A003961 Completely multiplicative with a(prime(k)) = prime(k+1).
1, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119
Offset: 1
Examples
a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45. a(A002110(n)) = A002110(n + 1) / 2.
References
- Richard K. Guy, editor, Problems From Western Number Theory Conferences, Labor Day, 1983, Problem 367 (Proposed by Leroy F. Meyers, The Ohio State U.).
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Index entries for sequences computed from indices in prime factorization.
- Index entries for sequences related to Heinz numbers.
Crossrefs
See A045965 for another version.
Row 1 of table A242378 (which gives the "k-th powers" of this sequence), row 3 of A297845 and of A306697. See also arrays A066117, A246278, A255483, A308503, A329050.
Cf. A064989 (a left inverse), A064216, A000040, A002110, A000265, A027746, A046523, A048673 (= (a(n)+1)/2), A108228 (= (a(n)-1)/2), A191002 (= a(n)*n), A252748 (= a(n)-2n), A286385 (= a(n)-sigma(n)), A283980 (= a(n)*A006519(n)), A341529 (= a(n)*sigma(n)), A326042, A049084, A001221, A001222, A122111, A225546, A260443, A245606, A244319, A246269 (= A065338(a(n))), A322361 (= gcd(n, a(n))), A305293.
Cf. A246261 (a(n) is of the form 4k+1), A246263 (of the form 4k+3), A246271, A246272, A246259, A246281 (n such that a(n) < 2n), A246282 (n such that a(n) > 2n), A252742.
Cf. A300841, A305421, A322991, A250469, A269379 for analogous shift-operators in other factorization and quasi-factorization systems.
Cf. also following permutations and other sequences that can be defined with the help of this sequence: A005940, A163511, A122111, A260443, A206296, A265408, A265750, A275733, A275735, A297845, A091202 & A091203, A250245 & A250246, A302023 & A302024, A302025 & A302026.
A permutation of A005408.
Applying the same transformation again gives A357852.
Programs
-
Haskell
a003961 1 = 1 a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n -- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011 (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library) (require 'factor) (define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n)))))) ;; Antti Karttunen, May 20 2014
-
Maple
a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]): seq(a(n), n=1..80); # Alois P. Heinz, Sep 13 2017
-
Mathematica
a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *) Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
-
PARI
a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],nextprime(1+f[k,1])^f[k,2]))
-
PARI
a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
-
Perl
use ntheory ":all"; sub a003961 { vecprod(map { next_prime($) } factor(shift)); } # _Dana Jacobsen, Mar 06 2016
-
Python
from sympy import factorint, prime, primepi, prod def a(n): f=factorint(n) return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f) [a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017
Formula
If n = Product p(k)^e(k) then a(n) = Product p(k+1)^e(k).
a(n) = Product_{k=1..A001221(n)} A000040(A049084(A027748(n,k))+1)^A124010(n,k). - Reinhard Zumkeller, Oct 09 2011 [Corrected by Peter Munn, Nov 11 2019]
From Peter Munn, Oct 31 2019: (Start)
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 2.06399637... . - Amiram Eldar, Nov 18 2022
Comments