cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 115 results. Next

A001109 a(n)^2 is a triangular number: a(n) = 6*a(n-1) - a(n-2) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214, 46611179, 271669860, 1583407981, 9228778026, 53789260175, 313506783024, 1827251437969, 10650001844790, 62072759630771, 361786555939836, 2108646576008245, 12290092900109634, 71631910824649559, 417501372047787720
Offset: 0

Views

Author

Keywords

Comments

8*a(n)^2 + 1 = 8*A001110(n) + 1 = A055792(n+1) is a perfect square. - Gregory V. Richardson, Oct 05 2002
For n >= 2, A001108(n) gives exactly the positive integers m such that 1,2,...,m has a perfect median. The sequence of associated perfect medians is the present sequence. Let a_1,...,a_m be an (ordered) sequence of real numbers, then a term a_k is a perfect median if Sum_{j=1..k-1} a_j = Sum_{j=k+1..m} a_j. See Puzzle 1 in MSRI Emissary, Fall 2005. - Asher Auel, Jan 12 2006
(a(n), b(n)) where b(n) = A082291(n) are the integer solutions of the equation 2*binomial(b,a) = binomial(b+2,a). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de); comment revised by Michael Somos, Apr 07 2003
This sequence gives the values of y in solutions of the Diophantine equation x^2 - 8y^2 = 1. It also gives the values of the product xy where (x,y) satisfies x^2 - 2y^2 = +-1, i.e., a(n) = A001333(n)*A000129(n). a(n) also gives the inradius r of primitive Pythagorean triangles having legs whose lengths are consecutive integers, with corresponding semiperimeter s = a(n+1) = {A001652(n) + A046090(n) + A001653(n)}/2 and area rs = A029549(n) = 6*A029546(n). - Lekraj Beedassy, Apr 23 2003 [edited by Jon E. Schoenfield, May 04 2014]
n such that 8*n^2 = floor(sqrt(8)*n*ceiling(sqrt(8)*n)). - Benoit Cloitre, May 10 2003
For n > 0, ratios a(n+1)/a(n) may be obtained as convergents to continued fraction expansion of 3+sqrt(8): either successive convergents of [6;-6] or odd convergents of [5;1, 4]. - Lekraj Beedassy, Sep 09 2003
a(n+1) + A053141(n) = A001108(n+1). Generating floretion: - 2'i + 2'j - 'k + i' + j' - k' + 2'ii' - 'jj' - 2'kk' + 'ij' + 'ik' + 'ji' + 'jk' - 2'kj' + 2e ("jes" series). - Creighton Dement, Dec 16 2004
Kekulé numbers for certain benzenoids (see the Cyvin-Gutman reference). - Emeric Deutsch, Jun 19 2005
Number of D steps on the line y=x in all Delannoy paths of length n (a Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1)). Example: a(2)=6 because in the 13 (=A001850(2)) Delannoy paths of length 2, namely (DD), (D)NE, (D)EN, NE(D), NENE, NEEN, NDE, NNEE, EN(D), ENNE, ENEN, EDN and EENN, we have altogether six D steps on the line y=x (shown between parentheses). - Emeric Deutsch, Jul 07 2005
Define a T-circle to be a first-quadrant circle with integral radius that is tangent to the x- and y-axes. Such a circle has coordinates equal to its radius. Let C(0) be the T-circle with radius 1. Then for n > 0, define C(n) to be the smallest T-circle that does not intersect C(n-1). C(n) has radius a(n+1). Cf. A001653. - Charlie Marion, Sep 14 2005
Numbers such that there is an m with t(n+m)=2t(m), where t(n) are the triangular numbers A000217. For instance, t(20)=2*t(14)=210, so 6 is in the sequence. - Floor van Lamoen, Oct 13 2005
One half the bisection of the Pell numbers (A000129). - Franklin T. Adams-Watters, Jan 08 2006
Pell trapezoids: for n > 0, a(n) = (A000129(n-1)+A000129(n+1))*A000129(n)/2; see also A084158. - Charlie Marion, Apr 01 2006
Tested for 2 < p < 27: If and only if 2^p - 1 (the Mersenne number M(p)) is prime then M(p) divides a(2^(p-1)). - Kenneth J Ramsey, May 16 2006
If 2^p - 1 is prime then M(p) divides a(2^(p-1)-1). - Kenneth J Ramsey, Jun 08 2006; comment corrected by Robert Israel, Mar 18 2007
If 8*n+5 and 8*n+7 are twin primes then their product divides a(4*n+3). - Kenneth J Ramsey, Jun 08 2006
If p is an odd prime, then if p == 1 or 7 (mod 8), then a((p-1)/2) == 0 (mod p) and a((p+1)/2) == 1 (mod p); if p == 3 or 5 (mod 8), then a((p-1)/2) == 1 (mod p) and a((p+1)/2) == 0 (mod p). Kenneth J Ramsey's comment about twin primes follows from this. - Robert Israel, Mar 18 2007
a(n)*(a(n+b) - a(b-2)) = (a(n+1)+1)*(a(n+b-1) - a(b-1)). This identity also applies to any series a(0) = 0 a(1) = 1 a(n) = b*a(n-1) - a(n-2). - Kenneth J Ramsey, Oct 17 2007
For n < 0, let a(n) = -a(-n). Then (a(n+j) + a(k+j)) * (a(n+b+k+j) - a(b-j-2)) = (a(n+j+1) + a(k+j+1)) * (a(n+b+k+j-1) - a(b-j-1)). - Charlie Marion, Mar 04 2011
Sequence gives y values of the Diophantine equation: 0+1+2+...+x = y^2. If (a,b) and (c,d) are two consecutive solutions of the Diophantine equation: 0+1+2+...+x = y^2 with aMohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: 0+1+2+...+x = y^2 with p < r then r = 3*p+4*q+1 and s = 2*p+3*q+1. - Mohamed Bouhamida, Sep 02 2009
a(n)/A002315(n) converges to cos^2(Pi/8) (see A201488). - Gary Detlefs, Nov 25 2009
Binomial transform of A086347. - Johannes W. Meijer, Aug 01 2010
If x=a(n), y=A055997(n+1) and z = x^2+y, then x^4 + y^3 = z^2. - Bruno Berselli, Aug 24 2010
In general, if b(0)=1, b(1)=k and for n > 1, b(n) = 6*b(n-1) - b(n-2), then
for n > 0, b(n) = a(n)*k-a(n-1); e.g.,
for k=2, when b(n) = A038725(n), 2 = 1*2 - 0, 11 = 6*2 - 1, 64 = 35*2 - 6, 373 = 204*2 - 35;
for k=3, when b(n) = A001541(n), 3 = 1*3 - 0, 17 = 6*3 - 1; 99 = 35*3 - 6; 577 = 204*3 - 35;
for k=4, when b(n) = A038723(n), 4 = 1*4 - 0, 23 = 6*4 - 1; 134 = 35*4 - 6; 781 = 204*4 - 35;
for k=5, when b(n) = A001653(n), 5 = 1*5 - 0, 29 = 6*5 - 1; 169 = 35*5 - 6; 985 = 204*5 - 35.
- Charlie Marion, Dec 08 2010
See a Wolfdieter Lang comment on A001653 on a sequence of (u,v) values for Pythagorean triples (x,y,z) with x=|u^2-v^2|, y=2*u*v and z=u^2+v^2, with u odd and v even, generated from (u(0)=1,v(0)=2), the triple (3,4,5), by a substitution rule given there. The present a(n) appears there as b(n). The corresponding generated triangles have catheti differing by one length unit. - Wolfdieter Lang, Mar 06 2012
a(n)*a(n+2k) + a(k)^2 and a(n)*a(n+2k+1) + a(k)*a(k+1) are triangular numbers. Generalizes description of sequence. - Charlie Marion, Dec 03 2012
a(n)*a(n+2k) + a(k)^2 is the triangular square A001110(n+k). a(n)*a(n+2k+1) + a(k)*a(k+1) is the triangular oblong A029549(n+k). - Charlie Marion, Dec 05 2012
From Richard R. Forberg, Aug 30 2013: (Start)
The squares of a(n) are the result of applying triangular arithmetic to the squares, using A001333 as the "guide" on what integers to square, as follows:
a(2n)^2 = A001333(2n)^2 * (A001333(2n)^2 - 1)/2;
a(2n+1)^2 = A001333(2n+1)^2 * (A001333(2n+1)^2 + 1)/2. (End)
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,5}. - Milan Janjic, Jan 25 2015
Panda and Rout call these "balancing numbers" and note that the period of the sequence modulo a prime p is the same as that modulo p^2 when p = 13, 31, 1546463. But these are precisely the p in A238736 such that p^2 divides A000129(p - (2/p)), where (2/p) is a Jacobi symbol. In light of the above observation by Franklin T. Adams-Watters that the present sequence is one half the bisection of the Pell numbers, i.e., a(n) = A000129(2*n)/2, it follows immediately that modulo a fixed prime p, or any power thereof, the period of a(n) is half that of A000129(n). - John Blythe Dobson, Mar 06 2015
The triangular number = square number identity Tri((T(n, 3) - 1)/2) = S(n-1, 6)^2 with Tri, T, and S given in A000217, A053120 and A049310, is the special case k = 1 of the k-family of identities Tri((T(n, 2*k+1) - 1)/2) = Tri(k)*S(n-1, 2*(2*k+1))^2, k >= 0, n >= 0, with S(-1, x) = 0. For k=2 see A108741(n) for S(n-1, 10)^2. This identity boils down to the identities S(n-1, 2*x)^2 = (T(2*n, x) - 1)/(2*(x^2-1)) and 2*T(n, x)^2 - 1 = T(2*n, x) with x = 2*k+1. - Wolfdieter Lang, Feb 01 2016
a(2)=6 is perfect. For n=2*k, k > 0, k not equal to 1, a(n) is a multiple of a(2) and since every multiple (beyond 1) of a perfect number is abundant, then a(n) is abundant. sigma(a(4)) = 504 > 408 = 2*a(4). For n=2*k+1, k > 0, a(n) mod 10 = A000012(n), so a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. So for n=2k+1, k > 0, a(n) is deficient. sigma(a(5)) = 1260 < 2378 = 2*a(5). - Muniru A Asiru, Apr 14 2016
Behera & Panda call these the balancing numbers, and A001541 are the balancers. - Michel Marcus, Nov 07 2017
In general, a second-order linear recurrence with constant coefficients having a signature of (c,d) will be duplicated by a third-order recurrence having a signature of (x,c^2-c*x+d,-d*x+c*d). The formulas of Olivares and Bouhamida in the formula section which have signatures of (7,-7,1) and (5,5,-1), respectively, are specific instances of this general rule for x = 7 and x = 5. - Gary Detlefs, Jan 29 2021
Note that 6 is the largest triangular number in the sequence, because it is proved that 8 and 9 are the largest perfect powers which are consecutive (Catalan's conjecture). 0 and 1 are also in the sequence because they are also perfect powers and 0*1/2 = 0^2 and 8*9/2 = (2*3)^2. - Metin Sariyar, Jul 15 2021

Examples

			G.f. = x + 6*x^2 + 35*x^3 + 204*x^4 + 1189*x^5 + 6930*x^6 + 40391*x^7 + ...
6 is in the sequence since 6^2 = 36 is a triangular number: 36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8. - _Michael B. Porter_, Jul 02 2016
		

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, pp. 193, 197.
  • D. M. Burton, The History of Mathematics, McGraw Hill, (1991), p. 213.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 10.
  • P. Franklin, E. F. Beckenbach, H. S. M Coxeter, N. H. McCoy, K. Menger, and J. L. Synge, Rings And Ideals, No 8, The Carus Mathematical Monographs, The Mathematical Association of America, (1967), pp. 144-146.
  • A. Patra, G. K. Panda, and T. Khemaratchatakumthorn. "Exact divisibility by powers of the balancing and Lucas-balancing numbers." Fibonacci Quart., 59:1 (2021), 57-64; see B(n).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), this sequence (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    a:=[0,1];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Dec 18 2018
  • Haskell
    a001109 n = a001109_list !! n :: Integer
    a001109_list = 0 : 1 : zipWith (-)
       (map (* 6) $ tail a001109_list) a001109_list
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Magma
    [n le 2 select n-1 else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 25 2015
    
  • Maple
    a[0]:=1: a[1]:=6: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n],n=0..26); # Emeric Deutsch
    with (combinat):seq(fibonacci(2*n,2)/2, n=0..20); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{-1,6},#]}]&, {0,1}, 30]][[1]]  (* Harvey P. Dale, Mar 23 2011 *)
    CoefficientList[Series[x/(1-6x+x^2),{x,0,30}],x]  (* Harvey P. Dale, Mar 23 2011 *)
    LinearRecurrence[{6, -1}, {0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
    a[ n_]:= ChebyshevU[n-1, 3]; (* Michael Somos, Sep 02 2012 *)
    Table[Fibonacci[2n, 2]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
    TrigExpand@Table[Sinh[2 n ArcCsch[1]]/(2 Sqrt[2]), {n, 0, 10}] (* Federico Provvedi, Feb 01 2021 *)
  • PARI
    {a(n) = imag((3 + quadgen(32))^n)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = subst( poltchebi( abs(n+1)) - 3 * poltchebi( abs(n)), x, 3) / 8}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = polchebyshev( n-1, 2, 3)}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    is(n)=ispolygonal(n^2,3) \\ Charles R Greathouse IV, Nov 03 2016
    
  • Sage
    [lucas_number1(n,6,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n-1,3) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: x / (1 - 6*x + x^2). - Simon Plouffe in his 1992 dissertation.
a(n) = S(n-1, 6) = U(n-1, 3) with U(n, x) Chebyshev's polynomials of the second kind. S(-1, x) := 0. Cf. triangle A049310 for S(n, x).
a(n) = sqrt(A001110(n)).
a(n) = A001542(n)/2.
a(n) = sqrt((A001541(n)^2-1)/8) (cf. Richardson comment).
a(n) = 3*a(n-1) + sqrt(8*a(n-1)^2+1). - R. J. Mathar, Oct 09 2000
a(n) = A000129(n)*A001333(n) = A000129(n)*(A000129(n)+A000129(n-1)) = ceiling(A001108(n)/sqrt(2)). - Henry Bottomley, Apr 19 2000
a(n) ~ (1/8)*sqrt(2)*(sqrt(2) + 1)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 05 2002
a(n) = ((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n) / (4*sqrt(2)). - Gregory V. Richardson, Oct 13 2002. Corrected for offset 0, and rewritten. - Wolfdieter Lang, Feb 10 2015
a(2*n) = a(n)*A003499(n). 4*a(n) = A005319(n). - Mario Catalani (mario.catalani(AT)unito.it), Mar 21 2003
a(n) = floor((3+2*sqrt(2))^n/(4*sqrt(2))). - Lekraj Beedassy, Apr 23 2003
a(-n) = -a(n). - Michael Somos, Apr 07 2003
For n >= 1, a(n) = Sum_{k=0..n-1} A001653(k). - Charlie Marion, Jul 01 2003
For n > 0, 4*a(2*n) = A001653(n)^2 - A001653(n-1)^2. - Charlie Marion, Jul 16 2003
For n > 0, a(n) = Sum_{k = 0..n-1}((2*k+1)*A001652(n-1-k)) + A000217(n). - Charlie Marion, Jul 18 2003
a(2*n+1) = a(n+1)^2 - a(n)^2. - Charlie Marion, Jan 12 2004
a(k)*a(2*n+k) = a(n+k)^2 - a(n)^2; e.g., 204*7997214 = 40391^2 - 35^2. - Charlie Marion, Jan 15 2004
For j < n+1, a(k+j)*a(2*n+k-j) - Sum_{i = 0..j-1} a(2*n-(2*i+1)) = a(n+k)^2 - a(n)^2. - Charlie Marion, Jan 18 2004
From Paul Barry, Feb 06 2004: (Start)
a(n) = A000129(2*n)/2;
a(n) = ((1+sqrt(2))^(2*n) - (1-sqrt(2))^(2*n))*sqrt(2)/8;
a(n) = Sum_{i=0..n} Sum_{j=0..n} A000129(i+j)*n!/(i!*j!*(n-i-j)!)/2. (End)
E.g.f.: exp(3*x)*sinh(2*sqrt(2)*x)/(2*sqrt(2)). - Paul Barry, Apr 21 2004
A053141(n+1) + A055997(n+1) = A001541(n+1) + a(n+1). - Creighton Dement, Sep 16 2004
a(n) = Sum_{k=0..n} binomial(2*n, 2*k+1)*2^(k-1). - Paul Barry, Oct 01 2004
a(n) = A001653(n+1) - A038723(n); (a(n)) = chuseq[J]( 'ii' + 'jj' + .5'kk' + 'ij' - 'ji' + 2.5e ), apart from initial term. - Creighton Dement, Nov 19 2004, modified by Davide Colazingari, Jun 24 2016
a(n+1) = Sum_{k=0..n} A001850(k)*A001850(n-k), self convolution of central Delannoy numbers. - Benoit Cloitre, Sep 28 2005
a(n) = 7*(a(n-1) - a(n-2)) + a(n-3), a(1) = 0, a(2) = 1, a(3) = 6, n > 3. Also a(n) = ( (1 + sqrt(2) )^(2*n) - (1 - sqrt(2) )^(2*n) ) / (4*sqrt(2)). - Antonio Alberto Olivares, Oct 23 2003
a(n) = 5*(a(n-1) + a(n-2)) - a(n-3). - Mohamed Bouhamida, Sep 20 2006
Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(a(n-1),3), see second formula. - Marcos Carreira, Dec 27 2006
The perfect median m(n) can be expressed in terms of the Pell numbers P() = A000129() by m(n) = P(n + 2) * (P(n + 2) + P(n + 1)) for n >= 0. - Winston A. Richards (ugu(AT)psu.edu), Jun 11 2007
For k = 0..n, a(2*n-k) - a(k) = 2*a(n-k)*A001541(n). Also, a(2*n+1-k) - a(k) = A002315(n-k)*A001653(n). - Charlie Marion, Jul 18 2007
[A001653(n), a(n)] = [1,4; 1,5]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = Sum_{k=0..n-1} 4^k*binomial(n+k,2*k+1). - Paul Barry, Apr 20 2009
a(n+1)^2 - 6*a(n+1)*a(n) + a(n)^2 = 1. - Charlie Marion, Dec 14 2010
a(n) = A002315(m)*A011900(n-m-1) + A001653(m)*A001652(n-m-1) - a(m) = A002315(m)*A053141(n-m-1) + A001653(m)*A046090(n-m-1) + a(m) with m < n; otherwise a(n) = A002315(m)*A053141(m-n) - A001653(m)*A011900(m-n) + a(m) = A002315(m)*A053141(m-n) - A001653(m)*A046090(m-n) - a(m) = (A002315(n) - A001653(n))/2. - Kenneth J Ramsey, Oct 12 2011
16*a(n)^2 + 1 = A056771(n). - James R. Buddenhagen, Dec 09 2011
A010054(A000290(a(n))) = 1. - Reinhard Zumkeller, Dec 17 2011
In general, a(n+k)^2 - A003499(k)*a(n+k)*a(n) + a(n)^2 = a(k)^2. - Charlie Marion, Jan 11 2012
a(n+1) = Sum_{k=0..n} A101950(n,k)*5^k. - Philippe Deléham, Feb 10 2012
PSUM transform of a(n+1) is A053142. PSUMSIGN transform of a(n+1) is A084158. BINOMIAL transform of a(n+1) is A164591. BINOMIAL transform of A086347 is a(n+1). BINOMIAL transform of A057087(n-1). - Michael Somos, May 11 2012
a(n+k) = A001541(k)*a(n) + sqrt(A132592(k)*a(n)^2 + a(k)^2). Generalizes formula dated Oct 09 2000. - Charlie Marion, Nov 27 2012
a(n) + a(n+2*k) = A003499(k)*a(n+k); a(n) + a(n+2*k+1) = A001653(k+1)*A002315(n+k). - Charlie Marion, Nov 29 2012
From Peter Bala, Dec 23 2012: (Start)
Product_{n >= 1} (1 + 1/a(n)) = 1 + sqrt(2).
Product_{n >= 2} (1 - 1/a(n)) = (1/3)*(1 + sqrt(2)). (End)
G.f.: G(0)*x/(2-6*x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
G.f.: H(0)*x/2, where H(k) = 1 + 1/( 1 - x*(6-x)/(x*(6-x) + 1/H(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 18 2014
a(n) = (a(n-1)^2 - a(n-3)^2)/a(n-2) + a(n-4) for n > 3. - Patrick J. McNab, Jul 24 2015
a(n-k)*a(n+k) + a(k)^2 = a(n)^2, a(n+k) + a(n-k) = A003499(k)*a(n), for n >= k >= 0. - Alexander Samokrutov, Sep 30 2015
Dirichlet g.f.: (PolyLog(s,3+2*sqrt(2)) - PolyLog(s,3-2*sqrt(2)))/(4*sqrt(2)). - Ilya Gutkovskiy, Jun 27 2016
4*a(n)^2 - 1 = A278310(n) for n > 0. - Bruno Berselli, Nov 24 2016
From Klaus Purath, Jan 18 2020: (Start)
a(n) = (a(n-3) + a(n+3))/198.
a(n) = Sum_{i=1..n} A001653(i), n>=1.
a(n) = sinh( 2 * n * arccsch(1) ) / ( 2 * sqrt(2) ). - Federico Provvedi, Feb 01 2021
(End)
a(n) = A002965(2*n)*A002965(2*n+1). - Jon E. Schoenfield, Jan 08 2022
a(n) = A002965(4*n)/2. - Gerry Martens, Jul 14 2023
a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1)*binomial(n+k, 2*k+1)*8^k. - Peter Bala, Jul 17 2023

Extensions

Additional comments from Wolfdieter Lang, Feb 10 2000
Duplication of a formula removed by Wolfdieter Lang, Feb 10 2015

A001652 a(n) = 6*a(n-1) - a(n-2) + 2 with a(0) = 0, a(1) = 3.

Original entry on oeis.org

0, 3, 20, 119, 696, 4059, 23660, 137903, 803760, 4684659, 27304196, 159140519, 927538920, 5406093003, 31509019100, 183648021599, 1070379110496, 6238626641379, 36361380737780, 211929657785303, 1235216565974040, 7199369738058939, 41961001862379596, 244566641436218639
Offset: 0

Views

Author

Keywords

Comments

Consider all Pythagorean triples (X, X+1, Z) ordered by increasing Z; sequence gives X values.
Numbers n such that triangular number t(n) (see A000217) = n(n+1)/2 is a product of two consecutive integers (cf. A097571).
Members of Diophantine pairs. Solution to a*(a+1) = 2*b*(b+1) in natural numbers including 0; a = a(n), b = b(n) = A053141(n); The solution of a special case of a binomial problem of H. Finner and K. Strassburger (strass(AT)godot.dfi.uni-duesseldorf.de).
The index of all triangular numbers T(a(n)) for which 4T(n)+1 is a perfect square.
The three sequences x (A001652), y (A046090) and z (A001653) may be obtained by setting u and v equal to the Pell numbers (A000129) in the formulas x = 2uv, y = u^2 - v^2, z = u^2 + v^2 [Joseph Wiener and Donald Skow]. - Antonio Alberto Olivares, Dec 22 2003
All Pythagorean triples {X(n), Y(n)=X(n)+1, Z(n)} with X M*W(n), where W(n)=transpose of vector [X(n) Y(n) Z(n)] and M a 3 X 3 matrix given by [2 1 2 / 1 2 2 / 2 2 3]. - Lekraj Beedassy, Aug 14 2006
Let b(n) = A053141 then a(n)*b(n+1) = b(n)*a(n+1) + b(n). - Kenneth J Ramsey, Sep 22 2007
In general, if b(n) = A053141(n), then a(n)*b(n+k) = a(n+k)*b(n)+b(k); e.g., 3*84 = 119*2+14; 3*2870 = 4059*2+492; 20*2870 = 5741*14+84. - Charlie Marion, Nov 19 2007
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2) = A156035. - Klaus Brockhaus, Feb 17 2009
If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q+1) are perfect squares. If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q)/8 are perfect squares. If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X+1)^2 = Y^2 with pMohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X + 1)^2 = y^2 with pMohamed Bouhamida, Sep 02 2009
a(n+k) = A001541(k)*a(n) + A001542(k)*A001653(n+1) + A001108(k). - Charlie Marion, Dec 10 2010
The numbers 3*A001652 = (0, 9, 60, 357, 2088, 12177, 70980, ...) are all the nonnegative values of X such that X^2 + (X+3)^2 = Z^2 (Z is in A075841). - Bruno Berselli, Aug 26 2010
Let T(n) = n*(n+1)/2 (the n-th triangular number). For n > 0,
T(a(n) + 2*k*A001653(n+1)) = 2*T(A053141(n-1) + k*A002315(n)) + k^2 and
T(a(n) + (2*k+1)*A001653(n+1)) = (A001109(n+1) + k*A002315(n))^2 + k*(k+1).
Also (a(n) + k*A001653(n))^2 + (a(n) + k*A001653(n) + 1)^2 = (A001653(n+1) + k*A002315(n))^2 + k^2. - Charlie Marion, Dec 09 2010
For n>0, A143608(n) divides a(n). - Kenneth J Ramsey, Jun 28 2012
Set a(n)=p; a(n)+1=q; the generated triple x=p^2+pq; y=q^2+pq; k=p^2+q^2 satisfies x^2+y^2=k(x+y). - Carmine Suriano, Dec 17 2013
The arms of the triangle are found with (b(n),c(n)) for 2*b(n)*c(n) and c(n)^2 - b(n)^2. Let b(1) = 1 and c(1) = 2, then b(n) = c(n-1) and c(n) = 2*c(n-1) + b(n-1). Alternatively, b(n) = c(n-1) and c(n) equals the nearest integer to b(n)*(1+sqrt(2)). - J. M. Bergot, Oct 09 2014
Conjecture: For n>1 a(n) is the index of the first occurrence of n in sequence A123737. - Vaclav Kotesovec, Jun 02 2015
Numbers m such that Product_{k=1..m} (4*k^4+1) is a square (see A274307). - Chai Wah Wu, Jun 21 2016
Numbers m such that m^2+(m+1)^2 is a square. - César Aguilera, Aug 14 2017
For integers a and d, let P(a,d,1) = a, P(a,d,2) = a+d, and, for n>2, P(a,d,n) = 2*P(a,d,n-1) + P(a,d,n-2). Further, let p(n) = Sum_{i=1..2n} P(a,d,i). Then p(n)^2 + (p(n)+d)^2 + a^2 = P(a,d,2n+1)^2 + d^2. When a = 1 and d = 1, p(n) = a(n) and P(a,d,n) = A000129(n), the n-th Pell number. - Charlie Marion, Dec 08 2018
The terms of this sequence satisfy the Diophantine equation k^2 + (k+1)^2 = m^2, which is equivalent to (2k+1)^2 - 2*m^2 = -1. Now, with x=2k+1 and y=m, we get the Pell-Fermat equation x^2 - 2*y^2 = -1. The solutions (x,y) of this equation are respectively in A002315 and A001653. The relation k = (x-1)/2 explains Lekraj Beedassy's Nov 25 2003 formula. Thus, the corresponding numbers m = y, which express the length of the hypotenuse of these right triangles (k,k+1,m) are in A001653. - Bernard Schott, Mar 10 2019
Members of Diophantine pairs. Related to solutions of p^2 = 2q^2 + 2 in natural numbers; p = p(n) = 2*sqrt(4T(a(n))+1), q = q(n) = sqrt(8*T(a(n))+1). Note that this implies that 4*T(a(n))+1 is a perfect square (numbers of the form 8*T(n)+1 are perfect squares for all n); these T(a(n))'s are the only solutions to the given Diophantine equation. - Steven Blasberg, Mar 04 2021

Examples

			The first few triples are (0,1,1), (3,4,5), (20,21,29), (119,120,169), ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046090(n) = -a(-1-n).
Cf. A001108, A143608, A089950 (partial sums), A156035.
Cf. numbers m such that k*A000217(m)+1 is a square: A006451 for k=1; m=0 for k=2; A233450 for k=3; this sequence for k=4; A129556 for k=5; A001921 for k=6. - Bruno Berselli, Dec 16 2013
Cf. A002315, A001653 (solutions of x^2 - 2*y^2 = -1).

Programs

  • GAP
    a:=[0,3];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]+2; od; a; # Muniru A Asiru, Dec 08 2018
    
  • Haskell
    a001652 n = a001652_list !! n
    a001652_list = 0 : 3 : map (+ 2)
    (zipWith (-) (map (* 6) (tail a001652_list)) a001652_list)
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ (-2+(r2+1)*(3+2*r2)^n-(r2-1)*(3-2*r2)^n)/4: n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Feb 17 2009
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(3-x)/((1-6*x+x^2)*(1-x)))); // G. C. Greubel, Jul 15 2018
    
  • Maple
    A001652 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[0,3]) ;
        else
            6*procname(n-1)-procname(n-2)+2 ;
        end if;
    end proc: # R. J. Mathar, Feb 05 2016
  • Mathematica
    LinearRecurrence[{7,-7,1}, {0,3,20}, 30] (* Harvey P. Dale, Aug 19 2011 *)
    With[{c=3+2*Sqrt[2]},NestList[Floor[c*#]+3&,3,30]] (* Harvey P. Dale, Oct 22 2012 *)
    CoefficientList[Series[x (3 - x)/((1 - 6 x + x^2) (1 - x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 21 2014 *)
    Table[(LucasL[2*n + 1, 2] - 2)/4, {n, 0, 30}] (* G. C. Greubel, Jul 15 2018 *)
  • PARI
    {a(n) = subst( poltchebi(n+1) - poltchebi(n) - 2, x, 3) / 4}; /* Michael Somos, Aug 11 2006 */
    
  • PARI
    concat(0, Vec(x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^50))) \\ Altug Alkan, Nov 08 2015
    
  • PARI
    {a=1+sqrt(2); b=1-sqrt(2); Q(n) = a^n + b^n};
    for(n=0, 30, print1(round((Q(2*n+1) - 2)/4), ", ")) \\ G. C. Greubel, Jul 15 2018
    
  • Sage
    (x*(3-x)/((1-6*x+x^2)*(1-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Mar 08 2019

Formula

G.f.: x *(3 - x) / ((1 - 6*x + x^2) * (1 - x)). - Simon Plouffe in his 1992 dissertation
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). a_{n} = -1/2 + ((1-2^{1/2})/4)*(3 - 2^{3/2})^n + ((1+2^{1/2})/4)*(3 + 2^{3/2})^n. - Antonio Alberto Olivares, Oct 13 2003
a(n) = a(n-2) + 4*sqrt(2*(a(n-1)^2)+2*a(n-1)+1). - Pierre CAMI, Mar 30 2005
a(n) = (sinh((2*n+1)*log(1+sqrt(2)))-1)/2 = (sqrt(1+8*A029549)-1)/2. - Bill Gosper, Feb 07 2010
Binomial(a(n)+1,2) = 2*binomial(A053141(n)+1,2) = A029549(n). See A053141. - Bill Gosper, Feb 07 2010
Let b(n) = A046090(n) and c(n) = A001653(n). Then for k>j, c(i)*(c(k) - c(j)) = a(k+i) + ... + a(i+j+1) + a(k-i-1) + ... + a(j-i) + k - j. For n<0, a(n) = -b(-n-1). Also a(n)*a(n+2*k+1) + b(n)*b(n+2*k+1) + c(n)*c(n+2*k+1) = (a(n+k+1) - a(n+k))^2; a(n)*a(n+2*k) + b(n)*b(n+2*k) + c(n)*c(n+2*k) = 2*c(n+k)^2. - Charlie Marion, Jul 01 2003
a(n)*a(n+1) + A046090(n)*A046090(n+1) = A001542(n+1)^2 = A084703(n+1). - Charlie Marion, Jul 01 2003
For n and j >= 1, Sum_{k=0..j} A001653(k)*a(n) - Sum_{k=0...j-1} A001653(k)*a(n-1) + A053141(j) = A001109(j+1)*a(n) - A001109(j)*a(n-1) + A053141(j) = a(n+j). - Charlie Marion, Jul 07 2003
Sum_{k=0...n} (2*k+1)*a(n-k) = A001109(n+1) - A000217(n+1). - Charlie Marion, Jul 18 2003
a(n) = A055997(n) - 1 + sqrt(2*A055997(n)*A001108(n)). - Charlie Marion, Jul 21 2003
a(n) = {A002315(n) - 1}/2. - Lekraj Beedassy, Nov 25 2003
a(2*n+k) + a(k) + 1 = A001541(n)*A002315(n+k). For k>0, a(2*n+k) - a(k-1) = A001541(n+k)*A002315(n); e.g., 803760-119 = 19601*41. - Charlie Marion, Mar 17 2003
a(n) = (A001653(n+1) - 3*A001653(n) - 2)/4. - Lekraj Beedassy, Jul 13 2004
a(n) = {2*A084159(n) - 1 + (-1)^(n+1)}/2. - Lekraj Beedassy, Jul 21 2004
a(n+1) = 3*a(n) + sqrt(8*a(n)^2 + 8*a(n) +4) + 1, a(1)=0. - Richard Choulet, Sep 18 2007
As noted (Sep 20 2006), a(n) = 5*(a(n-1) + a(n-2)) - a(n-3) + 4. In general, for n > 2*k, a(n) = A001653(k)*(a(n-k) + a(n-k-1) + 1) - a(n-2*k-1) - 1. Also a(n) = 7*(a(n-1) - a(n-2)) + a(n-3). In general, for n > 2*k, A002378(k)*(a(n-k)-a(n-k-1)) + a(n-2*k-1). - Charlie Marion, Dec 26 2007
In general, for n >= k >0, a(n) = (A001653(n+k) - A001541(k) * A001653(n) - 2*A001109(k-1))/(4*A001109(k-1)); e.g., 4059 = (33461-3*5741-2*1)/(4*1); 4059 = (195025-17*5741-2*6)/(4*6). - Charlie Marion, Jan 21 2008
From Charlie Marion, Jan 04 2010: (Start)
a(n) = ( (1 + sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1) - 2)/4 = (A001333(2n+1) - 1)/2.
a(2*n+k-1) = Pell(2*n-1)*Pell(2*n+2*k) + Pell(2*n-2)*Pell(2*n+2*k+1) + A001108(k+1);
a(2*n+k) = Pell(2*n)*Pell(2*n+2*k+1) + Pell(2*n-1)*Pell(2*n+2*k+2) - A055997(k+2). (End)
a(n) = A048739(2*n-1) for n > 0. - Richard R. Forberg, Aug 31 2013
a(n+1) = 3*a(n) + 2*A001653(n) + 1 [Mohamed Bouhamida's 2009 (p,q)(r,s) comment above rewritten]. - Hermann Stamm-Wilbrandt, Jul 27 2014
a(n)^2 + (a(n)+1)^2 = A001653(n+1)^2. - Pierre CAMI, Mar 30 2005; clarified by Hermann Stamm-Wilbrandt, Aug 31 2014
a(n+1) = 3*A001541(n) + 10*A001109(n) + A001108(n). - Hermann Stamm-Wilbrandt, Sep 09 2014
For n>0, a(n) = Sum_{k=1..2*n} A000129(k). - Charlie Marion, Nov 07 2015
a(n) = 3*A053142(n) - A053142(n-1). - R. J. Mathar, Feb 05 2016
E.g.f.: (1/4)*(-2*exp(x) - (sqrt(2) - 1)*exp((3-2*sqrt(2))*x) + (1 + sqrt(2))*exp((3+2*sqrt(2))*x)). - Ilya Gutkovskiy, Apr 11 2016
a(n) = A001108(n) + 2*sqrt(A000217(A001108(n))). - Dimitri Papadopoulos, Jul 06 2017
a(A000217(n-1)) = ((A001653(n)+1)/2) * ((A001653(n)-1)/2), n > 1. - Ezhilarasu Velayutham, Mar 10 2019
a(n) = ((a(n-1)+1)*(a(n-1)-3))/a(n-2) for n > 2. - Vladimir Pletser, Apr 08 2020
In general, for each k >= 0, a(n) = ((a(n-k)+a(k-1)+1)*(a(n-k)-a(k)))/a(n-2*k) for n > 2*k. - Charlie Marion, Dec 27 2020
A generalization of the identity a(n)^2 + A046090(n)^2 = A001653(n+1)^2 follows. Let P(k,n) be the n-th k-gonal number. Then P(k,a(n)) + P(k,A046090(n)) = P(k,A001653(n+1)) + (4-k)*A001109(n). - Charlie Marion, Dec 07 2021
a(n) = A046090(n)-1 = A002024(A029549(n)). - Pontus von Brömssen, Sep 11 2024

Extensions

Additional comments from Wolfdieter Lang, Feb 10 2000

A156035 Decimal expansion of 3 + 2*sqrt(2).

Original entry on oeis.org

5, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4, 7, 0, 0, 2
Offset: 1

Views

Author

Klaus Brockhaus, Feb 02 2009

Keywords

Comments

Limit_{n -> oo} b(n+1)/b(n) = 3+2*sqrt(2) for b = A155464, A155465, A155466.
Limit_{n -> oo} b(n)/b(n-1) = 3+2*sqrt(2) for b = A001652, A001653, A002315, A156156, A156157, A156158. - Klaus Brockhaus, Sep 23 2009
From Richard R. Forberg, Aug 14 2013: (Start)
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 6*b(n-1) - b(n-2), for any initial values of b(0) and b(1), converge to this ratio.
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 5*b(n-1) + 5*b(n-2) + b(n-3), for all b(0), b(1) and b(2) also converge to 3 + 2*sqrt(2). For example see A084158 (Pell Triangles).
Ratios of alternating values, b(n+2)/b(n), for all sequences of the form b(n) = 2*b(n-1) + b(n-2), also converge to 3 + 2*sqrt(2). These include A000129 (Pell Numbers). Also see A014176. (End)
Let ABCD be a square inscribed in a circle. When P is the midpoint of the arc AB, then the ratio (PC*PD)/(PA*PB) is equal to 3+2*sqrt(2). See the Mathematical Reflections link. - Michel Marcus, Jan 10 2017
Limit of ratios of successive terms of A001652 when n-> infinity. - Harvey P. Dale, Jun 16 2017; improved by Bernard Schott, Feb 28 2022
A quadratic integer with minimal polynomial x^2 - 6x + 1. - Charles R Greathouse IV, Jul 11 2020
Ratio between radii of the large circumscribed circle R and the small internal circle r drawn on the Sangaku tablet at Isaniwa Jinjya shrine in Ehime Prefecture (pictures in links). - Bernard Schott, Feb 25 2022

Examples

			3 + 2*sqrt(2) = 5.828427124746190097603377448...
		

References

  • Diogo Queiros-Condé and Michel Feidt, Fractal and Trans-scale Nature of Entropy, Iste Press and Elsevier, 2018, page 45.

Crossrefs

Cf. A002193 (sqrt(2)), A090488, A010466, A014176.
Cf. A104178 (decimal expansion of log_10(3+2*sqrt(2))).
Cf. A242412 (sangaku).

Programs

Formula

Equals 1 + A090488 = 3 + A010466. - R. J. Mathar, Feb 19 2009
Equals exp(arccosh(3)), since arccosh(x) = log(x+sqrt(x^2-1)). - Stanislav Sykora, Nov 01 2013
Equals (1+sqrt(2))^2, that is, A014176^2. - Michel Marcus, May 08 2016
The periodic continued fraction is [5; [1, 4]]. - Stefano Spezia, Mar 17 2024

A002315 NSW numbers: a(n) = 6*a(n-1) - a(n-2); also a(n)^2 - 2*b(n)^2 = -1 with b(n) = A001653(n+1).

Original entry on oeis.org

1, 7, 41, 239, 1393, 8119, 47321, 275807, 1607521, 9369319, 54608393, 318281039, 1855077841, 10812186007, 63018038201, 367296043199, 2140758220993, 12477253282759, 72722761475561, 423859315570607, 2470433131948081, 14398739476117879, 83922003724759193
Offset: 0

Views

Author

Keywords

Comments

Named after the Newman-Shanks-Williams reference.
Also numbers k such that A125650(3*k^2) is an odd perfect square. Such numbers 3*k^2 form a bisection of A125651. - Alexander Adamchuk, Nov 30 2006
For positive n, a(n) corresponds to the sum of legs of near-isosceles primitive Pythagorean triangles (with consecutive legs). - Lekraj Beedassy, Feb 06 2007
Also numbers m such that m^2 is a centered 16-gonal number; or a number of the form 8k(k+1)+1, where k = A053141(m) = {0, 2, 14, 84, 492, 2870, ...}. - Alexander Adamchuk, Apr 21 2007
The lower principal convergents to 2^(1/2), beginning with 1/1, 7/5, 41/29, 239/169, comprise a strictly increasing sequence; numerators=A002315 and denominators=A001653. - Clark Kimberling, Aug 27 2008
The upper intermediate convergents to 2^(1/2) beginning with 10/7, 58/41, 338/239, 1970/1393 form a strictly decreasing sequence; essentially, numerators=A075870, denominators=A002315. - Clark Kimberling, Aug 27 2008
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->oo} a(n) = x*(k*x+1)^n, k = (a(1)-3), x = (1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
Numbers k such that (ceiling(sqrt(k*k/2)))^2 = (1+k*k)/2. - Ctibor O. Zizka, Nov 09 2009
A001109(n)/a(n) converges to cos^2(Pi/8) = 1/2 + 2^(1/2)/4. - Gary Detlefs, Nov 25 2009
The values 2(a(n)^2+1) are all perfect squares, whose square root is given by A075870. - Neelesh Bodas (neelesh.bodas(AT)gmail.com), Aug 13 2010
a(n) represents all positive integers K for which 2(K^2+1) is a perfect square. - Neelesh Bodas (neelesh.bodas(AT)gmail.com), Aug 13 2010
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(8)'s along the main diagonal, and i's along the superdiagonal and subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
Integers k such that A000217(k-2) + A000217(k-1) + A000217(k) + A000217(k+1) is a square (cf. A202391). - Max Alekseyev, Dec 19 2011
Integer square roots of floor(k^2/2 - 1) or A047838. - Richard R. Forberg, Aug 01 2013
Remark: x^2 - 2*y^2 = +2*k^2, with positive k, and X^2 - 2*Y^2 = +2 reduce to the present Pell equation a^2 - 2*b^2 = -1 with x = k*X = 2*k*b and y = k*Y = k*a. (After a proposed solution for k = 3 by Alexander Samokrutov.) - Wolfdieter Lang, Aug 21 2015
If p is an odd prime, a((p-1)/2) == 1 (mod p). - Altug Alkan, Mar 17 2016
a(n)^2 + 1 = 2*b(n)^2, with b(n) = A001653(n), is the necessary and sufficient condition for a(n) to be a number k for which the diagonal of a 1 X k rectangle is an integer multiple of the diagonal of a 1 X 1 square. If squares are laid out thus along one diagonal of a horizontal 1 X a(n) rectangle, from the lower left corner to the upper right, the number of squares is b(n), and there will always be a square whose top corner lies exactly within the top edge of the rectangle. Numbering the squares 1 to b(n) from left to right, the number of the one square that has a corner in the top edge of the rectangle is c(n) = (2*b(n) - a(n) + 1)/2, which is A055997(n). The horizontal component of the corner of the square in the edge of the rectangle is also an integer, namely d(n) = a(n) - b(n), which is A001542(n). - David Pasino, Jun 30 2016
(a(n)^2)-th triangular number is a square; a(n)^2 = A008843(n) is a subsequence of A001108. - Jaroslav Krizek, Aug 05 2016
a(n-1)/A001653(n) is the closest rational approximation of sqrt(2) with a numerator not larger than a(n-1). These rational approximations together with those obtained from the sequences A001541 and A001542 give a complete set of closest rational approximations of sqrt(2) with restricted numerator or denominator. a(n-1)/A001653(n) < sqrt(2). - A.H.M. Smeets, May 28 2017
Consider the quadrant of a circle with center (0,0) bounded by the positive x and y axes. Now consider, as the start of a series, the circle contained within this quadrant which kisses both axes and the outer bounding circle. Consider further a succession of circles, each kissing the x-axis, the outer bounding circle, and the previous circle in the series. See Holmes link. The center of the n-th circle in this series is ((A001653(n)*sqrt(2)-1)/a(n-1), (A001653(n)*sqrt(2)-1)/a(n-1)^2), the y-coordinate also being its radius. It follows that a(n-1) is the cotangent of the angle subtended at point (0,0) by the center of the n-th circle in the series with respect to the x-axis. - Graham Holmes, Aug 31 2019
There is a link between the two sequences present at the numerator and at the denominator of the fractions that give the coordinates of the center of the kissing circles. A001653 is the sequence of numbers k such that 2*k^2 - 1 is a square, and here, we have 2*A001653(n)^2 - 1 = a(n-1)^2. - Bernard Schott, Sep 02 2019
Let G be a sequence satisfying G(i) = 2*G(i-1) + G(i-2) for arbitrary integers i and without regard to the initial values of G. Then a(n) = (G(i+4*n+2) - G(i))/(2*G(i+2*n+1)) as long as G(i+2*n+1) != 0. - Klaus Purath, Mar 25 2021
All of the positive integer solutions of a*b+1=x^2, a*c+1=y^2, b*c+1=z^2, x+z=2*y, 0 < a < b < c are given by a=A001542(n), b=A005319(n), c=A001542(n+1), x=A001541(n), y=A001653(n+1), z=A002315(n) with 0 < n. - Michael Somos, Jun 26 2022
3*a(n-1) is the n-th almost Lucas-cobalancing number of second type (see Tekcan and Erdem). - Stefano Spezia, Nov 26 2022
In Moret-Blanc (1881) on page 259 some solution of m^2 - 2n^2 = -1 are listed. The values of m give this sequence, and the values of n give A001653. - Michael Somos, Oct 25 2023
From Klaus Purath, May 11 2024: (Start)
For any two consecutive terms (a(n), a(n+1)) = (x,y): x^2 - 6xy + y^2 = 8 = A028884(1). In general, the following applies to all sequences (t) satisfying t(i) = 6t(i-1) - t(i-2) with t(0) = 1 and two consecutive terms (x,y): x^2 - 6xy + y^2 = A028884(t(1)-6). This includes and interprets the Feb 04 2014 comment on A001541 by Colin Barker as well as the Mar 17 2021 comment on A054489 by John O. Oladokun and the Sep 28 2008 formula on A038723 by Michael Somos. By analogy to this, for three consecutive terms (x,y,z) y^2 - xz = A028884(t(1)-6) always applies.
If (t) is a sequence satisfying t(k) = 7t(k-1) - 7t(k-2) + t(k-3) or t(k) = 6t(k-1) - t(k-2) without regard to initial values and including this sequence itself, then a(n) = (t(k+2n+1) - t(k))/(t(k+n+1) - t(k+n)) always applies, as long as t(k+n+1) - t(k+n) != 0 for integer k and n >= 0. (End)

Examples

			G.f. = 1 + 7*x + 41*x^2 + 239*x^3 + 1393*x^4 + 8119*x^5 + 17321*x^6 + ... - _Michael Somos_, Jun 26 2022
		

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 288.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 247.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022

Crossrefs

Bisection of A001333. Cf. A001109, A001653. A065513(n)=a(n)-1.
First differences of A001108 and A055997. Bisection of A084068 and A088014. Cf. A077444.
Row sums of unsigned triangle A127675.
Cf. A053141, A075870. Cf. A000045, A002878, A004146, A026003, A100047, A119915, A192425, A088165 (prime subsequence), A057084 (binomial transform), A108051 (inverse binomial transform).
See comments in A301383.
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Haskell
    a002315 n = a002315_list !! n
    a002315_list = 1 : 7 : zipWith (-) (map (* 6) (tail a002315_list)) a002315_list
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    I:=[1,7]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
  • Maple
    A002315 := proc(n)
        option remember;
        if n = 0 then
            1 ;
        elif n = 1 then
            7;
        else
            6*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # Zerinvary Lajos, Jul 26 2006, modified R. J. Mathar, Apr 30 2017
    a:=n->abs(Im(simplify(ChebyshevT(2*n+1,I)))):seq(a(n),n=0..20); # Leonid Bedratyuk, Dec 17 2017
    # third Maple program:
    a:= n-> (<<0|1>, <-1|6>>^n. <<1, 7>>)[1, 1]:
    seq(a(n), n=0..22);  # Alois P. Heinz, Aug 25 2024
  • Mathematica
    a[0] = 1; a[1] = 7; a[n_] := a[n] = 6a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 20}] (* Robert G. Wilson v, Jun 09 2004 *)
    Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{-1,6},#]}]&, {1,7},20]][[1]]  (* Harvey P. Dale, Mar 23 2011 *)
    Table[ If[n>0, a=b; b=c; c=6b-a, b=-1; c=1], {n, 0, 20}] (* Jean-François Alcover, Oct 19 2012 *)
    LinearRecurrence[{6, -1}, {1, 7}, 20] (* Bruno Berselli, Apr 03 2018 *)
    a[ n_] := -I*(-1)^n*ChebyshevT[2*n + 1, I]; (* Michael Somos, Jun 26 2022 *)
  • PARI
    {a(n) = subst(poltchebi(abs(n+1)) - poltchebi(abs(n)), x, 3)/2};
    
  • PARI
    {a(n) = if(n<0, -a(-1-n), polsym(x^2-2*x-1, 2*n+1)[2*n+2]/2)};
    
  • PARI
    {a(n) = my(w=3+quadgen(32)); imag((1+w)*w^n)};
    
  • PARI
    for (i=1,10000,if(Mod(sigma(i^2+1,2),2)==1,print1(i,",")))
    
  • PARI
    {a(n) = -I*(-1)^n*polchebyshev(2*n+1, 1, I)}; /* Michael Somos, Jun 26 2022 */
    

Formula

a(n) = (1/2)*((1+sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1)).
a(n) = A001109(n)+A001109(n+1).
a(n) = (1+sqrt(2))/2*(3+sqrt(8))^n+(1-sqrt(2))/2*(3-sqrt(8))^n. - Ralf Stephan, Feb 23 2003
a(n) = sqrt(2*(A001653(n+1))^2-1), n >= 0. [Pell equation a(n)^2 - 2*Pell(2*n+1)^2 = -1. - Wolfdieter Lang, Jul 11 2018]
G.f.: (1 + x)/(1 - 6*x + x^2). - Simon Plouffe in his 1992 dissertation
a(n) = S(n, 6)+S(n-1, 6) = S(2*n, sqrt(8)), S(n, x) = U(n, x/2) are Chebyshev's polynomials of the 2nd kind. Cf. A049310. S(n, 6)= A001109(n+1).
a(n) ~ (1/2)*(sqrt(2) + 1)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 06 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then (-1)^n*q(n, -8) = a(n). - Benoit Cloitre, Nov 10 2002
With a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = (a^((2n+1)/2)-b^((2n+1)/2))/2. a(n) = A077444(n)/2. - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
a(n) = Sum_{k=0..n} 2^k*binomial(2*n+1, 2*k). - Zoltan Zachar (zachar(AT)fellner.sulinet.hu), Oct 08 2003
Same as: i such that sigma(i^2+1, 2) mod 2 = 1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 26 2004
a(n) = L(n, -6)*(-1)^n, where L is defined as in A108299; see also A001653 for L(n, +6). - Reinhard Zumkeller, Jun 01 2005
a(n) = A001652(n)+A046090(n); e.g., 239=119+120. - Charlie Marion, Nov 20 2003
A001541(n)*a(n+k) = A001652(2n+k) + A001652(k)+1; e.g., 3*1393 = 4069 + 119 + 1; for k > 0, A001541(n+k)*a(n) = A001652(2n+k) - A001652(k-1); e.g., 99*7 = 696 - 3. - Charlie Marion, Mar 17 2003
a(n) = Jacobi_P(n,1/2,-1/2,3)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006
P_{2n}+P_{2n+1} where P_i are the Pell numbers (A000129). Also the square root of the partial sums of Pell numbers: P_{2n}+P_{2n+1} = sqrt(Sum_{i=0..4n+1} P_i) (Santana and Diaz-Barrero, 2006). - David Eppstein, Jan 28 2007
a(n) = 2*A001652(n) + 1 = 2*A046729(n) + (-1)^n. - Lekraj Beedassy, Feb 06 2007
a(n) = sqrt(A001108(2*n+1)). - Anton Vrba (antonvrba(AT)yahoo.com), Feb 14 2007
a(n) = sqrt(8*A053141(n)*(A053141(n) + 1) + 1). - Alexander Adamchuk, Apr 21 2007
a(n+1) = 3*a(n) + sqrt(8*a(n)^2 + 8), a(1)=1. - Richard Choulet, Sep 18 2007
a(n) = A001333(2*n+1). - Ctibor O. Zizka, Aug 13 2008
a(n) = third binomial transform of 1, 4, 8, 32, 64, 256, 512, ... . - Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
a(n) = (-1)^(n-1)*(1/sqrt(-1))*cos((2*n - 1)*arcsin(sqrt(2)). - Artur Jasinski, Feb 17 2010 *WRONG*
a(n+k) = A001541(k)*a(n) + 4*A001109(k)*A001653(n); e.g., 8119 = 17*239 + 4*6*169. - Charlie Marion, Feb 04 2011
In general, a(n+k) = A001541(k)*a(n)) + sqrt(A001108(2k)*(a(n)^2+1)). See Sep 18 2007 entry above. - Charlie Marion, Dec 07 2011
a(n) = floor((1+sqrt(2))^(2n+1))/2. - Thomas Ordowski, Jun 12 2012
(a(2n-1) + a(2n) + 8)/(8*a(n)) = A001653(n). - Ignacio Larrosa Cañestro, Jan 02 2015
(a(2n) + a(2n-1))/a(n) = 2*sqrt(2)*( (1 + sqrt(2))^(4*n) - (1 - sqrt(2))^(4*n))/((1 + sqrt(2))^(2*n+1) + (1 - sqrt(2))^(2*n+1)). [This was my solution to problem 5325, School Science and Mathematics 114 (No. 8, Dec 2014).] - Henry Ricardo, Feb 05 2015
From Peter Bala, Mar 22 2015: (Start)
The aerated sequence (b(n))n>=1 = [1, 0, 7, 0, 41, 0, 239, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -4, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047.
b(n) = 1/2*((-1)^n - 1)*Pell(n) + 1/2*(1 + (-1)^(n+1))*Pell(n+1). The o.g.f. is x*(1 + x^2)/(1 - 6*x^2 + x^4).
Exp( Sum_{n >= 1} 2*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*A026003(n-1)*x^n.
Exp( Sum_{n >= 1} (-2)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*A026003(n-1)*(-x)^n.
Exp( Sum_{n >= 1} 4*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*Pell(n)*x^n.
Exp( Sum_{n >= 1} (-4)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*Pell(n)*(-x)^n.
Exp( Sum_{n >= 1} 8*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 8*A119915(n)*x^n.
Exp( Sum_{n >= 1} (-8)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 8*A119915(n)*(-x)^n. Cf. A002878, A004146, A113224, and A192425. (End)
E.g.f.: (sqrt(2)*sinh(2*sqrt(2)*x) + cosh(2*sqrt(2)*x))*exp(3*x). - Ilya Gutkovskiy, Jun 30 2016
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(n-k) * 2^k * 2^ceiling(k/2). - David Pasino, Jul 09 2016
a(n) = A001541(n) + 2*A001542(n). - A.H.M. Smeets, May 28 2017
a(n+1) = 3*a(n) + 4*b(n), b(n+1) = 2*a(n) + 3*b(n), with b(n)=A001653(n). - Zak Seidov, Jul 13 2017
a(n) = |Im(T(2n-1,i))|, i=sqrt(-1), T(n,x) is the Chebyshev polynomial of the first kind, Im is the imaginary part of a complex number, || is the absolute value. - Leonid Bedratyuk, Dec 17 2017
a(n) = sinh((2*n + 1)*arcsinh(1)). - Bruno Berselli, Apr 03 2018
a(n) = 5*a(n-1) + A003499(n-1), a(0) = 1. - Ivan N. Ianakiev, Aug 09 2019
From Klaus Purath, Mar 25 2021: (Start)
a(n) = A046090(2*n)/A001541(n).
a(n+1)*a(n+2) = a(n)*a(n+3) + 48.
a(n)^2 + a(n+1)^2 = 6*a(n)*a(n+1) + 8.
a(n+1)^2 = a(n)*a(n+2) + 8.
a(n+1) = a(n) + 2*A001541(n+1).
a(n) = 2*A046090(n) - 1. (End)
3*a(n-1) = sqrt(8*b(n)^2 + 8*b(n) - 7), where b(n) = A358682(n). - Stefano Spezia, Nov 26 2022
a(n) = -(-1)^n - 2 + Sum_{i=0..n} A002203(i)^2. - Adam Mohamed, Aug 22 2024
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 3), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
For arbitrary x, a(n+x)^2 - 6*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 8 with a(n) := (1/2)*((1+sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1)) as above. The particular case x = 0 is noted above,
a(n+1/2) = sqrt(2) * A001542(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/8 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A081554(n) + 1/A081554(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(2) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 2*(1 - 1/A055997(k+2))). (End)

A001075 a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - a(n-2).

Original entry on oeis.org

1, 2, 7, 26, 97, 362, 1351, 5042, 18817, 70226, 262087, 978122, 3650401, 13623482, 50843527, 189750626, 708158977, 2642885282, 9863382151, 36810643322, 137379191137, 512706121226, 1913445293767, 7141075053842, 26650854921601, 99462344632562, 371198523608647
Offset: 0

Views

Author

Keywords

Comments

Chebyshev's T(n,x) polynomials evaluated at x=2.
x = 2^n - 1 is prime if and only if x divides a(2^(n-2)).
Any k in the sequence is succeeded by 2*k + sqrt{3*(k^2 - 1)}. - Lekraj Beedassy, Jun 28 2002
For all elements x of the sequence, 12*x^2 - 12 is a square. Lim_{n -> infinity} a(n)/a(n-1) = 2 + sqrt(3) = (4 + sqrt(12))/2 which preserves the kinship with the equation "12*x^2 - 12 is a square" where the initial "12" ends up appearing as a square root. - Gregory V. Richardson, Oct 10 2002
This sequence gives the values of x in solutions of the Diophantine equation x^2 - 3*y^2 = 1; the corresponding values of y are in A001353. The solution ratios a(n)/A001353(n) are obtained as convergents of the continued fraction expansion of sqrt(3): either as successive convergents of [2;-4] or as odd convergents of [1;1,2]. - Lekraj Beedassy, Sep 19 2003 [edited by Jon E. Schoenfield, May 04 2014]
a(n) is half the central value in a list of three consecutive integers, the lengths of the sides of a triangle with integer sides and area. - Eugene McDonnell (eemcd(AT)mac.com), Oct 19 2003
a(3+6*k) - 1 and a(3+6*k) + 1 are consecutive odd powerful numbers. See A076445. - T. D. Noe, May 04 2006
The intermediate convergents to 3^(1/2), beginning with 3/2, 12/7, 45/26, 168/97, comprise a strictly increasing sequence; essentially, numerators=A005320, denominators=A001075. - Clark Kimberling, Aug 27 2008
The upper principal convergents to 3^(1/2), beginning with 2/1, 7/4, 26/15, 97/56, comprise a strictly decreasing sequence; numerators=A001075, denominators=A001353. - Clark Kimberling, Aug 27 2008
a(n+1) is the Hankel transform of A000108(n) + A000984(n) = (n+2)*Catalan(n). - Paul Barry, Aug 11 2009
Also, numbers such that floor(a(n)^2/3) is a square: base 3 analog of A031149, A204502, A204514, A204516, A204518, A204520, A004275, A001541. - M. F. Hasler, Jan 15 2012
Pisano period lengths: 1, 2, 2, 4, 3, 2, 8, 4, 6, 6, 10, 4, 12, 8, 6, 8, 18, 6, 5, 12, ... - R. J. Mathar, Aug 10 2012
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 3 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 48 = 0. - Colin Barker, Feb 10 2014
A triangle with row sums generating the sequence can be constructed by taking the production matrix M. Take powers of M, extracting the top rows.
M =
1, 1, 0, 0, 0, 0, ...
2, 0, 3, 0, 0, 0, ...
2, 0, 0, 3, 0, 0, ...
2, 0, 0, 0, 3, 0, ...
2, 0, 0, 0, 0, 3, ...
...
The triangle generated from M is:
1,
1, 1,
3, 1, 3,
11, 3, 3, 9,
41, 11, 9, 9, 27,
...
The left border is A001835 and row sums are (1, 2, 7, 26, 97, ...). - Gary W. Adamson, Jul 25 2016
Even-indexed terms are odd while odd-indexed terms are even. Indeed, a(2*n) = 2*(a(n))^2 - 1 and a(2*n+1) = 2*a(n)*a(n+1) - 2. - Timothy L. Tiffin, Oct 11 2016
For each n, a(0) divides a(n), a(1) divides a(2n+1), a(2) divides a(4*n+2), a(3) divides a(6*n+3), a(4) divides a(8*n+4), a(5) divides a(10n+5), and so on. Thus, a(k) divides a((2*n+1)*k) for each k > 0 and n >= 0. A proof of this can be found in Bhargava-Kedlaya-Ng's first solution to Problem A2 of the 76th Putnam Mathematical Competition. Links to the exam and its solutions can be found below. - Timothy L. Tiffin, Oct 12 2016
From Timothy L. Tiffin, Oct 21 2016: (Start)
If any term a(n) is a prime number, then its index n will be a power of 2. This is a consequence of the results given in the previous two comments. See A277434 for those prime terms.
a(2n) == 1 (mod 6) and a(2*n+1) == 2 (mod 6). Consequently, each odd prime factor of a(n) will be congruent to 1 modulo 6 and, thus, found in A002476.
a(n) == 1 (mod 10) if n == 0 (mod 6), a(n) == 2 (mod 10) if n == {1,-1} (mod 6), a(n) == 7 (mod 10) if n == {2,-2} (mod 6), and a(n) == 6 (mod 10) if n == 3 (mod 6). So, the rightmost digits of a(n) form a repeating cycle of length 6: 1, 2, 7, 6, 7, 2. (End)
a(A298211(n)) = A002350(3*n^2). - A.H.M. Smeets, Jan 25 2018
(2 + sqrt(3))^n = a(n) + A001353(n)*sqrt(3), n >= 0; integers in the quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 16 2018
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001834 and with any member of A001835. - René Gy, Feb 26 2018
Positive numbers k such that 3*(k-1)*(k+1) is a square. - Davide Rotondo, Oct 25 2020
a(n)*a(n+1)-1 = a(2*n+1)/2 = A001570(n) divides both a(n)^6+1 and a(n+1)^6+1. In other words, for k = a(2*n+1)/2, (k+1)^6 has divisors congruent to -1 modulo k (cf. A350916). - Max Alekseyev, Jan 23 2022

Examples

			2^6 - 1 = 63 does not divide a(2^4) = 708158977, therefore 63 is composite. 2^5 - 1 = 31 divides a(2^3) = 18817, therefore 31 is prime.
G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 97*x^4 + 362*x^5 + 1351*x^6 + 5042*x^7 + ...
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • Eugene McDonnell, "Heron's Rule and Integer-Area Triangles", Vector 12.3 (January 1996) pp. 133-142.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.

Crossrefs

Programs

  • Haskell
    a001075 n = a001075_list !! n
    a001075_list =
       1 : 2 : zipWith (-) (map (4 *) $ tail a001075_list) a001075_list
    -- Reinhard Zumkeller, Aug 11 2011
    
  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001075 := proc(n)
        orthopoly[T](n,2) ;
    end proc:
    seq(A001075(n),n=0..30) ; # R. J. Mathar, Apr 14 2018
  • Mathematica
    Table[ Ceiling[(1/2)*(2 + Sqrt[3])^n], {n, 0, 24}]
    CoefficientList[Series[(1-2*x) / (1-4*x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Dec 21 2011, after Simon Plouffe *)
    LinearRecurrence[{4,-1},{1,2},30] (* Harvey P. Dale, Aug 22 2015 *)
    Round@Table[LucasL[2n, Sqrt[2]]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    ChebyshevT[Range[0, 20], 2] (* Eric W. Weisstein, May 26 2017 *)
    a[ n_] := LucasL[2*n, x]/2 /. x->Sqrt[2]; (* Michael Somos, Sep 05 2022 *)
  • PARI
    {a(n) = subst(poltchebi(abs(n)), x, 2)};
    
  • PARI
    {a(n) = real((2 + quadgen(12))^abs(n))};
    
  • PARI
    {a(n) = polsym(1 - 4*x + x^2, abs(n))[1 + abs(n)]/2};
    
  • PARI
    a(n)=polchebyshev(n,1,2) \\ Charles R Greathouse IV, Nov 07 2016
    
  • PARI
    my(x='x+O('x^30)); Vec((1-2*x)/(1-4*x+x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • SageMath
    [lucas_number2(n,4,1)/2 for n in range(0, 25)] # Zerinvary Lajos, May 14 2009
    
  • SageMath
    def a(n):
        Q = QuadraticField(3, 't')
        u = Q.units()[0]
        return (u^n).lift().coeffs()[0]  # Ralf Stephan, Jun 19 2014
    

Formula

G.f.: (1 - 2*x)/(1 - 4*x + x^2). - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(2*x)*cosh(sqrt(3)*x).
a(n) = 4*a(n-1) - a(n-2) = a(-n).
a(n) = (S(n, 4) - S(n-2, 4))/2 = T(n, 2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U, resp. T, are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 4) = A001353(n), n >= 0. See A049310 and A053120.
a(n) = A001353(n+2) - 2*A001353(n+1).
a(n) = sqrt(1 + 3*A001353(n)) (cf. Richardson comment, Oct 10 2002).
a(n) = 2^(-n)*Sum_{k>=0} binomial(2*n, 2*k)*3^k = 2^(-n)*Sum_{k>=0} A086645(n, k)*3^k. - Philippe Deléham, Mar 01 2004
a(n) = ((2 + sqrt(3))^n + (2 - sqrt(3))^n)/2; a(n) = ceiling((1/2)*(2 + sqrt(3))^(n)).
a(n) = cosh(n * log(2 + sqrt(3))).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k)*3^k. - Paul Barry, May 08 2003
a(n+2) = 2*a(n+1) + 3*Sum_{k>=0} a(n-k)*2^k. - Philippe Deléham, Mar 03 2004
a(n) = 2*a(n-1) + 3*A001353(n-1). - Lekraj Beedassy, Jul 21 2006
a(n) = left term of M^n * [1,0] where M = the 2 X 2 matrix [2,3; 1,2]. Right term = A001353(n). Example: a(4) = 97 since M^4 * [1,0] = [A001075(4), A001353(4)] = [97, 56]. - Gary W. Adamson, Dec 27 2006
Binomial transform of A026150: (1, 1, 4, 10, 28, 76, ...). - Gary W. Adamson, Nov 23 2007
First differences of A001571. - N. J. A. Sloane, Nov 03 2009
Sequence satisfies -3 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(n) = Sum_{k=0..n} A201730(n,k)*2^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k - 4)/(x*(3*k - 1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
a(n) = Sum_{k=0..n} A238731(n,k). - Philippe Deléham, Mar 05 2014
a(n) = (-1)^n*(A125905(n) + 2*A125905(n-1)), n > 0. - Franck Maminirina Ramaharo, Nov 11 2018
a(n) = (tan(Pi/12)^n + tan(5*Pi/12)^n)/2. - Greg Dresden, Oct 01 2020
From Peter Bala, Aug 17 2022: (Start)
a(n) = (1/2)^n * [x^n] ( 4*x + sqrt(1 + 12*x^2) )^n.
The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 8*x + 4*x^2) is the g.f. of A069835.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k.
Sum_{n >= 1} 1/(a(n) - (3/2)/a(n)) = 1.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + (1/2)/a(n)) = 1/3.
Sum_{n >= 1} 1/(a(n)^2 - 3/2) = 1 - 1/sqrt(3). (End)
a(n) = binomial(2*n, n) + 2*Sum_{k > 0} binomial(2*n, n+2*k)*cos(k*Pi/3). - Greg Dresden, Oct 11 2022
2*a(n) + 2^n = 3*Sum_{k=-n..n} (-1)^k*binomial(2*n, n+6*k). - Greg Dresden, Feb 07 2023

Extensions

More terms from James Sellers, Jul 10 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A059100 a(n) = n^2 + 2.

Original entry on oeis.org

2, 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403, 2502, 2603
Offset: 0

Views

Author

Henry Bottomley, Feb 13 2001

Keywords

Comments

Let s(n) = Sum_{k>=1} 1/n^(2^k). Then I conjecture that the maximum element in the continued fraction for s(n) is n^2 + 2. - Benoit Cloitre, Aug 15 2002
Binomial transformation yields A081908, with A081908(0)=1 dropped. - R. J. Mathar, Oct 05 2008
1/a(n) = R(n)/r with R(n) the n-th radius of the Pappus chain of the symmetric arbelos with semicircle radii r, r1 = r/2 = r2. See the MathWorld link for Pappus chain (there are two of them, a left and a right one. In this case these two chains are congruent). - Wolfdieter Lang, Mar 01 2013
a(n) is the number of election results for an election with n+2 candidates, say C1, C2, ..., and C(n+2), and with only two voters (each casting a single vote) that have C1 and C2 receiving the same number of votes. See link below. - Dennis P. Walsh, May 08 2013
This sequence gives the set of values such that for sequences b(k+1) = a(n)*b(k) - b(k-1), with initial values b(0) = 2, b(1) = a(n), all such sequences are invariant under this transformation: b(k) = (b(j+k) + b(j-k))/b(j), except where b(j) = 0, for all integer values of j and k, including negative values. Examples are: at n=0, b(k) = 2 for all k; at n=1, b(k) = A005248; at n=2, b(k) = 2*A001541; at n=3, b(k)= A057076; at n=4, b(k) = 2*A023039. This b(k) family are also the transformation results for all related b'(k) (i.e., those with different initial values) including non-integer values. Further, these b(k) are also the bisections of the transformations of sequences of the form G(k+1) = n * G(k) + G(k-1), and those bisections are invariant for all initial values of g(0) and g(1), including non-integer values. For n = 1 this g(k) family includes Fibonacci and Lucas, where the invariant bisection is b(k) = A005248. The applicable bisection for this transformation of g(k) is for the odd values of k, and applies for all n. Also see A000032 for a related family of sequences. - Richard R. Forberg, Nov 22 2014
Also the number of maximum matchings in the n-gear graph. - Eric W. Weisstein, Dec 31 2017
Also the Wiener index of the n-dipyramidal graph. - Eric W. Weisstein, Jun 14 2018
Numbers of the form n^2+2 have no factors that are congruent to 7 (mod 8). - Gordon E. Michaels, Sep 12 2019
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {n, 2n}]. - Magus K. Chu, Sep 10 2022

Examples

			For n = 2, a(2) = 6 since there are 6 election results in a 4-candidate, 2-voter election that have candidates c1 and c2 tied. Letting <i,j> denote voter 1 voting for candidate i and voter 2 voting for candidate j, the six election results are <1,2>, <2,1>, <3,3>, <3,4>, <4,3>, and <4,4>. - _Dennis P. Walsh_, May 08 2013
		

Crossrefs

Apart from initial terms, same as A010000.
2nd row/column of A295707.

Programs

Formula

G.f.: (2 - 3*x + 3*x^2)/(1 - x)^3. - R. J. Mathar, Oct 05 2008
a(n) = ((n - 2)^2 + 2*(n + 1)^2)/3. - Reinhard Zumkeller, Feb 13 2009
a(n) = A000196(A156798(n) - A000290(n)). - Reinhard Zumkeller, Feb 16 2009
a(n) = 2*n + a(n-1) - 1 with a(0) = 2. - Vincenzo Librandi, Aug 07 2010
a(n+3) = (A166464(n+5) - A166464(n))/20. - Paul Curtz, Nov 07 2012
From Paul Curtz, Nov 07 2012: (Start)
a(3*n) mod 9 = 2.
a(3*n+1) = 3*A056109(n).
a(3*n+2) = 3*A056105(n+1). (End)
Sum_{n >= 1} 1/a(n) = Pi * coth(sqrt(2)*Pi) / 2^(3/2) - 1/4. - Vaclav Kotesovec, May 01 2018
From Amiram Eldar, Jan 29 2021: (Start)
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(2)*Pi*(csch(sqrt(2)*Pi)))/4.
Product_{n>=0} (1 + 1/a(n)) = sqrt(3/2)*csch(sqrt(2)*Pi)*sinh(sqrt(3)*Pi).
Product_{n>=0} (1 - 1/a(n)) = csch(sqrt(2)*Pi)*sinh(Pi)/sqrt(2). (End)
E.g.f.: exp(x)*(2 + x + x^2). - Stefano Spezia, Aug 07 2024

A001542 a(n) = 6*a(n-1) - a(n-2) for n > 1, a(0)=0 and a(1)=2.

Original entry on oeis.org

0, 2, 12, 70, 408, 2378, 13860, 80782, 470832, 2744210, 15994428, 93222358, 543339720, 3166815962, 18457556052, 107578520350, 627013566048, 3654502875938, 21300003689580, 124145519261542, 723573111879672
Offset: 0

Views

Author

Keywords

Comments

Consider the equation core(x) = core(2x+1) where core(x) is the smallest number such that x*core(x) is a square: solutions are given by a(n)^2, n > 0. - Benoit Cloitre, Apr 06 2002
Terms > 0 give numbers k which are solutions to the inequality |round(sqrt(2)*k)/k - sqrt(2)| < 1/(2*sqrt(2)*k^2). - Benoit Cloitre, Feb 06 2006
Also numbers m such that A125650(6*m^2) is an even perfect square, where A124650(m) is a numerator of m*(m+3)/(4*(m+1)*(m+2)) = Sum_{k=1..m} 1/(k*(k+1)*(k+2)). Sequence A033581 is a bisection of A125651. - Alexander Adamchuk, Nov 30 2006
The upper principal convergents to 2^(1/2), beginning with 3/2, 17/12, 99/70, 577/408, comprise a strictly decreasing sequence; essentially, numerators = A001541 and denominators = {a(n)}. - Clark Kimberling, Aug 26 2008
Even Pell numbers. - Omar E. Pol, Dec 10 2008
Numbers k such that 2*k^2+1 is a square. - Vladimir Joseph Stephan Orlovsky, Feb 19 2010
These are the integer square roots of the Half-Squares, A007590(k), which occur at values of k given by A001541. Also the numbers produced by adding m + sqrt(floor(m^2/2) + 1) when m is in A002315. See array in A227972. - Richard R. Forberg, Aug 31 2013
A001541(n)/a(n) is the closest rational approximation of sqrt(2) with a denominator not larger than a(n), and 2*a(n)/A001541(n) is the closest rational approximation of sqrt(2) with a numerator not larger than 2*a(n). These rational approximations together with those obtained from the sequences A001653 and A002315 give a complete set of closest rational approximations of sqrt(2) with restricted numerator as well as denominator. - A.H.M. Smeets, May 28 2017
Conjecture: Numbers k such that c/m < k for all natural a^2 + b^2 = c^2 (Pythagorean triples), a < b < c and a+b+c = m. Numbers which correspondingly minimize c/m are A002939. - Lorraine Lee, Jan 31 2020
All of the positive integer solutions of a*b + 1 = x^2, a*c + 1 = y^2, b*c + 1 = z^2, x + z = 2*y, 0 < a < b < c are given by a=a(n), b=A005319(n), c=a(n+1), x=A001541(n), y=A001653(n+1), z=A002315(n) with 0 < n. - Michael Somos, Jun 26 2022

Examples

			G.f. = 2*x + 12*x^2 + 70*x^3 + 408*x^4 + 2378*x^5 + 13860*x^6 + ...
		

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; pp. 480-481.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Wiley, pp. 77-79.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022

Crossrefs

Bisection of Pell numbers A000129: {a(n)} and A001653(n+1), n >= 0.

Programs

  • GAP
    a:=[0,2];; for n in [3..20] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Haskell
    a001542 n = a001542_list !! n
    a001542_list =
       0 : 2 : zipWith (-) (map (6 *) $ tail a001542_list) a001542_list
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Magma
    I:=[0,2]; [n le 2 select I[n] else 6*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 23 2019
    
  • Maple
    A001542:=2*z/(1-6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    seq(combinat:-fibonacci(2*n, 2), n = 0..20); # Peter Luschny, Jun 28 2018
  • Mathematica
    LinearRecurrence[{6, -1}, {0, 2}, 30] (* Harvey P. Dale, Jun 11 2011 *)
    Fibonacci[2*Range[0,20], 2] (* G. C. Greubel, Dec 23 2019 *)
    Table[2 ChebyshevU[-1 + n, 3], {n, 0, 20}] (* Herbert Kociemba, Jun 05 2022 *)
  • Maxima
    a[0]:0$
    a[1]:2$
    a[n]:=6*a[n-1]-a[n-2]$
    A001542(n):=a[n]$
    makelist(A001542(x),x,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    {a(n) = imag( (3 + 2*quadgen(8))^n )}; /* Michael Somos, Jan 20 2017 */
    
  • PARI
    vector(21, n, 2*polchebyshev(n-1, 2, 33) ) \\ G. C. Greubel, Dec 23 2019
    
  • Python
    l=[0, 2]
    for n in range(2, 51): l+=[6*l[n - 1] - l[n - 2], ]
    print(l) # Indranil Ghosh, Jun 06 2017
    
  • Sage
    [2*chebyshev_U(n-1,3) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = 2*A001109(n).
a(n) = ((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) / (2*sqrt(2)).
G.f.: 2*x/(1-6*x+x^2).
a(n) = sqrt(2*(A001541(n))^2 - 2)/2. - Barry E. Williams, May 07 2000
a(n) = (C^(2n) - C^(-2n))/sqrt(8) where C = sqrt(2) + 1. - Gary W. Adamson, May 11 2003
For all terms x of the sequence, 2*x^2 + 1 is a square. Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 10 2002
For n > 0: a(n) = A001652(n) + A046090(n) - A001653(n); e.g., 70 = 119 + 120 - 169. Also a(n) = A001652(n - 1) + A046090(n - 1) + A001653(n - 1); e.g., 70 = 20 + 21 + 29. Also a(n)^2 + 1 = A001653(n - 1)*A001653(n); e.g., 12^2 + 1 = 145 = 5*29. Also a(n + 1)^2 = A084703(n + 1) = A001652(n)*A001652(n + 1) + A046090(n)*A046090(n + 1). - Charlie Marion, Jul 01 2003
a(n) = ((1+sqrt(2))^(2*n) - (1-sqrt(2))^(2*n))/(2*sqrt(2)). - Antonio Alberto Olivares, Dec 24 2003
2*A001541(k)*A001653(n)*A001653(n+k) = A001653(n)^2 + A001653(n+k)^2 + a(k)^2; e.g., 2*3*5*29 = 5^2 + 29^2 + 2^2; 2*99*29*5741 = 29^2 + 5741^2 + 70^2. - Charlie Marion, Oct 12 2007
a(n) = sinh(2*n*arcsinh(1))/sqrt(2). - Herbert Kociemba, Apr 24 2008
For n > 0, a(n) = A001653(n) + A002315(n-1). - Richard R. Forberg, Aug 31 2013
a(n) = 3*a(n-1) + 2*A001541(n-1); e.g., a(4) = 70 = 3*12 + 2*17. - Zak Seidov, Dec 19 2013
a(n)^2 + 1^2 = A115598(n)^2 + (A115598(n)+1)^2. - Hermann Stamm-Wilbrandt, Jul 27 2014
E.g.f.: exp(3*x)*sinh(2*sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Dec 07 2016
A007814(a(n)) = A001511(n). See Mathematical Reflections link. - Michel Marcus, Jan 06 2017
a(n) = -a(-n) for all n in Z. - Michael Somos, Jan 20 2017
From A.H.M. Smeets, May 28 2017: (Start)
A051009(n) = a(2^(n-2)).
a(2n) = 2*a(2)*A001541(n).
A001541(n)/a(n) > sqrt(2) > 2*a(n)/A001541(n). (End)
a(A298210(n)) = A002349(2*n^2). - A.H.M. Smeets, Jan 25 2018
a(n) = A000129(n)*A002203(n). - Adam Mohamed, Jul 20 2024

A001108 a(n)-th triangular number is a square: a(n+1) = 6*a(n) - a(n-1) + 2, with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 8, 49, 288, 1681, 9800, 57121, 332928, 1940449, 11309768, 65918161, 384199200, 2239277041, 13051463048, 76069501249, 443365544448, 2584123765441, 15061377048200, 87784138523761, 511643454094368, 2982076586042449, 17380816062160328, 101302819786919521
Offset: 0

Views

Author

Keywords

Comments

b(0)=0, c(0)=1, b(i+1)=b(i)+c(i), c(i+1)=b(i+1)+b(i); then a(i) (the number in the sequence) is 2b(i)^2 if i is even, c(i)^2 if i is odd and b(n)=A000129(n) and c(n)=A001333(n). - Darin Stephenson (stephenson(AT)cs.hope.edu) and Alan Koch
For n > 1 gives solutions to A007913(2x) = A007913(x+1). - Benoit Cloitre, Apr 07 2002
If (X,X+1,Z) is a Pythagorean triple, then Z-X-1 and Z+X are in the sequence.
For n >= 2, a(n) gives exactly the positive integers m such that 1,2,...,m has a perfect median. The sequence of associated perfect medians is A001109. Let a_1,...,a_m be an (ordered) sequence of real numbers, then a term a_k is a perfect median if Sum_{j=1..k-1} a_j = Sum_{j=k+1..m} a_j. See Puzzle 1 in MSRI Emissary, Fall 2005. - Asher Auel, Jan 12 2006
This is the r=8 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Also, 1^3 + 2^3 + 3^3 + ... + a(n)^3 = k(n)^4 where k(n) is A001109. - Anton Vrba (antonvrba(AT)yahoo.com), Nov 18 2006
If T_x = y^2 is a triangular number which is also a square, the least number which is both triangular and square and greater than T_x is T_(3*x + 4*y + 1) = (2*x + 3*y + 1)^2 (W. Sierpiński 1961). - Richard Choulet, Apr 28 2009
If (a,b) is a solution of the Diophantine equation 0 + 1 + 2 + ... + x = y^2, then a or (a+1) is a perfect square. If (a,b) is a solution of the Diophantine equation 0 + 1 + 2 + ... + x = y^2, then a or a/8 is a perfect square. If (a,b) and (c,d) are two consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with a < c, then a+b = c-d and ((d+b)^2, d^2-b^2) is a solution, too. If (a,b), (c,d) and (e,f) are three consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with a < c < e, then (8*d^2, d*(f-b)) is a solution, too. - Mohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with p < r, then r = 3p + 4q + 1 and s = 2p + 3q + 1. - Mohamed Bouhamida, Sep 02 2009
Also numbers k such that (ceiling(sqrt(k*(k+1)/2)))^2 - k*(k+1)/2 = 0. - Ctibor O. Zizka, Nov 10 2009
From Lekraj Beedassy, Mar 04 2011: (Start)
Let x=a(n) be the index of the associated triangular number T_x=1+2+3+...+x and y=A001109(n) be the base of the associated perfect square S_y=y^2. Now using the identity S_y = T_y + T_{y-1}, the defining T_x = S_y may be rewritten as T_y = T_x - T_{y-1}, or 1+2+3+...+y = y+(y+1)+...+x. This solves the Strand Magazine House Number problem mentioned in A001109 in references from Poo-Sung Park and John C. Butcher. In a variant of the problem, solving the equation 1+3+5+...+(2*x+1) = (2*x+1)+(2*x+3)+...+(2*y-1) implies S_(x+1) = S_y - S_x, i.e., with (x,x+1,y) forming a Pythagorean triple, the solutions are given by pairs of x=A001652(n), y=A001653(n). (End)
If P = 8*n +- 1 is a prime, then P divides a((P-1)/2); e.g., 7 divides a(3) and 41 divides a(20). Also, if P = 8*n +- 3 is prime, then 4*P divides (a((P-1)/2) + a((P+1)/2) + 3). - Kenneth J Ramsey, Mar 05 2012
Starting at a(2), a(n) gives all the dimensions of Euclidean k-space in which the ratio of outer to inner Soddy hyperspheres' radii for k+1 identical kissing hyperspheres is rational. The formula for this ratio is (1+3k+2*sqrt(2k*(k+1)))/(k-1) where k is the dimension. So for a(3) = 49, the ratio is 6 in the 49th dimension. See comment for A010502. - Frank M Jackson, Feb 09 2013
Conjecture: For n>1 a(n) is the index of the first occurrence of -n in sequence A123737. - Vaclav Kotesovec, Jun 02 2015
For n=2*k, k>0, a(n) is divisible by 8 (deficient), so since all proper divisors of deficient numbers are deficient, then a(n) is deficient. For n=2*k+1, k>0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. sigma(a(5)) = 1723 < 3362 = 2*a(5). In either case, a(n) is deficient. - Muniru A Asiru, Apr 14 2016
The squares of NSW numbers (A008843) interleaved with twice squares from A084703, where A008843(n) = A002315(n)^2 and A084703(n) = A001542(n)^2. Conjecture: Also numbers n such that sigma(n) = A000203(n) and sigma(n-th triangular number) = A074285(n) are both odd numbers. - Jaroslav Krizek, Aug 05 2016
For n > 0, numbers for which the number of odd divisors of both n and of n + 1 is odd. - Gionata Neri, Apr 30 2018
a(n) will be solutions to some (A000217(k) + A000217(k+1))/2. - Art Baker, Jul 16 2019
For n >= 2, a(n) is the base for which A058331(A001109(n)) is a length-3 repunit. Example: for n=2, A001109(2)=6 and A058331(6)=73 and 73 in base a(2)=8 is 111. See Grantham and Graves. - Michel Marcus, Sep 11 2020

Examples

			a(1) = ((3 + 2*sqrt(2)) + (3 - 2*sqrt(2)) - 2) / 4 = (3 + 3 - 2) / 4 = 4 / 4 = 1;
a(2) = ((3 + 2*sqrt(2))^2 + (3 - 2*sqrt(2))^2 - 2) / 4 = (9 + 4*sqrt(2) + 8 + 9 - 4*sqrt(2) + 8 - 2) / 4 = (18 + 16 - 2) / 4 = (34 - 2) / 4 = 32 / 4 = 8, etc.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 10.
  • M. S. Klamkin, "International Mathematical Olympiads 1978-1985," (Supplementary problem N.T.6)
  • W. Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, pp. 21-22 MR2002669
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.

Crossrefs

Partial sums of A002315. A000129, A005319.
a(n) = A115598(n), n > 0. - Hermann Stamm-Wilbrandt, Jul 27 2014

Programs

  • Haskell
    a001108 n = a001108_list !! n
    a001108_list = 0 : 1 : map (+ 2)
       (zipWith (-) (map (* 6) (tail a001108_list)) a001108_list)
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Maple
    A001108:=-(1+z)/(z-1)/(z**2-6*z+1); # Simon Plouffe in his 1992 dissertation, without the leading 0
  • Mathematica
    Table[(1/2)(-1 + Sqrt[1 + Expand[8(((3 + 2Sqrt[2])^n - (3 - 2Sqrt[2])^n)/(4Sqrt[2]))^2]]), {n, 0, 100}] (* Artur Jasinski, Dec 10 2006 *)
    Transpose[NestList[{#[[2]],#[[3]],6#[[3]]-#[[2]]+2}&,{0,1,8},20]][[1]] (* Harvey P. Dale, Sep 04 2011 *)
    LinearRecurrence[{7, -7, 1}, {0, 1, 8}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
  • PARI
    a(n)=(real((3+quadgen(32))^n)-1)/2
    
  • PARI
    a(n)=(subst(poltchebi(abs(n)),x,3)-1)/2
    
  • PARI
    a(n)=if(n<0,a(-n),(polsym(1-6*x+x^2,n)[n+1]-2)/4)
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(1+x)/((1-x)*(1-6*x+x^2)))) \\ Altug Alkan, May 01 2018
    

Formula

a(0) = 0, a(n+1) = 3*a(n) + 1 + 2*sqrt(2*a(n)*(a(n)+1)). - Jim Nastos, Jun 18 2002
a(n) = floor( (1/4) * (3+2*sqrt(2))^n ). - Benoit Cloitre, Sep 04 2002
a(n) = A001653(k)*A001653(k+n) - A001652(k)*A001652(k+n) - A046090(k)*A046090(k+n). - Charlie Marion, Jul 01 2003
a(n) = A001652(n-1) + A001653(n-1) = A001653(n) - A046090(n) = (A001541(n)-1)/2 = a(-n). - Michael Somos, Mar 03 2004
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). - Antonio Alberto Olivares, Oct 23 2003
a(n) = Sum_{r=1..n} 2^(r-1)*binomial(2n, 2r). - Lekraj Beedassy, Aug 21 2004
If n > 1, then both A000203(n) and A000203(n+1) are odd numbers: n is either a square or twice a square. - Labos Elemer, Aug 23 2004
a(n) = (T(n, 3)-1)/2 with Chebyshev's polynomials of the first kind evaluated at x=3: T(n, 3) = A001541(n). - Wolfdieter Lang, Oct 18 2004
G.f.: x*(1+x)/((1-x)*(1-6*x+x^2)). Binet form: a(n) = ((3+2*sqrt(2))^n + (3-2*sqrt(2))^n - 2)/4. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
a(n) = floor(sqrt(2*A001110(n))) = floor(A001109(n)*sqrt(2)) = 2*(A000129(n)^2) - (n mod 2) = A001333(n)^2 - 1 + (n mod 2). - Henry Bottomley, Apr 19 2000, corrected by Eric Rowland, Jun 23 2017
A072221(n) = 3*a(n) + 1. - David Scheers, Dec 25 2006
A028982(a(n)) + 1 = A028982(a(n) + 1). - Juri-Stepan Gerasimov, Mar 28 2011
a(n+1)^2 + a(n)^2 + 1 = 6*a(n+1)*a(n) + 2*a(n+1) + 2*a(n). - Charlie Marion, Sep 28 2011
a(n) = 2*A001653(m)*A053141(n-m-1) + A002315(m)*A046090(n-m-1) + a(m) with m < n; otherwise, a(n) = 2*A001653(m)*A053141(m-n) - A002315(m)*A001652(m-n) + a(m). See Link to Generalized Proof re Square Triangular Numbers. - Kenneth J Ramsey, Oct 13 2011
a(n) = A048739(2n-2), n > 0. - Richard R. Forberg, Aug 31 2013
From Peter Bala, Jan 28 2014: (Start)
A divisibility sequence: that is, a(n) divides a(n*m) for all n and m. Case P1 = 8, P2 = 12, Q = 1 of the 3-parameter family of linear divisibility sequences found by Williams and Guy.
a(2*n+1) = A002315(n)^2 = Sum_{k = 0..4*n + 1} Pell(n), where Pell(n) = A000129(n).
a(2*n) = (1/2)*A005319(n)^2 = 8*A001109(n)^2.
(2,1) entry of the 2 X 2 matrix T(n,M), where M = [0, -3; 1, 4] and T(n,x) is the Chebyshev polynomial of the first kind. (End)
E.g.f.: exp(x)*(exp(2*x)*cosh(2*sqrt(2)*x) - 1)/2. - Stefano Spezia, Oct 25 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 19 2000
More terms from Lekraj Beedassy, Aug 21 2004

A053141 a(0)=0, a(1)=2 then a(n) = a(n-2) + 2*sqrt(8*a(n-1)^2 + 8*a(n-1) + 1).

Original entry on oeis.org

0, 2, 14, 84, 492, 2870, 16730, 97512, 568344, 3312554, 19306982, 112529340, 655869060, 3822685022, 22280241074, 129858761424, 756872327472, 4411375203410, 25711378892990, 149856898154532, 873430010034204, 5090723162050694, 29670908962269962, 172934730611569080
Offset: 0

Views

Author

Keywords

Comments

Solution to b(b+1) = 2a(a+1) in natural numbers including 0; a = a(n), b = b(n) = A001652(n).
The solution of a special case of a binomial problem of H. Finner and K. Strassburger (strass(AT)godot.dfi.uni-duesseldorf.de).
Also the indices of triangular numbers that are half other triangular numbers [a of T(a) such that 2T(a)=T(b)]. The T(a)'s are in A075528, the T(b)'s are in A029549 and the b's are in A001652. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 30 2002
Sequences A053141 (this entry), A016278, A077259, A077288 and A077398 are part of an infinite series of sequences. Each depends upon the polynomial p(n) = 4k*n^2 + 4k*n + 1, when 4k is not a perfect square. Equivalently, they each depend on the equation k*t(x)=t(z) where t(n) is the triangular number formula n(n+1)/2. The dependencies are these: they are the sequences of positive integers n such that p(n) is a perfect square and there exists a positive integer m such that k*t(n)=t(m). A053141 is for k=2, A016278 is for k=3, A077259 is for k=5. - Robert Phillips (bobanne(AT)bellsouth.net), Oct 11 2007, Nov 27 2007
Jason Holt observes that a pair drawn from a drawer with A053141(n)+1 red socks and A001652(n) - A053141(n) blue socks will as likely as not be matching reds: (A053141+1)*A053141/((A001652+1)*A001652) = 1/2, n>0. - Bill Gosper, Feb 07 2010
The values x(n)=A001652(n), y(n)=A046090(n) and z(n)=A001653(n) form a nearly isosceles Pythagorean triple since y(n)=x(n)+1 and x(n)^2 + y(n)^2 = z(n)^2; e.g., for n=2, 20^2 + 21^2 = 29^2. In a similar fashion, if we define b(n)=A011900(n) and c(n)=A001652(n), a(n), b(n) and c(n) form a nearly isosceles anti-Pythagorean triple since b(n)=a(n)+1 and a(n)^2 + b(n)^2 = c(n)^2 + c(n) + 1; i.e., the value a(n)^2 + b(n)^2 lies almost exactly between two perfect squares; e.g., 2^2 + 3^2 = 13 = 4^2 - 3 = 3^2 + 4; 14^2 + 15^2 = 421 = 21^2 - 20 = 20^2 + 21. - Charlie Marion, Jun 12 2009
Behera & Panda call these the balancers and A001109 are the balancing numbers. - Michel Marcus, Nov 07 2017

Crossrefs

Programs

  • Haskell
    a053141 n = a053141_list !! n
    a053141_list = 0 : 2 : map (+ 2)
       (zipWith (-) (map (* 6) (tail a053141_list)) a053141_list)
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(2*x/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
    
  • Maple
    A053141 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[0,2]) ;
        else
            6*procname(n-1)-procname(n-2)+2 ;
        end if;
    end proc: # R. J. Mathar, Feb 05 2016
  • Mathematica
    Join[{a=0,b=1}, Table[c=6*b-a+1; a=b; b=c, {n,60}]]*2 (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
    a[n_] := Floor[1/8*(2+Sqrt[2])*(3+2*Sqrt[2])^n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 28 2013 *)
    Table[(Fibonacci[2n + 1, 2] - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
  • PARI
    concat(0,Vec(2/(1-x)/(1-6*x+x^2)+O(x^30))) \\ Charles R Greathouse IV, May 14 2012
    
  • PARI
    {x=1+sqrt(2); y=1-sqrt(2); P(n) = (x^n - y^n)/(x-y)};
    a(n) = round((P(2*n+1) - 1)/2);
    for(n=0, 30, print1(a(n), ", ")) \\ G. C. Greubel, Jul 15 2018
    
  • Sage
    [(lucas_number1(2*n+1, 2, -1)-1)/2 for n in range(30)] # G. C. Greubel, Apr 27 2020

Formula

a(n) = (A001653(n)-1)/2 = 2*A053142(n) = A011900(n)-1. [Corrected by Pontus von Brömssen, Sep 11 2024]
a(n) = 6*a(n-1) - a(n-2) + 2, a(0) = 0, a(1) = 2.
G.f.: 2*x/((1-x)*(1-6*x+x^2)).
Let c(n) = A001109(n). Then a(n+1) = a(n)+2*c(n+1), a(0)=0. This gives a generating function (same as existing g.f.) leading to a closed form: a(n) = (1/8)*(-4+(2+sqrt(2))*(3+2*sqrt(2))^n + (2-sqrt(2))*(3-2*sqrt(2))^n). - Bruce Corrigan (scentman(AT)myfamily.com), Oct 30 2002
a(n) = 2*Sum_{k = 0..n} A001109(k). - Mario Catalani (mario.catalani(AT)unito.it), Mar 22 2003
For n>=1, a(n) = 2*Sum_{k=0..n-1} (n-k)*A001653(k). - Charlie Marion, Jul 01 2003
For n and j >= 1, A001109(j+1)*A001652(n) - A001109(j)*A001652(n-1) + a(j) = A001652(n+j). - Charlie Marion, Jul 07 2003
From Antonio Alberto Olivares, Jan 13 2004: (Start)
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3).
a(n) = -(1/2) - (1-sqrt(2))/(4*sqrt(2))*(3-2*sqrt(2))^n + (1+sqrt(2))/(4*sqrt(2))*(3+2*sqrt(2))^n. (End)
a(n) = sqrt(2)*cosh((2*n+1)*log(1+sqrt(2)))/4 - 1/2 = (sqrt(1+4*A029549)-1)/2. - Bill Gosper, Feb 07 2010 [typo corrected by Vaclav Kotesovec, Feb 05 2016]
a(n+1) + A055997(n+1) = A001541(n+1) + A001109(n+1). - Creighton Dement, Sep 16 2004
From Charlie Marion, Oct 18 2004: (Start)
For n>k, a(n-k-1) = A001541(n)*A001653(k)-A011900(n+k); e.g., 2 = 99*5 - 493.
For n<=k, a(k-n) = A001541(n)*A001653(k) - A011900(n+k); e.g., 2 = 3*29 - 85 + 2. (End)
a(n) = A084068(n)*A084068(n+1). - Kenneth J Ramsey, Aug 16 2007
Let G(n,m) = (2*m+1)*a(n)+ m and H(n,m) = (2*m+1)*b(n)+m where b(n) is from the sequence A001652 and let T(a) = a*(a+1)/2. Then T(G(n,m)) + T(m) = 2*T(H(n,m)). - Kenneth J Ramsey, Aug 16 2007
Let S(n) equal the average of two adjacent terms of G(n,m) as defined immediately above and B(n) be one half the difference of the same adjacent terms. Then for T(i) = triangular number i*(i+1)/2, T(S(n)) - T(m) = B(n)^2 (setting m = 0 gives the square triangular numbers). - Kenneth J Ramsey, Aug 16 2007
a(n) = A001108(n+1) - A001109(n+1). - Dylan Hamilton, Nov 25 2010
a(n) = (a(n-1)*(a(n-1) - 2))/a(n-2) for n > 2. - Vladimir Pletser, Apr 08 2020
a(n) = (ChebyshevU(n, 3) - ChebyshevU(n-1, 3) - 1)/2 = (Pell(2*n+1) - 1)/2. - G. C. Greubel, Apr 27 2020
E.g.f.: (exp(3*x)*(2*cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)) - 2*exp(x))/4. - Stefano Spezia, Mar 16 2024
a(n) = A000194(A029549(n)) = A002024(A075528(n)). - Pontus von Brömssen, Sep 11 2024

Extensions

Name corrected by Zak Seidov, Apr 11 2011

A003499 a(n) = 6*a(n-1) - a(n-2), with a(0) = 2, a(1) = 6.

Original entry on oeis.org

2, 6, 34, 198, 1154, 6726, 39202, 228486, 1331714, 7761798, 45239074, 263672646, 1536796802, 8957108166, 52205852194, 304278004998, 1773462177794, 10336495061766, 60245508192802, 351136554095046, 2046573816377474, 11928306344169798, 69523264248641314
Offset: 0

Views

Author

Keywords

Comments

Two times Chebyshev polynomials of the first kind evaluated at 3.
Also 2(a(2*n)-2) and a(2*n+1)-2 are perfect squares. - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
Chebyshev polynomials of the first kind evaluated at 3, then multiplied by 2. - Michael Somos, Apr 07 2003
Also gives solutions > 2 to the equation x^2 - 3 = floor(x*r*floor(x/r)) where r=sqrt(2). - Benoit Cloitre, Feb 14 2004
Output of Lu and Wu's formula for the number of perfect matchings of an m X n Klein bottle where m and n are both even specializes to this sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
It appears that for prime P = 8*n +- 3, that a((P-1)/2) == -6 (mod P) and for all composites C = 8*n +- 3, there is at least one i < (C-1)/2 such that a(i) == -6 (mod P). Only a few of the primes P of the form 8*n +-3, e.g., 29, had such an i less than (P-1)/2. As for primes P = 8*n +- 1, it seems that the sum of the two adjacent terms, a((P-1)/2) and a((P+1)/2), is congruent to 8 (mod P). - Kenneth J Ramsey, Feb 14 2012 and Mar 05 2012
For n >= 1, a(n) is also the curvature of circles (rounded to the nearest integer) successively inscribed toward angle 90 degree of tangent lines, starting with a unit circle. The expansion factor is 5.828427... or 1/(3 - 2*sqrt(2)), which is also 3 + 2*sqrt(2) or A156035. See illustration in links. - Kival Ngaokrajang, Sep 04 2013
Except for the first term, positive values of x (or y) satisfying x^2 - 6*x*y + y^2 + 32 = 0. - Colin Barker, Feb 08 2014

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 198.
  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; pp. 480-481.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Wiley, pp. 77-79.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A081555(n) = 1 + a(n).
Bisection of A002203.
First row of array A103999.
Row 1 * 2 of array A188645. A174501.

Programs

  • GAP
    a:=[2,6];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 16 2020
  • Magma
    I:=[2,6]; [n le 2 select I[n] else 6*Self(n-1) -Self(n-2): n in [1..25]]; // G. C. Greubel, Jan 16 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (2-6*x)/(1 - 6*x + x^2) )); // Marius A. Burtea, Jan 16 2020
    
  • Maple
    A003499:=-2*(-1+3*z)/(1-6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[0]=2; a[1]=6; a[n_]:= 6a[n-1] -a[n-2]; Table[a[n], {n,0,25}] (* Robert G. Wilson v, Jan 30 2004 *)
    Table[Tr[MatrixPower[{{6, -1}, {1, 0}}, n]], {n, 25}] (* Artur Jasinski, Apr 22 2008 *)
    LinearRecurrence[{6, -1}, {2, 6}, 25] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2012 *)
    CoefficientList[Series[(2-6x)/(1-6x+x^2), {x,0,25}], x] (* Vincenzo Librandi, Jun 07 2013 *)
    (* From Eric W. Weisstein, Apr 17 2018 *)
    Table[(3-2Sqrt[2])^n + (3+2Sqrt[2])^n, {n,0,25}]//Expand
    Table[(1+Sqrt[2])^(2n) + (1-Sqrt[2])^(2n), {n,0,25}]//FullSimplify
    Join[{2}, Table[Fibonacci[4n, 2]/Fibonacci[2n, 2], {n, 25}]]
    2*ChebyshevT[Range[0, 25], 3] (* End *)
  • PARI
    a(n)=2*real((3+quadgen(32))^n)
    
  • PARI
    a(n)=2*subst(poltchebi(abs(n)),x,3)
    
  • PARI
    a(n)=if(n<0,a(-n),polsym(1-6*x+x^2,n)[n+1])
    
  • Sage
    [lucas_number2(n,6,1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
    

Formula

G.f.: (2-6*x)/(1 - 6*x + x^2).
a(n) = (3+2*sqrt(2))^n + (3-2*sqrt(2))^n = 2*A001541(n).
For all sequence elements n, 2*n^2 - 8 is a perfect square. Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 06 2002
a(2*n)+2 is a perfect square, 2(a(2*n+1)+2) is a perfect square. a(n), a(n-1) and A077445(n), n > 0, satisfy the Diophantine equation x^2 + y^2 - 3*z^2 = -8. - Mario Catalani (mario.catalani(AT)unito.it), Mar 24 2003
a(n+1) is the trace of n-th power of matrix {{6, -1}, {1, 0}}. - Artur Jasinski, Apr 22 2008
a(n) = Product_{r=1..n} (4*sin^2((4*r-1)*Pi/(4*n)) + 4). [Lu/Wu] - Sarah-Marie Belcastro, Jul 04 2009
a(n) = (1 + sqrt(2))^(2*n) + (1 + sqrt(2))^(-2*n). - Gerson Washiski Barbosa, Sep 19 2010
For n > 0, a(n) = A001653(n) + A001653(n+1). - Charlie Marion, Dec 27 2011
For n > 0, a(n) = b(4*n)/b(2*n) where b(n) is the Pell sequence, A000129. - Kenneth J Ramsey, Feb 14 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 3 - 2*sqrt(2). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.16585 37786 96882 80543 ... = 2 + 1/(6 + 1/(34 + 1/(198 + ...))). Cf. A174501.
Also F(-alpha) = 0.83251219269380007634 ... has the continued fraction representation 1 - 1/(6 - 1/(34 - 1/(198 - ...))) and the simple continued fraction expansion 1/(1 + 1/((6-2) + 1/(1 + 1/((34-2) + 1/(1 + 1/((198-2) + 1/(1 + ...))))))). Cf. A174501 and A003500.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((6^2-4) + 1/(1 + 1/((34^2-4) + 1/(1 + 1/((198^2-4) + 1/(1 + ...))))))).
(End)
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
Inverse binomial transform of A228568 [Bhadouria]. - R. J. Mathar, Nov 10 2013
From Peter Bala, Oct 16 2019: (Start)
4*Sum_{n >= 1} 1/(a(n) - 8/a(n)) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 4/a(n)) = 1.
Series acceleration formulas for sum of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/4 - 8*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 8)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 4*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 4)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(3-2*sqrt(2)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(2*sqrt(2)-3))^2 )/4, where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A067902.
(End)
E.g.f.: 2*exp(3*x)*cosh(2*sqrt(2)*x). - Stefano Spezia, Oct 18 2019
a(2*n)+2 = a(n)^2. - Greg Dresden and Shraya Pal, Jun 29 2021
Previous Showing 11-20 of 115 results. Next