formula

a(2*n) = A000108(n), a(2*n+1) = 0.
a(n) = A053121(n,0).
(1/Pi) Integral_{0 .. Pi} (2*cos(x))^n *2*sin^2(x) dx. - Andrew V. Sutherland, Feb 29 2008
G.f.: (1 - sqrt(1 - 4*x^2)) / (2*x^2) = 1/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-... (continued fraction). - Philippe Deléham, Nov 24 2009
G.f. A(x) satisfies A(x) = 1 + x^2*A(x)^2. - Vladimir Kruchinin, Feb 18 2011
E.g.f.: I_1(2x)/x Where I_n(x) is the modified Bessel function. - Benjamin Phillabaum, Mar 07 2011
Apart from the first term the e.g.f. is given by x*HyperGeom([1/2],[3/2,2], x^2). - Benjamin Phillabaum, Mar 07 2011
a(n) = Integral_{x=-2..2} x^n*sqrt((2-x)*(2+x))/(2*Pi) dx. - Peter Luschny, Sep 11 2011
E.g.f.: E(0)/(1-x) where E(k) = 1-x/(1-x/(x-(k+1)*(k+2)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
G.f.: 3/2- sqrt(1-4*x^2)/2 = 1/x^2 + R(0)/x^2, where R(k) = 2*k-1 - x^2*(2*k-1)*(2*k+1)/R(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 28 2013 (warning: this is not the g.f. of this sequence, R. J. Mathar, Sep 23 2021)
G.f.: 1/Q(0), where Q(k) = 2*k+1 + x^2*(1-4*(k+1)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 09 2014
a(n) = n!*[x^n]hypergeom([],[2],x^2). - Peter Luschny, Jan 31 2015
a(n) = 2^n*hypergeom([3/2,-n],[3],2). - Peter Luschny, Feb 03 2015
a(n) = ((-1)^n+1)*2^(2*floor(n/2)-1)*Gamma(floor(n/2)+1/2)/(sqrt(Pi)* Gamma(floor(n/2)+2)). - Ilya Gutkovskiy, Jul 23 2016
D-finite with recurrence (n+2)*a(n) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Mar 21 2021
From Peter Bala, Feb 03 2024: (Start)
a(n) = 2^n * Sum_{k = 0..n} (-2)^(-k)*binomial(n, k)*Catalan(k+1).
G.f.: 1/(1 + 2*x) * c(x/(1 + 2*x))^2 = 1/(1 - 2*x) * c(-x/(1 - 2*x))^2 = c(x^2), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

Extensions

An erroneous comment removed by Tom Copeland, Jul 23 2016

A064189 Triangle T(n,k), 0 <= k <= n, read by rows, defined by: T(0,0)=1, T(n,k)=0 if n < k, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 9, 12, 9, 4, 1, 21, 30, 25, 14, 5, 1, 51, 76, 69, 44, 20, 6, 1, 127, 196, 189, 133, 70, 27, 7, 1, 323, 512, 518, 392, 230, 104, 35, 8, 1, 835, 1353, 1422, 1140, 726, 369, 147, 44, 9, 1, 2188, 3610, 3915, 3288, 2235, 1242, 560, 200, 54, 10, 1
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2001

Keywords

Comments

Motzkin triangle read in reverse order.
T(n,k) = number of lattice paths from (0,0) to (n,k), staying weakly above the x-axis and consisting of steps U=(1,1), D=(1,-1) and H=(1,0). Example: T(3,1) = 5 because we have HHU, UDU, HUH, UHH and UUD. Columns 0,1,2 and 3 give A001006 (Motzkin numbers), A002026 (first differences of Motzkin numbers), A005322 and A005323, respectively. - Emeric Deutsch, Feb 29 2004
Riordan array ((1-x-sqrt(1-2x-3x^2))/(2x^2), (1-x-sqrt(1-2x-3x^2))/(2x)). Inverse is the array (1/(1+x+x^2), x/(1+x+x^2)) (A104562). - Paul Barry, Mar 15 2005
Inverse binomial matrix applied to A039598. - Philippe Deléham, Feb 28 2007
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Equals binomial transform of triangle A053121. - Gary W. Adamson, Oct 25 2008
Consider a semi-infinite chessboard with squares labeled (n,k), ranks or rows n >= 0, files or columns k >= 0; the number of king-paths of length n from (0,0) to (n,k), 0 <= k <= n, is T(n,k). The recurrence relation given above relates to the movements of the king. This is essentially the comment made by Harrie Grondijs for the Motzkin triangle A026300. - Johannes W. Meijer, Oct 10 2010

Examples

			Triangle begins:
  [0]   1;
  [1]   1,    1;
  [2]   2,    2,    1;
  [3]   4,    5,    3,    1;
  [4]   9,   12,    9,    4,   1;
  [5]  21,   30,   25,   14,   5,   1;
  [6]  51,   76,   69,   44,  20,   6,   1;
  [7] 127,  196,  189,  133,  70,  27,   7,  1;
  [8] 323,  512,  518,  392, 230, 104,  35,  8, 1;
  [9] 835, 1353, 1422, 1140, 726, 369, 147, 44, 9, 1;
  ...
From _Philippe Deléham_, Nov 04 2011: (Start)
Production matrix begins:
  1, 1
  1, 1, 1
  0, 1, 1, 1
  0, 0, 1, 1, 1
  0, 0, 0, 1, 1, 1
  0, 0, 0, 0, 1, 1, 1 (End)
		

References

  • See A026300 for additional references and other information.

Crossrefs

A026300 (the main entry for this sequence) with rows reversed.
Row sums give: A005773(n+1) or A307789(n+2).

Programs

  • Maple
    alias(C=binomial): A064189 := (n,k) -> add(C(n,j)*(C(n-j,j+k)-C(n-j,j+k+2)), j=0..n): seq(seq(A064189(n,k), k=0..n),n=0..10); # Peter Luschny, Dec 31 2019
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> simplify(hypergeom([1 -n/2, -n/2+1/2], [2], 4))); # Peter Luschny, Oct 08 2022
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 1, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
    T[n_, k_] := Binomial[n, k] Hypergeometric2F1[(k - n)/2, (k - n + 1)/2, k + 2, 4];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* Peter Luschny, May 19 2021 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, polcoeff( polcoeff( 2 / (1 - x + sqrt(1 - 2*x - 3*x^2) - 2*x*y) + x * O(x^n), n), k))}; /* Michael Somos, Jun 06 2016 */
  • Sage
    def A064189_triangel(dim):
        M = matrix(ZZ,dim,dim)
        for n in range(dim): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+M[n-1,k]+M[n-1,k+1]
        return M
    A064189_triangel(9) # Peter Luschny, Sep 20 2012
    

Formula

Sum_{k=0..n} T(n, k)*(k+1) = 3^n.
Sum_{k=0..n} T(n, k)*T(n, n-k) = T(2*n, n) - T(2*n, n+2)
G.f.: M/(1-t*z*M), where M = 1 + z*M + z^2*M^2 is the g.f. of the Motzkin numbers (A001006). - Emeric Deutsch, Feb 29 2004
Sum_{k>=0} T(m, k)*T(n, k) = A001006(m+n). - Philippe Deléham, Mar 05 2004
Sum_{k>=0} T(n-k, k) = A005043(n+2). - Philippe Deléham, May 31 2005
Column k has e.g.f. exp(x)*(BesselI(k,2*x)-BesselI(k+2,2*x)). - Paul Barry, Feb 16 2006
T(n,k) = Sum_{j=0..n} C(n,j)*(C(n-j,j+k) - C(n-j,j+k+2)). - Paul Barry, Feb 16 2006
n-th row is generated from M^n * V, where M = the infinite tridiagonal matrix with all 1's in the super, main and subdiagonals; and V = the infinite vector [1,0,0,0,...]. E.g., Row 3 = (4, 5, 3, 1), since M^3 * V = [4, 5, 3, 1, 0, 0, 0, ...]. - Gary W. Adamson, Nov 04 2006
T(n,k) = A122896(n+1,k+1). - Philippe Deléham, Apr 21 2007
T(n,k) = (k/n)*Sum_{j=0..n} binomial(n,j)*binomial(j,2*j-n-k). - Vladimir Kruchinin, Feb 12 2011
Sum_{k=0..n} T(n,k)*(-1)^k*(k+1) = (-1)^n. - Werner Schulte, Jul 08 2015
Sum_{k=0..n} T(n,k)*(k+1)^3 = (2*n+1)*3^n. - Werner Schulte, Jul 08 2015
G.f.: 2 / (1 - x + sqrt(1 - 2*x - 3*x^2) - 2*x*y) = Sum_{n >= k >= 0} T(n, k) * x^n * y^k. - Michael Somos, Jun 06 2016
T(n,k) = binomial(n, k)*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4). - Peter Luschny, May 19 2021
The coefficients of the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + x + x^2)^n expanded about the point x = 0 give the entries in row n in reverse order. - Peter Bala, Sep 06 2022

Extensions

More terms from Vladeta Jovovic, Sep 23 2001

A026300 Motzkin triangle, T, read by rows; T(0,0) = T(1,0) = T(1,1) = 1; for n >= 2, T(n,0) = 1, T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k = 1,2,...,n-1 and T(n,n) = T(n-1,n-2) + T(n-1,n-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 1, 4, 9, 12, 9, 1, 5, 14, 25, 30, 21, 1, 6, 20, 44, 69, 76, 51, 1, 7, 27, 70, 133, 189, 196, 127, 1, 8, 35, 104, 230, 392, 518, 512, 323, 1, 9, 44, 147, 369, 726, 1140, 1422, 1353, 835, 1, 10, 54, 200, 560, 1242, 2235, 3288, 3915, 3610, 2188
Offset: 0

Views

Author

Keywords

Comments

Right-hand columns have g.f. M^k, where M is g.f. of Motzkin numbers.
Consider a semi-infinite chessboard with squares labeled (n,k), ranks or rows n >= 0, files or columns k >= 0; number of king-paths of length n from (0,0) to (n,k), 0 <= k <= n, is T(n,n-k). - Harrie Grondijs, May 27 2005. Cf. A114929, A111808, A114972.

Examples

			Triangle starts:
  [0] 1;
  [1] 1, 1;
  [2] 1, 2,  2;
  [3] 1, 3,  5,   4;
  [4] 1, 4,  9,  12,   9;
  [5] 1, 5, 14,  25,  30,  21;
  [6] 1, 6, 20,  44,  69,  76,   51;
  [7] 1, 7, 27,  70, 133, 189,  196,  127;
  [8] 1, 8, 35, 104, 230, 392,  518,  512,  323;
  [9] 1, 9, 44, 147, 369, 726, 1140, 1422, 1353, 835.
		

References

  • Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.
  • A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.

Crossrefs

Reflected version is in A064189.
Row sums are in A005773.
T(n,n) are Motzkin numbers A001006.
Other columns of T include A002026, A005322, A005323.

Programs

  • Haskell
    a026300 n k = a026300_tabl !! n !! k
    a026300_row n = a026300_tabl !! n
    a026300_tabl = iterate (\row -> zipWith (+) ([0,0] ++ row) $
                                    zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Oct 09 2013
    
  • Maple
    A026300 := proc(n,k)
       add(binomial(n,2*i+n-k)*(binomial(2*i+n-k,i) -binomial(2*i+n-k,i-1)), i=0..floor(k/2));
    end proc: # R. J. Mathar, Jun 30 2013
  • Mathematica
    t[n_, k_] := Sum[ Binomial[n, 2i + n - k] (Binomial[2i + n - k, i] - Binomial[2i + n - k, i - 1]), {i, 0, Floor[k/2]}]; Table[ t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jan 03 2011 *)
    t[, 0] = 1; t[n, 1] := n; t[n_, k_] /; k>n || k<0 = 0; t[n_, n_] := t[n, n] = t[n-1, n-2]+t[n-1, n-1]; t[n_, k_] := t[n, k] = t[n-1, k-2]+t[n-1, k-1]+t[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 18 2014 *)
    T[n_, k_] := Binomial[n, k] Hypergeometric2F1[1/2 - k/2, -k/2, n - k + 2, 4];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Mar 21 2018 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(sum(i=0, k\2, binomial(n, 2*i+n-k)*(binomial(2*i+n-k, i)-binomial(2*i+n-k, i-1))), ", ");); print(););} \\ Michel Marcus, Jul 25 2015

Formula

T(n,k) = Sum_{i=0..floor(k/2)} binomial(n, 2i+n-k)*(binomial(2i+n-k, i) - binomial(2i+n-k, i-1)). - Herbert Kociemba, May 27 2004
T(n,k) = A027907(n,k) - A027907(n,k-2), k<=n.
Sum_{k=0..n} (-1)^k*T(n,k) = A099323(n+1). - Philippe Deléham, Mar 19 2007
Sum_{k=0..n} (T(n,k) mod 2) = A097357(n+1). - Philippe Deléham, Apr 28 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = A005043(n), A001006(n), A005773(n+1), A059738(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Nov 28 2009
T(n,k) = binomial(n, k)*hypergeom([1/2 - k/2, -k/2], [n - k + 2], 4). - Peter Luschny, Mar 21 2018
T(n,k) = [t^(n-k)] [x^n] 2/(1 - (2*t + 1)*x + sqrt((1 + x)*(1 - 3*x))). - Peter Luschny, Oct 24 2018
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + x + x^2)^n expanded about the point x = 0. - Peter Bala, Feb 26 2023

Extensions

Corrected and edited by Johannes W. Meijer, Oct 05 2010
Previous Showing 21-30 of 190 results. Next