cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 768 results. Next

A296712 Numbers whose base-10 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 120, 121, 130, 131, 132, 140, 141, 142, 143, 150, 151, 152, 153, 154, 160, 161, 162, 163, 164, 165, 170, 171, 172, 173, 174, 175, 176, 180, 181
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296712-A296714 partition the natural numbers.
****
Guide to related sequences:
Base #(rises) = #(falls) #(rises) > #(falls) #(rises) < #(falls)
2 A005408 (none) A005843

Examples

			The base-10 digits of 181 are 1,8,1; here #(rises) = 1 and #(falls) = 1, so 181 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 10; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296712 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296713 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296714 *)

A014085 Number of primes between n^2 and (n+1)^2.

Original entry on oeis.org

0, 2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 5, 5, 4, 6, 7, 5, 6, 6, 7, 7, 7, 6, 9, 8, 7, 8, 9, 8, 8, 10, 9, 10, 9, 10, 9, 9, 12, 11, 12, 11, 9, 12, 11, 13, 10, 13, 15, 10, 11, 15, 16, 12, 13, 11, 12, 17, 13, 16, 16, 13, 17, 15, 14, 16, 15, 15, 17, 13, 21, 15, 15, 17, 17, 18, 22, 14, 18, 23, 13
Offset: 0

Views

Author

Jon Wild, Jul 14 1997

Keywords

Comments

Suggested by Legendre's conjecture (still open) that for n > 0 there is always a prime between n^2 and (n+1)^2.
a(n) is the number of occurrences of n in A000006. - Philippe Deléham, Dec 17 2003
See the additional references and links mentioned in A143227. - Jonathan Sondow, Aug 03 2008
Legendre's conjecture may be written pi((n+1)^2) - pi(n^2) > 0 for all positive n, where pi(n) = A000720(n), [the prime counting function]. - Jonathan Vos Post, Jul 30 2008 [Comment corrected by Jonathan Sondow, Aug 15 2008]
Legendre's conjecture can be generalized as follows: for all integers n > 0 and all real numbers k > K, there is a prime in the range n^k to (n+1)^k. The constant K is conjectured to be log(127)/log(16). See A143935. - T. D. Noe, Sep 05 2008
For n > 0: number of occurrences of n^2 in A145445. - Reinhard Zumkeller, Jul 25 2014

Examples

			a(17) = 5 because between 17^2 and 18^2, i.e., 289 and 324, there are 5 primes (which are 293, 307, 311, 313, 317).
		

References

  • J. R. Goldman, The Queen of Mathematics, 1998, p. 82.

Crossrefs

First differences of A038107.
Counts of primes between consecutive higher powers: A060199, A061235, A062517.

Programs

  • Haskell
    a014085 n = sum $ map a010051 [n^2..(n+1)^2]
    -- Reinhard Zumkeller, Mar 18 2012
    
  • Mathematica
    Table[PrimePi[(n + 1)^2] - PrimePi[n^2], {n, 0, 80}] (* Lei Zhou, Dec 01 2005 *)
    Differences[PrimePi[Range[0,90]^2]] (* Harvey P. Dale, Nov 25 2015 *)
  • PARI
    a(n)=primepi((n+1)^2)-primepi(n^2) \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    from sympy import primepi
    def a(n): return primepi((n+1)**2) - primepi(n**2)
    print([a(n) for n in range(81)]) # Michael S. Branicky, Jul 05 2021

Formula

a(n) = A000720((n+1)^2) - A000720(n^2). - Jonathan Vos Post, Jul 30 2008
a(n) = Sum_{k = n^2..(n+1)^2} A010051(k). - Reinhard Zumkeller, Mar 18 2012
Conjecture: for all n>1, abs(a(n)-(n/log(n))) < sqrt(n). - Alain Rocchelli, Sep 20 2023
Up to n=10^6 there are no counterexamples to this conjecture. - Hugo Pfoertner, Dec 16 2024
Sorenson & Webster show that a(n) > 0 for all 0 < n < 7.05 * 10^13. - Charles R Greathouse IV, Jan 31 2025

A000982 a(n) = ceiling(n^2/2).

Original entry on oeis.org

0, 1, 2, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, 85, 98, 113, 128, 145, 162, 181, 200, 221, 242, 265, 288, 313, 338, 365, 392, 421, 450, 481, 512, 545, 578, 613, 648, 685, 722, 761, 800, 841, 882, 925, 968, 1013, 1058, 1105, 1152, 1201, 1250, 1301, 1352, 1405
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of pairs (i,j) in [1..n] X [1..n] with integral arithmetic mean. Cf. A132188, A362931. - N. J. A. Sloane, Aug 28 2023
Also, floor( (n^2+1)/2 ). - N. J. A. Sloane, Feb 08 2019
Floor(arithmetic mean of next n numbers). - Amarnath Murthy, Mar 11 2003
Pairwise sums of repeated squares (A008794).
Also, number of topologies on n+1 unlabeled elements with exactly 4 elements in the topology. a(3) gives 4 elements a,b,c,d; the valid topologies are (0,a,ab,abcd), (0,a,abc,abcd), (0,ab,abc,abcd), (0,a,bcd,abcd) and (0,ab,cd,abcd), with a count of 5. - Jon Perry, Mar 05 2004
Partition n into two parts, say, r and s, so that r^2 + s^2 is minimal, then a(n) = r^2 + s^2. Geometrical significance: folding a rod with length n units at right angles in such a way that the end points are at the least distance, which is given by a(n)^(1/2) as the hypotenuse of a right triangle with the sum of the base and height = n units. - Amarnath Murthy, Apr 18 2004
Convolution of A002061(n)-0^n and (-1)^n. Convolution of n (A001477) with {1,0,2,0,2,0,2,...}. Partial sums of repeated odd numbers {0,1,1,3,3,5,5,...}. - Paul Barry, Jul 22 2004
The ratio of the sum of terms over the total number of terms in an n X n spiral. The sum of terms of an n X n spiral is A037270, or Sum_{k=0..n^2} k = (n^4 + n^2)/2 and the total number of terms is n^2. - William A. Tedeschi, Feb 27 2008
Starting with offset 1 = row sums of triangle A158946. - Gary W. Adamson, Mar 31 2009
Partial sums of A109613. - Reinhard Zumkeller, Dec 05 2009
Also the number of compositions of even natural numbers into 2 parts < n. For example a(3)=5 are the compositions (0,0), (0,2), (2,0), (1,1), (2,2) of even natural numbers into 2 parts < 3. a(4)=8 are the compositions (0,0), (0,2), (2,0), (1,1), (2,2), (1,3), (3,1), (3,3) of even natural numbers into 2 parts < 4. - Adi Dani, Jun 05 2011
A001105 and A001844 interleaved. - Omar E. Pol, Sep 18 2011
Number of (w,x,y) having all terms in {0,...,n} and w=average(x,y). - Clark Kimberling, May 15 2012
For n > 0, minimum number of lines necessary to get through all unit cubes of an n X n X n cube (see Kantor link). - Michel Marcus, Apr 13 2013
Sum_{n > 0} 1/a(n) = Sum_{n > 0} 1/(2*n^2) + Sum_{n >= 0} 1/(2*n + 2*n^2 + 1) = (zeta(2) + (Pi* tanh(Pi/2)))/2 = 2.26312655.... - Enrique Pérez Herrero, Jun 17 2013
For n > 1, a(n) is the edge cover number of the n X n king graph. - Eric W. Weisstein, Jun 20 2017
Also the number of vertices in the n X n black bishop graph. - Eric W. Weisstein, Jun 26 2017
The same sequence arises in the triangular array of the integers >= 1, according to a simple "zig-zag" rule for selection of terms. a(n-1) lies in the (n-1)-th row of the array, and the second row of that sub-array (with apex a(n-1)) contains just two numbers, one odd, one even. The one with opposite parity to a(n-1) is a(n). - David James Sycamore, Jul 29 2018
Size of minimal ternary 1-covering code with code length n, i.e., K_n(3,1). See Kalbfleisch and Stanton. - Patrick Wienhöft, Jan 29 2019
For n > 1, a(n-1) is the maximum number of inversions in a permutation consisting of a single n-cycle on n symbols. - M. Ryan Julian Jr., Sep 10 2019
Also the number of classes of convex inscribed polyominoes in a (2,n) rectangular grid; two polyominoes are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other. - Jean-Luc Manguin, Jan 29 2020
a(n) is the number of pairs (p,q) such that 1 <= p, p+1 < q <= n+2 and q <> 2*p. - César Eliud Lozada, Oct 25 2020
a(n) is the maximum number of copies of a 12 permutation pattern in an alternating (or zig-zag) permutation of length n+1. The maximum number of copies of 123 in an alternating permutation is motivated in the Notices reference, and the argument here is analogous. - Lara Pudwell, Dec 01 2020
It appears that a(n) is the largest number of nodes of an induced path in the n X n king graph. An induced path going in a simple spiraling pattern, starting in a corner, has a(n) nodes. For even n this is optimal, because an induced path can have at most two nodes in any 2 X 2 subsquare. For odd n, I cannot see how to prove that (n^2+1)/2 is best possible. See also A357501. - Pontus von Brömssen, Oct 02 2022 [Proved by Beluhov (2023). - Pontus von Brömssen, Jan 30 2023]
a(n) = n + 2*(n-2) + 2*(n-4) + 2*(n-6) + ... number of black squares on an n X n chessboard. - R. J. Mathar, Dec 03 2022

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 8*x^4 + 13*x^5 + 18*x^6 + 25*x^7 + 32*x^8 + ...
Centrosymmetric 3 X 3 matrix: [[a,b,c],[d,e,d],[c,b,a]], a(3) = 3*(3-1)/2 + (3-1)/2 + 1 = (3^2+1)/2 = 5 from a,b,c,d,e. 4 X 4 case: [[a,b,c,d],[e,f,g,h],[h,g,f,e],[d,c,b,a]], a(4) = 4*4/2 = 8. - _Wolfdieter Lang_, Oct 12 2015
a(3) = 5. The alternating permutation of length 3 + 1 = 4 with the maximum number of copies of 123 is 1324. The five copies are 12, 13, 14, 23, and 24. - _Lara Pudwell_, Dec 01 2020
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(2*n) = 2*n^2, a(2*n+1) = 2*n^2 + 2*n + 1.
G.f.: -x*(1+x^2) / ( (1+x)*(x-1)^3 ). - Simon Plouffe in his 1992 dissertation
From Benoit Cloitre, Nov 06 2002: (Start)
a(n) = (2*n^2 + 1 - (-1)^n) / 4.
a(0)=0, a(1)=1; for n>1, a(n+1) = n + 1 + max(2*floor(a(n)/2), 3*floor(a(n)/3)). (End)
G.f.: (x + x^2 + x^3 + x^4)/((1 - x)*(1 - x^2)^2), not reduced. - Len Smiley
a(n) = a(n-2) + 2n - 2. - Paul Barry, Jul 17 2004
From Paul Barry, Jul 22 2004: (Start)
G.f.: x*(1+x^2)/((1-x^2)*(1-x)^2) = x*(1+x^2)/((1+x)*(1-x)^3);
a(n) = Sum_{k=0..n} (k^2 - k + 1 - 0^k)*(-1)^(n-k);
a(n) = Sum_{k=0..n} (1 + (-1)^(n-k) - 0^(n-k))*k. (End)
From Reinhard Zumkeller, Feb 27 2006: (Start)
a(0) = 0, a(n+1) = a(n) + 2*floor(n/2) + 1.
a(n) = A116940(n) - A005843(n). (End)
Starting with offset 1, = row sums of triangle A134444. Also, with offset 1, = binomial transform of [1, 1, 2, -2, 4, -8, 16, -32, ...]. - Gary W. Adamson, Oct 25 2007
a(n) = floor((n^2+1)/2). - William A. Tedeschi, Feb 27 2008
a(n) = A004526(n+1) + A000217(n-1). - Yosu Yurramendi, Sep 12 2008, corrected by Klaus Purath, Jun 15 2021
From Jaume Oliver Lafont, Dec 05 2008: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) + 2.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). (End)
a(n) = A004526(n)^2 + A110654(n)^2. - Philippe Deléham, Mar 12 2009
a(n) = n^2 - floor(n^2/2). - Wesley Ivan Hurt, Jun 14 2013
Euler transform is length 4 sequence [2, 2, 0, -1].
a(n) = a(-n) for all n in Z. - Michael Somos, May 05 2015
a(n) is also the number of independent entries in a centrosymmetric n X n matrix: M(i, j) = M(n-i+1, n-j+1). - Wolfdieter Lang, Oct 12 2015
For n > 1, a(n+1)/a(n) = 3 - A081352(n-2)/a(n). - Miko Labalan, Mar 26 2016
E.g.f.: (1/2)*(x*(1 + x)*cosh(x) + (1 + x + x^2)*sinh(x)). - Stefano Spezia, Feb 03 2020
a(n) = binomial(n+1,2) - floor(n/2). - César Eliud Lozada, Oct 25 2020
From Klaus Purath, Jun 15 2021: (Start)
a(n-1) + a(n) = A002061(n).
a(n) = (a(n-1)^2 + 1) / a(n-2), n >= 3 odd.
a(n) = (a(n-1)^2 - (n-1)^2) / a(n-2), n >= 4 even. (End)

A036289 a(n) = n*2^n.

Original entry on oeis.org

0, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768, 15569256448, 32212254720
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Right side of the binomial sum Sum_{i = 0..n} (n-2*i)^2 * binomial(n, i) = n*2^n. - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
Let W be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all elements x, y of P(A), xRy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y, or y is a proper subset of x and there are no z in P(A) such that y is a proper subset of z and z is a proper subset of x. Then a(n) = |W|. - Ross La Haye, Sep 26 2007
Partial sums give A036799. - Vladimir Joseph Stephan Orlovsky, Jul 09 2011
a(n) = n with the bits shifted to the left by n places (new bits on the right hand side are zeros). - Indranil Ghosh, Jan 05 2017
Satisfies Benford's law [Theodore P. Hill, Personal communication, Feb 06, 2017]. - N. J. A. Sloane, Feb 08 2017
Also the circumference of the n-cube connected cycle graph. - Eric W. Weisstein, Sep 03 2017
a(n) is also the number of derangements in S_{n+3} with a descent set of {i, i+1} such that i ranges from 1 to n-2. - Isabella Huang, Mar 17 2018
a(n-1) is also the number of multiplications required to compute the permanent of general n X n matrices using Glynn's formula (see Theorem 2.1 in Glynn). - Stefano Spezia, Oct 27 2021

References

  • Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.29)

Crossrefs

Equals 2*A001787. Equals A003261(n) + 1.

Programs

  • Haskell
    a036289 n = n * 2 ^ n
    a036289_list = zipWith (*) [0..] a000079_list
    -- Reinhard Zumkeller, Mar 05 2012
    
  • Maple
    g:=1/(1-2*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)*n, n=0..34); # Zerinvary Lajos, Jan 11 2009
  • Mathematica
    Table[n*2^n, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2010 *)
    LinearRecurrence[{4,-4},{0,2},40] (* Harvey P. Dale, Mar 02 2018 *)
  • PARI
    a(n)=n<Charles R Greathouse IV, Jun 15 2011
    
  • Python
    a=lambda n: n<Indranil Ghosh, Jan 05 2017

Formula

Main diagonal of array (A085454) defined by T(i, 1) = i, T(1, j) = 2j, T(i, j) = T(i-1, j) + T(i-1, j-1). - Benoit Cloitre, Aug 05 2003
Binomial transform of A005843, the even numbers. - Joshua Zucker, Jan 13 2006
G.f.: 2*x/(1-2*x)^2. - R. J. Mathar, Nov 21 2007
a(n) = A000079(n)*n. - Omar E. Pol, Dec 21 2008
E.g.f.: 2*x exp(2*x). - Geoffrey Critzer, Oct 03 2011
a(n) = A002064(n) - 1. - Reinhard Zumkeller, Mar 16 2013
From Vaclav Kotesovec, Feb 14 2015: (Start)
Sum_{n>=1} 1/a(n) = log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(3/2).
(End)

A007531 a(n) = n*(n-1)*(n-2) (or n!/(n-3)!).

Original entry on oeis.org

0, 0, 0, 6, 24, 60, 120, 210, 336, 504, 720, 990, 1320, 1716, 2184, 2730, 3360, 4080, 4896, 5814, 6840, 7980, 9240, 10626, 12144, 13800, 15600, 17550, 19656, 21924, 24360, 26970, 29760, 32736, 35904, 39270, 42840, 46620, 50616, 54834, 59280, 63960, 68880
Offset: 0

Views

Author

Keywords

Comments

Ed Pegg Jr conjectures that n^3 - n = k! has a solution if and only if n is 2, 3, 5 or 9 (when k is 3, 4, 5 and 6).
Three-dimensional promic (or oblong) numbers, cf. A002378. - Alexandre Wajnberg, Dec 29 2005
Doubled first differences of tritriangular numbers A050534(n) = (1/8)n(n + 1)(n - 1)(n - 2). a(n) = 2*(A050534(n+1) - A050534(n)). - Alexander Adamchuk, Apr 11 2006
If Y is a 4-subset of an n-set X then, for n >= 6, a(n-4) is the number of (n-5)-subsets of X having exactly two elements in common with Y. - Milan Janjic, Dec 28 2007
Convolution of A005843 with A008585. - Reinhard Zumkeller, Mar 07 2009
a(n) = A000578(n) - A000567(n). - Reinhard Zumkeller, Sep 18 2009
For n > 3: a(n) = A173333(n, n-3). - Reinhard Zumkeller, Feb 19 2010
Let H be the n X n Hilbert matrix H(i, j) = 1/(i+j-1) for 1 <= i, j <= n. Let B be the inverse matrix of H. The sum of the elements in row 2 of B equals (-1)^n a(n+1). - T. D. Noe, May 01 2011
a(n) equals 2^(n-1) times the coefficient of log(3) in 2F1(n-2, n-2, n, -2). - John M. Campbell, Jul 16 2011
For n > 2 a(n) = 1/(Integral_{x = 0..Pi/2} (sin(x))^5*(cos(x))^(2*n-5)). - Francesco Daddi, Aug 02 2011
a(n) is the number of functions f:[3] -> [n] that are injective since there are n choices for f(1), (n-1) choices for f(2), and (n-2) choices for f(3). Also, a(n+1) is the number of functions f:[3] -> [n] that are width-2 restricted (that is, the pre-image under f of any element in [n] is of size 2 or less). See "Width-restricted finite functions" link below. - Dennis P. Walsh, Mar 01 2012
This sequence is produced by three consecutive triangular numbers t(n-1), t(n-2) and t(n-3) in the expression 2*t(n-1)*(t(n-2)-t(n-3)) for n = 0, 1, 2, ... - J. M. Bergot, May 14 2012
For n > 2: A020639(a(n)) = 2; A006530(a(n)) = A093074(n-1). - Reinhard Zumkeller, Jul 04 2012
Number of contact points between equal spheres arranged in a tetrahedron with n - 1 spheres in each edge. - Ignacio Larrosa Cañestro, Jan 07 2013
Also for n >= 3, area of Pythagorean triangle in which one side differs from hypotenuse by two units. Consider any Pythagorean triple (2n, n^2-1, n^2+1) where n > 1. The area of such a Pythagorean triangle is n(n^2-1). For n = 2, 3, 4,.. the areas are 6, 24, 60, .... which are the given terms of the series. - Jayanta Basu, Apr 11 2013
Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices (chromatic polynomial) of the complete graph K_3. - Tom Copeland, Apr 05 2014
Starting with 6, 24, 60, 120, ..., a(n) is the number of permutations of length n>=3 avoiding the partially ordered pattern (POP) {1>2} of length 5. That is, the number of length n permutations having no subsequences of length 5 in which the first element is larger than the second element. - Sergey Kitaev, Dec 11 2020
For integer m and positive integer r >= 2, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (2 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section D25.
  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 40.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

binomial(n, k): A161680 (k = 2), A000332 (k = 4), A000389 (k = 5), A000579 (k = 6), A000580 (k = 7), A000581 (k = 8), A000582 (k = 9).
Cf. A028896.

Programs

  • Haskell
    a007531 n = product [n-2..n]  -- Reinhard Zumkeller, Jul 04 2012
    
  • Magma
    [n*(n-1)*(n-2): n in [0..40]]; // Vincenzo Librandi, May 02 2011
    
  • Maple
    [seq(6*binomial(n,3),n=0..41)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    Table[n^3 - 3n^2 + 2n, {n, 0, 42}]
    Table[FactorialPower[n, 3], {n, 0, 42}] (* Arkadiusz Wesolowski, Oct 29 2012 *)
  • PARI
    a(n)=n*(n-1)*(n-2)
    
  • Sage
    [n*(n-1)*(n-2) for n in range(40)] # G. C. Greubel, Feb 11 2019

Formula

a(n) = 6*A000292(n-2).
a(n) = Sum_{i=1..n} polygorial(3,i) where polygorial(3,i) = A028896(i-1). - Daniel Dockery (peritus(AT)gmail.com), Jun 16 2003
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6, n > 2. - Zak Seidov, Feb 09 2006
G.f.: 6*x^2/(1-x)^4.
a(-n) = -a(n+2).
1/6 + 3/24 + 5/60 + ... = Sum_{k>=1} (2*k-1)/(k*(k+1)*(k+2)) = 3/4. [Jolley Eq. 213]
a(n+1) = n^3 - n. - Mohammad K. Azarian, Jul 26 2007
E.g.f.: x^3*exp(x). - Geoffrey Critzer, Feb 08 2009
If the first 0 is eliminated, a(n) = floor(n^5/(n^2+1)). - Gary Detlefs, Feb 11 2010
1/6 + 1/24 + 1/60 + ... = Sum_{n>=1} 1/(n*(n+1)*(n+2)) = 1/4. - Mohammad K. Azarian, Dec 29 2010
a(0) = 0, a(n) = a(n-1) + 3*(n-1)*(n-2). - Jean-François Alcover, Jan 08 2013
(a(n+1) - a(n))/6 = A000217(n-2) for n > 0. - J. M. Bergot, Jul 30 2013
Partial sums of A028896. - R. J. Mathar, Aug 28 2014
1/6 + 1/24 + 1/60 + ... + 1/(n*(n+1)*(n+2)) = n*(n+3)/(4*(n+1)*(n+2)). - Christina Steffan, Jul 20 2015
a(n+2)^2 = A005563(n)^3 + A005563(n)^2. - Bruno Berselli, May 03 2018
a(n)*a(n+1) + A000096(n-3)^2 = m^2 (a perfect square), m = ((a(n)+a(n+1))/2)-n. - Ezhilarasu Velayutham, May 21 2019
Sum_{n>=3} (-1)^(n+1)/a(n) = 2*log(2) - 5/4. - Amiram Eldar, Jul 02 2020
For n >= 3, (a(n) + (a(n) + (a(n) + ...)^(1/3))^(1/3))^(1/3) = n - 1. - Paolo Xausa, Apr 09 2022

A048272 Number of odd divisors of n minus number of even divisors of n.

Original entry on oeis.org

1, 0, 2, -1, 2, 0, 2, -2, 3, 0, 2, -2, 2, 0, 4, -3, 2, 0, 2, -2, 4, 0, 2, -4, 3, 0, 4, -2, 2, 0, 2, -4, 4, 0, 4, -3, 2, 0, 4, -4, 2, 0, 2, -2, 6, 0, 2, -6, 3, 0, 4, -2, 2, 0, 4, -4, 4, 0, 2, -4, 2, 0, 6, -5, 4, 0, 2, -2, 4, 0, 2, -6, 2, 0, 6, -2, 4, 0, 2, -6, 5, 0, 2, -4, 4, 0, 4, -4, 2, 0, 4, -2, 4
Offset: 1

Views

Author

Keywords

Comments

abs(a(n)) = (1/2) * (number of pairs (i,j) satisfying n = i^2 - j^2 and -n <= i,j <= n). - Benoit Cloitre, Jun 14 2003
As A001227(n) is the number of ways to write n as the difference of 3-gonal numbers, a(n) describes the number of ways to write n as the difference of e-gonal numbers for e in {0,1,4,8}. If pe(n):=(1/2)*n*((e-2)*n+(4-e)) is the n-th e-gonal number, then 4*a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=1, 2*a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e in {0,4} and for a(n) itself is a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=8. (Same for e=-1 see A035218.) - Volker Schmitt (clamsi(AT)gmx.net), Nov 09 2004
An argument by Gareth McCaughan suggests that the average of this sequence is log(2). - Hans Havermann, Feb 10 2013 [Supported by a graph. - Vaclav Kotesovec, Mar 01 2023]
From Keith F. Lynch, Jan 20 2024: (Start)
a(n) takes every possible integer value, positive, negative, and zero. Proof: For all nonnegative integers k, a(3^k) = 1+k, a(2^k) = 1-k.
a(n) takes every possible integer value except 1 and -1 infinitely many times. Proof: a(o^(k-1)) = k and a(4*o^(k-1)) = -k for all positive integers k and odd primes o, of which there are infinitely many. a(n) = 0 iff n = 2 (mod 4). a(n) = 1 iff n = 1. a(n) = -1 iff n = 4.
a(n) takes prime value p only for n = o^(p-1), where o is any odd prime.
Terms have a simple pattern that repeats with a period of 4: Positive, zero, positive, negative.
(End)
Inverse Möbius transform of (-1)^(n+1). - Wesley Ivan Hurt, Jun 22 2024

Examples

			a(20) = -2 because 20 = 2^2*5^1 and (1-2)*(1+1) = -2.
G.f. = x + 2*x^3 - x^4 + 2*x^5 + 2*x^7 - 2*x^8 + 3*x^9 + 2*x^11 - 2*x^12 + ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), first formula.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 97, 7(ii).

Crossrefs

Cf. A048298. A diagonal of A060184.
First differences of A059851.
Indices of records: A053624 (highs), A369151 (lows).

Programs

  • Haskell
    a048272 n = a001227 n - a183063 n  -- Reinhard Zumkeller, Jan 21 2012
    
  • Magma
    [&+[(-1)^(d+1):d in Divisors(n)] :n in [1..95] ]; // Marius A. Burtea, Aug 10 2019
  • Maple
    add(x^n/(1+x^n), n=1..60): series(%,x,59);
    A048272 := proc(n)
        local a;
        a := 1 ;
        for pfac in ifactors(n)[2] do
            if pfac[1] = 2 then
                a := a*(1-pfac[2]) ;
            else
                a := a*(pfac[2]+1) ;
            end if;
        end do:
        a ;
    end proc: # Schmitt, sign corrected R. J. Mathar, Jun 18 2016
    # alternative Maple program:
    a:= n-> -add((-1)^d, d=numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 28 2018
  • Mathematica
    Rest[ CoefficientList[ Series[ Sum[x^k/(1 - (-x)^k), {k, 111}], {x, 0, 110}], x]] (* Robert G. Wilson v, Sep 20 2005 *)
    dif[n_]:=Module[{divs=Divisors[n]},Count[divs,?OddQ]-Count[ divs, ?EvenQ]]; Array[dif,100] (* Harvey P. Dale, Aug 21 2011 *)
    a[n]:=Sum[-(-1)^d,{d,Divisors[n]}] (* Steven Foster Clark, May 04 2018 *)
    f[p_, e_] := If[p == 2, 1 - e, 1 + e]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Jun 09 2022 *)
  • PARI
    {a(n) = if( n<1, 0, -sumdiv(n, d, (-1)^d))}; /* Michael Somos, Jul 22 2006 */
    
  • PARI
    N=17; default(seriesprecision,N); x=z+O(z^(N+1))
    c=sum(j=1,N,j*x^j); \\ log case
    s=-log(prod(j=1,N,(1+x^j)^(1/j)));
    s=serconvol(s,c)
    v=Vec(s) \\ Joerg Arndt, May 03 2008
    
  • PARI
    a(n)=my(o=valuation(n,2),f=factor(n>>o)[,2]);(1-o)*prod(i=1,#f,f[i]+1) \\ Charles R Greathouse IV, Feb 10 2013
    
  • PARI
    a(n)=direuler(p=1,n,if(p==2,(1-2*X)/(1-X)^2,1/(1-X)^2))[n] /* Ralf Stephan, Mar 27 2015 */
    
  • PARI
    {a(n) = my(d = n -> if(frac(n), 0, numdiv(n))); if( n<1, 0, if( n%4, 1, -1) * (d(n) - 2*d(n/2) + 2*d(n/4)))}; /* Michael Somos, Aug 11 2017 */
    

Formula

Coefficients in expansion of Sum_{n >= 1} x^n/(1+x^n) = Sum_{n >= 1} (-1)^(n-1)*x^n/(1-x^n). Expand Sum 1/(1+x^n) in powers of 1/x.
If n = 2^p1*3^p2*5^p3*7^p4*11^p5*..., a(n) = (1-p1)*Product_{i>=2} (1+p_i).
Multiplicative with a(2^e) = 1 - e and a(p^e) = 1 + e if p > 2. - Vladeta Jovovic, Jan 27 2002
a(n) = (-1)*Sum_{d|n} (-1)^d. - Benoit Cloitre, May 12 2003
Moebius transform is period 2 sequence [1, -1, ...]. - Michael Somos, Jul 22 2006
G.f.: Sum_{k>0} -(-1)^k * x^(k^2) * (1 + x^(2*k)) / (1 - x^(2*k)) [Ramanujan]. - Michael Somos, Jul 22 2006
Equals A051731 * [1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 07 2007
From Reinhard Zumkeller, Jan 21 2012: (Start)
a(n) = A001227(n) - A183063(n).
a(A008586(n)) < 0; a(A005843(n)) <= 0; a(A016825(n)) = 0; a(A042968(n)) >= 0; a(A005408(n)) > 0. (End)
a(n) = Sum_{k=0..n} A081362(k)*A015723(n-k). - Mircea Merca, Feb 26 2014
abs(a(n)) = A112329(n) = A094572(n) / 2. - Ray Chandler, Aug 23 2014
From Peter Bala, Jan 07 2015: (Start)
Logarithmic g.f.: log( Product_{n >= 1} (1 + x^n)^(1/n) ) = Sum_{n >= 1} a(n)*x^n/n.
a(n) = A001227(n) - A183063(n). By considering the logarithmic generating functions of these three sequences we obtain the identity
( Product_{n >= 0} (1 - x^(2*n+1))^(1/(2*n+1)) )^2 = Product_{n >= 1} ( (1 - x^n)/(1 + x^n) )^(1/n). (End)
Dirichlet g.f.: zeta(s)*eta(s) = zeta(s)^2*(1-2^(-s+1)). - Ralf Stephan, Mar 27 2015
a(2*n - 1) = A099774(n). - Michael Somos, Aug 12 2017
From Paul D. Hanna, Aug 10 2019: (Start)
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(n+1) - x^k)^(n-k) = Sum_{n>=0} a(n)*x^(2*n).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(n+1) + x^k)^(n-k) * (-1)^k = Sum_{n>=0} a(n)*x^(2*n). (End)
a(n) = 2*A000005(2n) - 3*A000005(n). - Ridouane Oudra, Oct 15 2019
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000005(k) = 2*log(2)-1. - Amiram Eldar, Mar 01 2023

Extensions

New definition from Vladeta Jovovic, Jan 27 2002

A034856 a(n) = binomial(n+1, 2) + n - 1 = n*(n+3)/2 - 1.

Original entry on oeis.org

1, 4, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, 134, 151, 169, 188, 208, 229, 251, 274, 298, 323, 349, 376, 404, 433, 463, 494, 526, 559, 593, 628, 664, 701, 739, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1174, 1223, 1273, 1324, 1376, 1429, 1483
Offset: 1

Views

Author

Keywords

Comments

Number of 1's in the n X n lower Hessenberg (0,1)-matrix (i.e., the matrix having 1's on or below the superdiagonal and 0's above the superdiagonal).
If a 2-set Y and 2-set Z, having one element in common, are subsets of an n-set X then a(n-2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007
Number of binary operations which have to be added to Moisil's algebras to obtain algebraic counterparts of n-valued Łukasiewicz logics. See the Wójcicki and Malinowski book, page 31. - Artur Jasinski, Feb 25 2010
Also (n + 1)!(-1)^(n + 1) times the determinant of the n X n matrix given by m(i,j) = i/(i+1) if i=j and otherwise 1. For example, (5+1)! * ((-1)^(5+1)) * Det[{{1/2, 1, 1, 1, 1}, {1, 2/3, 1, 1, 1}, {1, 1, 3/4, 1, 1}, {1, 1, 1, 4/5, 1}, {1, 1, 1, 1, 5/6}}] = 19 = a(5), and (6+1)! * ((-1)^(6+1)) * Det[{{1/2, 1, 1, 1, 1, 1}, {1, 2/3, 1, 1, 1, 1}, {1, 1, 3/4, 1, 1, 1}, {1, 1, 1, 4/5, 1, 1}, {1, 1, 1, 1, 5/6, 1}, {1, 1, 1, 1, 1, 6/7}}] = 26 = a(6). - John M. Campbell, May 20 2011
2*a(n-1) = n*(n+1) - 4, n>=0, with a(-1) = -2 and a(0) = -1, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 17 for b = 2*n + 1. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
a(n) is not divisible by 3, 5, 7, or 11. - Vladimir Shevelev, Feb 03 2014
With a(0) = 1 and a(1) = 2, a(n-1) is the number of distinct values of 1 +- 2 +- 3 +- ... +- n, for n > 0. - Derek Orr, Mar 11 2015
Also, numbers m such that 8*m+17 is a square. - Bruno Berselli, Sep 16 2015
Omar E. Pol's formula from Apr 23 2008 can be interpreted as the position of an element located on the third diagonal of an triangular array (read by rows) provided n > 1. - Enrique Pérez Herrero, Aug 29 2016
a(n) is the sum of the numerator and denominator of the fraction that is the sum of 2/(n-1) + 2/n; all fractions are reduced and n > 2. - J. M. Bergot, Jun 14 2017
a(n) is also the number of maximal irredundant sets in the (n+2)-path complement graph for n > 1. - Eric W. Weisstein, Apr 12 2018
From Klaus Purath, Dec 07 2020: (Start)
a(n) is not divisible by primes listed in A038890. The prime factors are given in A038889 and the prime terms of the sequence are listed in A124199.
Each odd prime factor p divides exactly 2 out of any p consecutive terms with the exception of 17, which appears only once in such an interval of terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -3 (mod p), see examples.
If A is a sequence satisfying the recurrence t(n) = 5*t(n-1) - 2*t(n-2) with the initial values either A(0) = 1, A(1) = n + 4 or A(0) = -1, A(1) = n-1, then a(n) = (A(i)^2 - A(i-1)*A(i+1))/2^i for i>0. (End)
Mark each point on a 4^n grid with the number of points that are visible from the point; for n > 1, a(n) is the number of distinct values in the grid. - Torlach Rush, Mar 23 2021
The sequence gives the number of "ON" cells in the cellular automaton on a quadrant of a square grid after the n-th stage, where the "ON" cells lie only on the external perimeter and the perimeter of inscribed squares having the cell (1,1) as a unique common vertex. See Spezia link. - Stefano Spezia, May 28 2025

Examples

			From _Bruno Berselli_, Mar 09 2015: (Start)
By the definition (first formula):
----------------------------------------------------------------------
  1       4         8           13            19              26
----------------------------------------------------------------------
                                                              X
                                              X              X X
                                X            X X            X X X
                    X          X X          X X X          X X X X
          X        X X        X X X        X X X X        X X X X X
  X      X X      X X X      X X X X      X X X X X      X X X X X X
          X        X X        X X X        X X X X        X X X X X
----------------------------------------------------------------------
(End)
From _Klaus Purath_, Dec 07 2020: (Start)
Assuming a(i) is divisible by p with 0 < i < p and a(k) is the next term divisible by p, then from i + k == -3 (mod p) follows that k = min(p*m - i - 3) != i for any integer m.
(1) 17|a(7) => k = min(17*m - 10) != 7 => m = 2, k = 24 == 7 (mod 17). Thus every a(17*m + 7) is divisible by 17.
(2) a(9) = 53 => k = min(53*m - 12) != 9 => m = 1, k = 41. Thus every a(53*m + 9) and a(53*m + 41) is divisible by 53.
(3) 101|a(273) => 229 == 71 (mod 101) => k = min(101*m - 74) != 71 => m = 1, k = 27. Thus every a(101*m + 27) and a(101*m + 71) is divisible by 101. (End)
From _Omar E. Pol_, Aug 08 2021: (Start)
Illustration of initial terms:                             _ _
.                                           _ _           |_|_|_
.                              _ _         |_|_|_         |_|_|_|_
.                   _ _       |_|_|_       |_|_|_|_       |_|_|_|_|_
.          _ _     |_|_|_     |_|_|_|_     |_|_|_|_|_     |_|_|_|_|_|_
.   _     |_|_|    |_|_|_|    |_|_|_|_|    |_|_|_|_|_|    |_|_|_|_|_|_|
.  |_|    |_|_|    |_|_|_|    |_|_|_|_|    |_|_|_|_|_|    |_|_|_|_|_|_|
.
.   1       4         8          13            19              26
------------------------------------------------------------------------ (End)
		

References

  • A. S. Karpenko, Łukasiewicz's Logics and Prime Numbers, 2006 (English translation).
  • G. C. Moisil, Essais sur les logiques non-chrysippiennes, Ed. Academiei, Bucharest, 1972.
  • Wójcicki and Malinowski, eds., Łukasiewicz Sentential Calculi, Wrocław: Ossolineum, 1977.

Crossrefs

Subsequence of A165157.
Triangular numbers (A000217) minus two.
Third diagonal of triangle in A059317.

Programs

  • Haskell
    a034856 = subtract 1 . a000096 -- Reinhard Zumkeller, Feb 20 2015
    
  • Magma
    [Binomial(n + 1, 2) + n - 1: n in [1..60]]; // Vincenzo Librandi, May 21 2011
    
  • Maple
    a := n -> hypergeom([-2, n-1], [1], -1);
    seq(simplify(a(n)), n=1..53); # Peter Luschny, Aug 02 2014
  • Mathematica
    f[n_] := n (n + 3)/2 - 1; Array[f, 55] (* or *) k = 2; NestList[(k++; # + k) &, 1, 55] (* Robert G. Wilson v, Jun 11 2010 *)
    Table[Binomial[n + 1, 2] + n - 1, {n, 53}] (* or *)
    Rest@ CoefficientList[Series[x (1 + x - x^2)/(1 - x)^3, {x, 0, 53}], x] (* Michael De Vlieger, Aug 29 2016 *)
  • Maxima
    A034856(n) := block(
            n-1+(n+1)*n/2
    )$ /* R. J. Mathar, Mar 19 2012 */
    
  • PARI
    A034856(n)=(n+3)*n\2-1 \\ M. F. Hasler, Jan 21 2015
    
  • Python
    def A034856(n): return n*(n+3)//2 -1 # G. C. Greubel, Jun 15 2025

Formula

G.f.: A(x) = x*(1 + x - x^2)/(1 - x)^3.
a(n) = A049600(3, n-2).
a(n) = binomial(n+2, 2) - 2. - Paul Barry, Feb 27 2003
With offset 5, this is binomial(n, 0) - 2*binomial(n, 1) + binomial(n, 2), the binomial transform of (1, -2, 1, 0, 0, 0, ...). - Paul Barry, Jul 01 2003
Row sums of triangle A131818. - Gary W. Adamson, Jul 27 2007
Binomial transform of (1, 3, 1, 0, 0, 0, ...). Also equals A130296 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
Row sums of triangle A134225. - Gary W. Adamson, Oct 14 2007
a(n) = A000217(n+1) - 2. - Omar E. Pol, Apr 23 2008
From Jaroslav Krizek, Sep 05 2009: (Start)
a(n) = a(n-1) + n + 1 for n >= 1.
a(n) = n*(n-1)/2 + 2*n - 1.
a(n) = A000217(n-1) + A005408(n-1) = A005843(n-1) + A000124(n-1). (End)
a(n) = Hyper2F1([-2, n-1], [1], -1). - Peter Luschny, Aug 02 2014
a(n) = floor[1/(-1 + Sum_{m >= n+1} 1/S2(m,n+1))], where S2 is A008277. - Richard R. Forberg, Jan 17 2015
a(n) = A101881(2*(n-1)). - Reinhard Zumkeller, Feb 20 2015
a(n) = A253909(n+3) - A000217(n+3). - David Neil McGrath, May 23 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - David Neil McGrath, May 23 2015
For n > 1, a(n) = 4*binomial(n-1,1) + binomial(n-2,2), comprising the third column of A267633. - Tom Copeland, Jan 25 2016
From Klaus Purath, Dec 07 2020: (Start)
a(n) = A024206(n) + A024206(n+1).
a(2*n-1) = -A168244(n+1).
a(2*n) = A091823(n). (End)
Sum_{n>=1} 1/a(n) = 3/2 + 2*Pi*tan(sqrt(17)*Pi/2)/sqrt(17). - Amiram Eldar, Jan 06 2021
a(n) + a(n+1) = A028347(n+2). - R. J. Mathar, Mar 13 2021
a(n) = A000290(n) - A161680(n-1). - Omar E. Pol, Mar 26 2021
E.g.f.: 1 + exp(x)*(x^2 + 4*x - 2)/2. - Stefano Spezia, Jun 05 2021
a(n) = A024916(n) - A244049(n). - Omar E. Pol, Aug 01 2021
a(n) = A000290(n) - A000217(n-2). - Omar E. Pol, Aug 05 2021

Extensions

More terms from Zerinvary Lajos, May 12 2006

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A002412 Hexagonal pyramidal numbers, or greengrocer's numbers.

Original entry on oeis.org

0, 1, 7, 22, 50, 95, 161, 252, 372, 525, 715, 946, 1222, 1547, 1925, 2360, 2856, 3417, 4047, 4750, 5530, 6391, 7337, 8372, 9500, 10725, 12051, 13482, 15022, 16675, 18445, 20336, 22352, 24497, 26775, 29190, 31746, 34447, 37297, 40300
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of (1, 6, 9, 4, 0, 0, 0, ...). - Gary W. Adamson, Oct 16 2007
a(n) is the sum of the maximum(m,n) over {(m,n): m,n in positive integers, m<=n}. - Geoffrey Critzer, Oct 11 2009
We obtain these numbers for d=2 in the identity n*(n*(d*n-d+2)/2)-sum(k*(d*k-d+2)/2, k=0..n-1) = n*(n+1)*(2*d*n-2*d+3)/6 (see Klaus Strassburger in Formula lines). - Bruno Berselli, Apr 21 2010, Nov 16 2010
q^a(n) is the Hankel transform of the q-Catalan numbers. - Paul Barry, Dec 15 2010
Row 1 of the convolution array A213835. - Clark Kimberling, Jul 04 2012
From Ant King, Oct 24 2012: (Start)
For n>0, the digital roots of this sequence A010888(A002412(n)) form the purely periodic 27-cycle {1,7,4,5,5,8,9,3,3,4,1,7,8,8,2,3,6,6,7,4,1,2,2,5,6,9,9}.
For n>0, the units' digits of this sequence A010879(A002412(n)) form the purely periodic 20-cycle {1,7,2,0,5,1,2,2,5,5,6,2,7,5,0,6,7,7,0,0}.
(End)
Partial sums of A000384. - Omar E. Pol, Jan 12 2013
Row sums of A094728. - J. M. Bergot, Jun 14 2013
Number of orbits of Aut(Z^7) as function of the infinity norm (n+1) of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 40320. - Philippe A.J.G. Chevalier, Dec 28 2015
Coefficients in the hypergeometric series identity 1 - 7*(x - 1)/(3*x + 1) + 22*(x - 1)*(x - 2)/((3*x + 1)*(3*x + 2)) - 50*(x - 1)*(x - 2)*(x - 3)/((3*x + 1)*(3*x + 2)*(3*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A000326 and A002418. Column 3 of A103450. - Peter Bala, Mar 14 2019

Examples

			Let n=5, 2*n=10. Since 10 = 1 + 9 = 2 + 8 = 3 + 7 = 4 + 6 = 5 + 5, a(5) = 1*9 + 2*8 + 3*7 + 4*6 + 5*5 = 95. - _Vladimir Shevelev_, May 11 2012
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
  • I. Siap, Linear codes over F_2 + u*F_2 and their complete weight enumerators, in Codes and Designs (Ohio State, May 18, 2000), pp. 259-271. De Gruyter, 2002.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A002623. Equals A000578(n) - A000330(n-1).
a(n) = A093561(n+2, 3), (4, 1)-Pascal column.
Cf. A220084 for a list of numbers of the form n*P(k,n)-(n-1)*P(k,n-1), where P(k,n) is the n-th k-gonal pyramidal number (see Adamson's formula).
Cf. similar sequences listed in A237616.
Orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008585, A005843, A001477, A000217.

Programs

  • GAP
    List([0..40],n->n*(n+1)*(4*n-1)/6); # Muniru A Asiru, Mar 18 2019
    
  • Magma
    [n*(n+1)*(4*n-1)/6: n in [0..40]]; // Vincenzo Librandi, Nov 28 2015
    
  • Maple
    seq(sum(i*(2*k-i), i=1..k), k=0..100); # Wesley Ivan Hurt, Sep 25 2013
  • Mathematica
    Figurate[ ngon_, rank_, dim_] := Binomial[rank + dim - 2, dim - 1] ((rank - 1)*(ngon - 2) + dim)/dim; Table[ Figurate[6, r, 3], {r, 0, 40}] (* Robert G. Wilson v, Aug 22 2010 *)
    Table[n(n+1)(4n-1)/6, {n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,1,7,22}, 40] (* Harvey P. Dale, Jul 16 2011 *)
  • Maxima
    A002412(n):=n*(n+1)*(4*n-1)/6$ makelist(A002412(n),n,0,20); /* Martin Ettl, Dec 12 2012 */
    
  • PARI
    v=vector(40,i,(i*(i+1))\2); s=0; print1(s","); forstep(i=1,40,2,s+=v[i]; print1(s","))
    
  • Python
    print([n*(n+1)*(4*n-1)//6 for n in range(40)]) # Michael S. Branicky, Mar 28 2022

Formula

a(n) = n(n + 1)(4n - 1)/6.
G.f.: x*(1+3*x)/(1-x)^4. - Simon Plouffe in his 1992 dissertation.
a(n) = n^3 - Sum_{i=1..n-1} i^2. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
Partial sums of n odd-indexed triangular numbers, e.g., a(3) = t(1)+t(3)+t(5) = 1+6+15 = 22. - Jon Perry, Jul 23 2003
a(n) = Sum_{i=0..n-1} (n - i)*(n + i). - Jon Perry, Sep 26 2004
a(n) = n*A000292(n) - (n-1)*A000292(n-1) = n*binomial((n+2),3) - (n-1)*binomial((n+1),3); e.g., a(5) = 95 = 5*35 - 4*20. - Gary W. Adamson, Dec 28 2007
a(n) = Sum_{i=0..n} (2i^2 + 3i + 1), for n >= 0 (Omits the leading 0). - William A. Tedeschi, Aug 25 2010
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4), with a(0)=0, a(1)=1, a(2)=7, a(3)=22. - Harvey P. Dale, Jul 16 2011
a(n) = sum a*b, where the summing is over all unordered partitions 2*n = a+b. - Vladimir Shevelev, May 11 2012
From Ant King, Oct 24 2012: (Start)
a(n) = a(n-1) + n*(2*n-1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 4.
a(n) = (n+1)*(2*A000384(n) + n)/6 = (4*n-1)*A000217(n)/3.
a(n) = A000292(n) + 3*A000292(n-1) = A002411(n) + A000292(n-1).
a(n) = binomial(n+2,3) + 3*binomial(n+1,3) = (4*n-1)*binomial(n+1,2)/3.
Sum_{n>=1} 1/a(n) = 6*(12*log(2)-2*Pi-1)/5 = 1.2414...
(End)
a(n) = Sum_{i=1..n} Sum_{j=1..n} max(i,j) = Sum_{i=1..n} i*(2*n-i). - Enrique Pérez Herrero, Jan 15 2013
a(n) = A005900(n+1) - A000326(n+1) = Octahedral - Pentagonal Numbers. - Richard R. Forberg, Aug 07 2013
a(n) = n*A000217(n) + Sum_{i=0..n-1} A000217(i). - Bruno Berselli, Dec 18 2013
a(n) = 2n * A000217(n) - A000330(n). - J. M. Bergot, Apr 05 2014
a(n) = A080851(4,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: x*(6 + 15*x + 4*x^2)*exp(x)/6. - Ilya Gutkovskiy, May 12 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*(1 + 2*sqrt(2)*Pi - 2*(3+sqrt(2))*log(2) + 4*sqrt(2)*log(2-sqrt(2)))/5. - Amiram Eldar, Jan 04 2022

A008592 Multiples of 10: a(n) = 10*n.

Original entry on oeis.org

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530
Offset: 0

Views

Author

Keywords

Comments

Number of 3 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i11 and n>1. - Sergey Kitaev, Nov 12 2004
If Y is a 5-subset of an n-set X then, for n>=5, a(n-4) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
Complement of A067251; A168184(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
Where record values occur for the number of partitions of n into powers of 10: A179052(n) = A179051(a(n)). - Reinhard Zumkeller, Jun 27 2010
Numbers ending in 0. - Wesley Ivan Hurt, Apr 10 2016

Crossrefs

Programs

Formula

From Vincenzo Librandi, Dec 24 2010: (Start)
G.f.: 10*x/(x-1)^2.
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)
a(n) = Sum_{i=2n-2..2n+2} i. - Wesley Ivan Hurt, Apr 11 2016
E.g.f.: 10*x*exp(x). - Stefano Spezia, May 31 2021
Previous Showing 31-40 of 768 results. Next