cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 107 results. Next

A001065 Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, 21, 46, 1, 66, 17, 64, 23, 32, 1, 108, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 123, 1, 40, 49, 64, 19, 90, 1, 106
Offset: 1

Views

Author

Keywords

Comments

Also total number of parts in all partitions of n into equal parts that do not contain 1 as a part. - Omar E. Pol, Jan 16 2013
Related concepts: If a(n) < n, n is said to be deficient, if a(n) > n, n is abundant, and if a(n) = n, n is perfect. If there is a cycle of length 2, so that a(n) = b and a(b) = n, b and n are said to be amicable. If there is a longer cycle, the numbers in the cycle are said to be sociable. See examples. - Juhani Heino, Jul 17 2017
Sum of the smallest parts in the partitions of n into two parts such that the smallest part divides the largest. - Wesley Ivan Hurt, Dec 22 2017
a(n) is also the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that do not contain k as a part (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 23 2019
Fixed points are in A000396. - Alois P. Heinz, Mar 10 2024

Examples

			x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 7*x^8 + 4*x^9 + 8*x^10 + x^11 + ...
For n = 44, sum of divisors of n = sigma(n) = 84; so a(44) = 84-44 = 40.
Related concepts: (Start)
From 1 to 17, all n are deficient, except 6 and 12 seen below. See A005100.
Abundant numbers: a(12) = 16, a(18) = 21. See A005101.
Perfect numbers: a(6) = 6, a(28) = 28. See A000396.
Amicable numbers: a(220) = 284, a(284) = 220. See A259180.
Sociable numbers: 12496 -> 14288 -> 15472 -> 14536 -> 14264 -> 12496. See A122726. (End)
For n = 10 the sum of the divisors of 10 that are less than 10 is 1 + 2 + 5 = 8. On the other hand, the partitions of 10 into equal parts that do not contain 1 as a part are [10], [5,5], [2,2,2,2,2], there are 8 parts, so a(10) = 8. - _Omar E. Pol_, Nov 24 2019
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • George E. Andrews, Number Theory. New York: Dover, 1994; Pages 1, 75-92; p. 92 #15: Sigma(n) / d(n) >= n^(1/2).
  • Carl Pomerance, The first function and its iterates, pp. 125-138 in Connections in Discrete Mathematics, ed. S. Butler et al., Cambridge, 2018.
  • H. J. J. te Riele, Perfect numbers and aliquot sequences, pp. 77-94 in J. van de Lune, ed., Studieweek "Getaltheorie en Computers", published by Math. Centrum, Amsterdam, Sept. 1980.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 91.

Crossrefs

Least inverse: A070015, A359132.
Values taken: A078923, values not taken: A005114.
Records: A034090, A034091.
First differences: A053246, partial sums: A153485.
a(n) = n - A033879(n) = n + A033880(n). - Omar E. Pol, Dec 30 2013
Row sums of A141846 and of A176891. - Gary W. Adamson, May 02 2010
Row sums of A176079. - Mats Granvik, May 20 2012
Alternating row sums of A231347. - Omar E. Pol, Jan 02 2014
a(n) = sum (A027751(n,k): k = 1..A000005(n)-1). - Reinhard Zumkeller, Apr 05 2013
For n > 1: a(n) = A240698(n,A000005(n)-1). - Reinhard Zumkeller, Apr 10 2014
A134675(n) = A007434(n) + a(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
Cf. A037020 (primes), A053868, A053869 (odd and even terms).
Cf. A048138 (number of occurrences), A238895, A238896 (record values thereof).
Cf. A007956 (products of proper divisors).
Cf. A005100, A005101, A000396, A259180, A122726 (related concepts).

Programs

  • Haskell
    a001065 n = a000203 n - n  -- Reinhard Zumkeller, Sep 15 2011
    
  • Magma
    [SumOfDivisors(n)-n: n in [1..100]]; // Vincenzo Librandi, May 06 2015
    
  • Maple
    A001065 := proc(n)
        numtheory[sigma](n)-n ;
    end proc:
    seq( A001065(n),n=1..100) ;
  • Mathematica
    Table[ Plus @@ Select[ Divisors[ n ], #Zak Seidov, Sep 10 2009 *)
    Table[DivisorSigma[1, n] - n, {n, 1, 80}] (* Jean-François Alcover, Apr 25 2013 *)
    Array[Plus @@ Most@ Divisors@# &, 80] (* Robert G. Wilson v, Dec 24 2017 *)
  • MuPAD
    numlib::sigma(n)-n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n==0, 0, sigma(n) - n)} /* Michael Somos, Sep 20 2011 */
    
  • Python
    from sympy import divisor_sigma
    def A001065(n): return divisor_sigma(n)-n # Chai Wah Wu, Nov 04 2022
    
  • Sage
    [sigma(n, 1)-n for n in range(1, 81)] # Stefano Spezia, Jul 14 2025

Formula

G.f.: Sum_{k>0} k * x^(2*k)/(1 - x^k). - Michael Somos, Jul 05 2006
a(n) = sigma(n) - n = A000203(n) - n. - Lekraj Beedassy, Jun 02 2005
a(n) = A155085(-n). - Michael Somos, Sep 20 2011
Equals inverse Mobius transform of A051953 = A051731 * A051953. Example: a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (0, 1, 1, 2, 1, 4) = (0 + 1 + 1 + 0 + 0 + 4), where A051953 = (0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, ...) and (1, 1, 1, 0, 0, 1) = row 6 of A051731 where the 1's positions indicate the factors of 6. - Gary W. Adamson, Jul 11 2008
a(n) = A006128(n) - A220477(n) - n. - Omar E. Pol Jan 17 2013
a(n) = Sum_{i=1..floor(n/2)} i*(1-ceiling(frac(n/i))). - Wesley Ivan Hurt, Oct 25 2013
Dirichlet g.f.: zeta(s-1)*(zeta(s) - 1). - Ilya Gutkovskiy, Aug 07 2016
a(n) = 1 + A048050(n), n > 1. - R. J. Mathar, Mar 13 2018
Erdős (Elem. Math. 28 (1973), 83-86) shows that the density of even integers in the range of a(n) is strictly less than 1/2. The argument of Coppersmith (1987) shows that the range of a(n) has density at most 47/48 < 1. - N. J. A. Sloane, Dec 21 2019
G.f.: Sum_{k >= 2} x^k/(1 - x^k)^2. Cf. A296955. (This follows from the fact that if g(z) = Sum_{n >= 1} a(n)*z^n and f(z) = Sum_{n >= 1} a(n)*z^(N*n)/(1 - z^n) then f(z) = Sum_{k >= N} g(z^k), taking a(n) = n and N = 2.) - Peter Bala, Jan 13 2021
Faster converging g.f.: Sum_{n >= 1} q^(n*(n+1))*(n*q^(3*n+2) - (n + 1)*q^(2*n+1) - (n - 1)*q^(n+1) + n)/((1 - q^n)*(1 - q^(n+1))^2). (In equation 1 in Arndt, after combining the two n = 0 summands to get -t/(1 - t), apply the operator t*d/dt to the resulting equation and then set t = q and x = 1.) - Peter Bala, Jan 22 2021
a(n) = Sum_{d|n} d * (1 - [n = d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
a(n) = Sum_{i=1..n} ((n-1) mod i) - (n mod i). [See also A176079.] - José de Jesús Camacho Medina, Feb 23 2021

A000330 Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.

Original entry on oeis.org

0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
Offset: 0

Views

Author

Keywords

Comments

The sequence contains exactly one square greater than 1, namely 4900 (according to Gardner). - Jud McCranie, Mar 19 2001, Mar 22 2007 [This is a result from Watson. - Charles R Greathouse IV, Jun 21 2013] [See A351830 for further related comments and references.]
Number of rhombi in an n X n rhombus. - Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
Number of acute triangles made from the vertices of a regular n-polygon when n is odd (cf. A007290). - Sen-Peng Eu, Apr 05 2001
Gives number of squares with sides parallel to the axes formed from an n X n square. In a 1 X 1 square, one is formed. In a 2 X 2 square, five squares are formed. In a 3 X 3 square, 14 squares are formed and so on. - Kristie Smith (kristie10spud(AT)hotmail.com), Apr 16 2002; edited by Eric W. Weisstein, Mar 05 2025
a(n-1) = B_3(n)/3, where B_3(x) = x(x-1)(x-1/2) is the third Bernoulli polynomial. - Michael Somos, Mar 13 2004
Number of permutations avoiding 13-2 that contain the pattern 32-1 exactly once.
Since 3*r = (r+1) + r + (r-1) = T(r+1) - T(r-2), where T(r) = r-th triangular number r*(r+1)/2, we have 3*r^2 = r*(T(r+1) - T(r-2)) = f(r+1) - f(r-1) ... (i), where f(r) = (r-1)*T(r) = (r+1)*T(r-1). Summing over n, the right hand side of relation (i) telescopes to f(n+1) + f(n) = T(n)*((n+2) + (n-1)), whence the result Sum_{r=1..n} r^2 = n*(n+1)*(2*n+1)/6 immediately follows. - Lekraj Beedassy, Aug 06 2004
Also as a(n) = (1/6)*(2*n^3 + 3*n^2 + n), n > 0: structured trigonal diamond numbers (vertex structure 5) (cf. A006003 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of triples of integers from {1, 2, ..., n} whose last component is greater than or equal to the others.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Sum of the first n positive squares. - Cino Hilliard, Jun 18 2007
Maximal number of cubes of side 1 in a right pyramid with a square base of side n and height n. - Pasquale CUTOLO (p.cutolo(AT)inwind.it), Jul 09 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
We also have the identity 1 + (1+4) + (1+4+9) + ... + (1+4+9+16+ ... + n^2) = n(n+1)(n+2)(n+(n+1)+(n+2))/36; ... and in general the k-fold nested sum of squares can be expressed as n(n+1)...(n+k)(n+(n+1)+...+(n+k))/((k+2)!(k+1)/2). - Alexander R. Povolotsky, Nov 21 2007
The terms of this sequence are coefficients of the Engel expansion of the following converging sum: 1/(1^2) + (1/1^2)*(1/(1^2+2^2)) + (1/1^2)*(1/(1^2+2^2))*(1/(1^2+2^2+3^2)) + ... - Alexander R. Povolotsky, Dec 10 2007
Convolution of A000290 with A000012. - Sergio Falcon, Feb 05 2008
Hankel transform of binomial(2*n-3, n-1) is -a(n). - Paul Barry, Feb 12 2008
Starting (1, 5, 14, 30, ...) = binomial transform of [1, 4, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
Starting (1,5,14,30,...) = second partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+2,i+2)*b(i), where b(i)=1,2,0,0,0,... - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Convolution of A001477 with A005408: a(n) = Sum_{k=0..n} (2*k+1)*(n-k). - Reinhard Zumkeller, Mar 07 2009
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF1 denominators of A156921. See A157702 for background information. - Johannes W. Meijer, Mar 07 2009
The sequence is related to A000217 by a(n) = n*A000217(n) - Sum_{i=0..n-1} A000217(i) and this is the case d = 1 in the identity n^2*(d*n-d+2)/2 - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)(2*d*n-2*d+3)/6, or also the case d = 0 in n^2*(n+2*d+1)/2 - Sum_{i=0..n-1} i*(i+2*d+1)/2 = n*(n+1)*(2*n+3*d+1)/6. - Bruno Berselli, Apr 21 2010, Apr 03 2012
a(n)/n = k^2 (k = integer) for n = 337; a(337) = 12814425, a(n)/n = 38025, k = 195, i.e., the number k = 195 is the quadratic mean (root mean square) of the first 337 positive integers. There are other such numbers -- see A084231 and A084232. - Jaroslav Krizek, May 23 2010
Also the number of moves to solve the "alternate coins game": given 2n+1 coins (n+1 Black, n White) set alternately in a row (BWBW...BWB) translate (not rotate) a pair of adjacent coins at a time (1 B and 1 W) so that at the end the arrangement shall be BBBBB..BW...WWWWW (Blacks separated by Whites). Isolated coins cannot be moved. - Carmine Suriano, Sep 10 2010
From J. M. Bergot, Aug 23 2011: (Start)
Using four consecutive numbers n, n+1, n+2, and n+3 take all possible pairs (n, n+1), (n, n+2), (n, n+3), (n+1, n+2), (n+1, n+3), (n+2, n+3) to create unreduced Pythagorean triangles. The sum of all six areas is 60*a(n+1).
Using three consecutive odd numbers j, k, m, (j+k+m)^3 - (j^3 + k^3 + m^3) equals 576*a(n) = 24^2*a(n) where n = (j+1)/2. (End)
From Ant King, Oct 17 2012: (Start)
For n > 0, the digital roots of this sequence A010888(a(n)) form the purely periodic 27-cycle {1, 5, 5, 3, 1, 1, 5, 6, 6, 7, 2, 2, 9, 7, 7, 2, 3, 3, 4, 8, 8, 6, 4, 4, 8, 9, 9}.
For n > 0, the units' digits of this sequence A010879(a(n)) form the purely periodic 20-cycle {1, 5, 4, 0, 5, 1, 0, 4, 5, 5, 6, 0, 9, 5, 0, 6, 5, 9, 0, 0}. (End)
Length of the Pisano period of this sequence mod n, n>=1: 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, 11, 72, 13, 28, 45, 32, 17, 108, 19, 40, ... . - R. J. Mathar, Oct 17 2012
Sum of entries of n X n square matrix with elements min(i,j). - Enrique Pérez Herrero, Jan 16 2013
The number of intersections of diagonals in the interior of regular n-gon for odd n > 1 divided by n is a square pyramidal number; that is, A006561(2*n+1)/(2*n+1) = A000330(n-1) = (1/6)*n*(n-1)*(2*n-1). - Martin Renner, Mar 06 2013
For n > 1, a(n)/(2n+1) = A024702(m), for n such that 2n+1 = prime, which results in 2n+1 = A000040(m). For example, for n = 8, 2n+1 = 17 = A000040(7), a(8) = 204, 204/17 = 12 = A024702(7). - Richard R. Forberg, Aug 20 2013
A formula for the r-th successive summation of k^2, for k = 1 to n, is (2*n+r)*(n+r)!/((r+2)!*(n-1)!) (H. W. Gould). - Gary Detlefs, Jan 02 2014
The n-th square pyramidal number = the n-th triangular dipyramidal number (Johnson 12), which is the sum of the n-th + (n-1)-st tetrahedral numbers. E.g., the 3rd tetrahedral number is 10 = 1+3+6, the 2nd is 4 = 1+3. In triangular "dipyramidal form" these numbers can be written as 1+3+6+3+1 = 14. For "square pyramidal form", rebracket as 1+(1+3)+(3+6) = 14. - John F. Richardson, Mar 27 2014
Beukers and Top prove that no square pyramidal number > 1 equals a tetrahedral number A000292. - Jonathan Sondow, Jun 21 2014
Odd numbered entries are related to dissections of polygons through A100157. - Tom Copeland, Oct 05 2014
From Bui Quang Tuan, Apr 03 2015: (Start)
We construct a number triangle from the integers 1, 2, 3, ..., n as follows. The first column contains 2*n-1 integers 1. The second column contains 2*n-3 integers 2, ... The last column contains only one integer n. The sum of all the numbers in the triangle is a(n).
Here is an example with n = 5:
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
(End)
The Catalan number series A000108(n+3), offset 0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset 0 (empirical observation). - Tony Foster III, Sep 05 2016; see Dougherty et al. link p. 2. - Andrey Zabolotskiy, Oct 13 2016
Number of floating point additions in the factorization of an (n+1) X (n+1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of multiplications is given by A007290. - Hugo Pfoertner, Mar 28 2018
The Jacobi polynomial P(n-1,-n+2,2,3) or equivalently the sum of dot products of vectors from the first n rows of Pascal's triangle (A007318) with the up-diagonal Chebyshev T coefficient vector (1,3,2,0,...) (A053120) or down-diagonal vector (1,-7,32,-120,400,...) (A001794). a(5) = 1 + (1,1).(1,3) + (1,2,1).(1,3,2) + (1,3,3,1).(1,3,2,0) + (1,4,6,4,1).(1,3,2,0,0) = (1 + (1,1).(1,-7) + (1,2,1).(1,-7,32) + (1,3,3,1).(1,-7,32,-120) + (1,4,6,4,1).(1,-7,32,-120,400))*(-1)^(n-1) = 55. - Richard Turk, Jul 03 2018
Coefficients in the terminating series identity 1 - 5*n/(n + 4) + 14*n*(n - 1)/((n + 4)*(n + 5)) - 30*n*(n - 1)*(n - 2)/((n + 4)*(n + 5)*(n + 6)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A108674. - Peter Bala, Feb 12 2019
n divides a(n) iff n == +- 1 (mod 6) (see A007310). (See De Koninck reference.) Examples: a(11) = 506 = 11 * 46, and a(13) = 819 = 13 * 63. - Bernard Schott, Jan 10 2020
For n > 0, a(n) is the number of ternary words of length n+2 having 3 letters equal to 2 and 0 only occurring as the last letter. For example, for n=2, the length 4 words are 2221,2212,2122,1222,2220. - Milan Janjic, Jan 28 2020
Conjecture: Every integer can be represented as a sum of three generalized square pyramidal numbers. A related conjecture is given in A336205 corresponding to pentagonal case. A stronger version of these conjectures is that every integer can be expressed as a sum of three generalized r-gonal pyramidal numbers for all r >= 3. In here "generalized" means negative indices are included. - Altug Alkan, Jul 30 2020
The natural number y is a term if and only if y = a(floor((3 * y)^(1/3))). - Robert Israel, Dec 04 2024
Also the number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by a rotation of the board. Reflections are ignored. Equivalently, number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by an axial reflection of the board (horizontal or vertical). Rotations and diagonal reflections are ignored. - Hilko Koning, Aug 22 2025

Examples

			G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 55*x^5 + 91*x^6 + 140*x^7 + 204*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover Publications, NY, 1964, p. 194.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 215,223.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 122, see #19 (3(1)), I(n); p. 155.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 47-49.
  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
  • J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 310, pp. 46-196, Ellipses, Paris, 2004.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 293.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 293.
  • M. Holt, Math puzzles and games, Walker Publishing Company, 1977, p. 2 and p. 89.
  • Simon Singh, The Simpsons and Their Mathematical Secrets. London: Bloomsbury Publishing PLC (2013): 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 126.

Crossrefs

Sums of 2 consecutive terms give A005900.
Column 0 of triangle A094414.
Column 1 of triangle A008955.
Right side of triangle A082652.
Row 2 of array A103438.
Partial sums of A000290.
Cf. similar sequences listed in A237616 and A254142.
Cf. |A084930(n, 1)|.
Cf. A253903 (characteristic function).
Cf. A034705 (differences of any two terms).

Programs

  • GAP
    List([0..30], n-> n*(n+1)*(2*n+1)/6); # G. C. Greubel, Dec 31 2019
  • Haskell
    a000330 n = n * (n + 1) * (2 * n + 1) `div` 6
    a000330_list = scanl1 (+) a000290_list
    -- Reinhard Zumkeller, Nov 11 2012, Feb 03 2012
    
  • Magma
    [n*(n+1)*(2*n+1)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 28 2014
    
  • Magma
    [0] cat [((2*n+3)*Binomial(n+2,2))/3: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    A000330 := n -> n*(n+1)*(2*n+1)/6;
    a := n->(1/6)*n*(n+1)*(2*n+1): seq(a(n),n=0..53); # Emeric Deutsch
    with(combstruct): ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*2), m=1..45) ; # Zerinvary Lajos, Jan 02 2008
    nmax := 44; for n from 0 to nmax do fz(n) := product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n) := abs(coeff(fz(n),z,1)); end do: a := n-> c(n): seq(a(n), n=0..nmax); # Johannes W. Meijer, Mar 07 2009
  • Mathematica
    Table[Binomial[w+2, 3] + Binomial[w+1, 3], {w, 0, 30}]
    CoefficientList[Series[x(1+x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Accumulate[Range[0,50]^2] (* Harvey P. Dale, Sep 25 2014 *)
  • Maxima
    A000330(n):=binomial(n+2,3)+binomial(n+1,3)$
    makelist(A000330(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    {a(n) = n * (n+1) * (2*n+1) / 6};
    
  • PARI
    upto(n) = [x*(x+1)*(2*x+1)/6 | x<-[0..n]] \\ Cino Hilliard, Jun 18 2007, edited by M. F. Hasler, Jan 02 2024
    
  • Python
    a=lambda n: (n*(n+1)*(2*n+1))//6 # Indranil Ghosh, Jan 04 2017
    
  • Sage
    [n*(n+1)*(2*n+1)/6 for n in (0..30)] # G. C. Greubel, Dec 31 2019
    

Formula

G.f.: x*(1+x)/(1-x)^4. - Simon Plouffe (in his 1992 dissertation: generating function for sequence starting at a(1))
E.g.f.: (x + 3*x^2/2 + x^3/3)*exp(x).
a(n) = n*(n+1)*(2*n+1)/6 = binomial(n+2, 3) + binomial(n+1, 3).
2*a(n) = A006331(n). - N. J. A. Sloane, Dec 11 1999
Can be extended to Z with a(n) = -a(-1-n) for all n in Z.
a(n) = A002492(n)/4. - Paul Barry, Jul 19 2003
a(n) = (((n+1)^4 - n^4) - ((n+1)^2 - n^2))/12. - Xavier Acloque, Oct 16 2003
From Alexander Adamchuk, Oct 26 2004: (Start)
a(n) = sqrt(A271535(n)).
a(n) = (Sum_{k=1..n} Sum_{j=1..n} Sum_{i=1..n} (i*j*k)^2)^(1/3). (End)
a(n) = Sum_{i=1..n} i*(2*n-2*i+1); sum of squares gives 1 + (1+3) + (1+3+5) + ... - Jon Perry, Dec 08 2004
a(n+1) = A000217(n+1) + 2*A000292(n). - Creighton Dement, Mar 10 2005
Sum_{n>=1} 1/a(n) = 6*(3-4*log(2)); Sum_{n>=1} (-1)^(n+1)*1/a(n) = 6*(Pi-3). - Philippe Deléham, May 31 2005
Sum of two consecutive tetrahedral (or pyramidal) numbers a(n) = A000292(n-1) + A000292(n). - Alexander Adamchuk, May 17 2006
Euler transform of length-2 sequence [ 5, -1 ]. - Michael Somos, Sep 04 2006
a(n) = a(n-1) + n^2. - Rolf Pleisch, Jul 22 2007
a(n) = A132121(n,0). - Reinhard Zumkeller, Aug 12 2007
a(n) = binomial(n, 2) + 2*binomial(n, 3). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009, corrected by M. F. Hasler, Jan 02 2024
a(n) = A168559(n) + 1 for n > 0. - Reinhard Zumkeller, Feb 03 2012
a(n) = Sum_{i=1..n} J_2(i)*floor(n/i), where J_2 is A007434. - Enrique Pérez Herrero, Feb 26 2012
a(n) = s(n+1, n)^2 - 2*s(n+1, n-1), where s(n, k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
a(n) = A001477(n) + A000217(n) + A007290(n+2) + 1. - J. M. Bergot, May 31 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 2. - Ant King, Oct 17 2012
a(n) = Sum_{i = 1..n} Sum_{j = 1..n} min(i,j). - Enrique Pérez Herrero, Jan 15 2013
a(n) = A000217(n) + A007290(n+1). - Ivan N. Ianakiev, May 10 2013
a(n) = (A047486(n+2)^3 - A047486(n+2))/24. - Richard R. Forberg, Dec 25 2013
a(n) = Sum_{i=0..n-1} (n-i)*(2*i+1), with a(0) = 0. After 0, row sums of the triangle in A101447. - Bruno Berselli, Feb 10 2014
a(n) = n + 1 + Sum_{i=1..n+1} (i^2 - 2i). - Wesley Ivan Hurt, Feb 25 2014
a(n) = A000578(n+1) - A002412(n+1). - Wesley Ivan Hurt, Jun 28 2014
a(n) = Sum_{i = 1..n} Sum_{j = i..n} max(i,j). - Enrique Pérez Herrero, Dec 03 2014
a(n) = A055112(n)/6, see Singh (2013). - Alonso del Arte, Feb 20 2015
For n >= 2, a(n) = A028347(n+1) + A101986(n-2). - Bui Quang Tuan, Apr 03 2015
For n > 0: a(n) = A258708(n+3,n-1). - Reinhard Zumkeller, Jun 23 2015
a(n) = A175254(n) + A072481(n), n >= 1. - Omar E. Pol, Aug 12 2015
a(n) = A000332(n+3) - A000332(n+1). - Antal Pinter, Dec 27 2015
Dirichlet g.f.: zeta(s-3)/3 + zeta(s-2)/2 + zeta(s-1)/6. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A080851(2,n-1). - R. J. Mathar, Jul 28 2016
a(n) = (A005408(n) * A046092(n))/12 = (2*n+1)*(2*n*(n+1))/12. - Bruce J. Nicholson, May 18 2017
12*a(n) = (n+1)*A001105(n) + n*A001105(n+1). - Bruno Berselli, Jul 03 2017
a(n) = binomial(n-1, 1) + binomial(n-1, 2) + binomial(n, 3) + binomial(n+1, 2) + binomial(n+1, 3). - Tony Foster III, Aug 24 2018
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Nathan Fox, Dec 04 2019
Let T(n) = A000217(n), the n-th triangular number. Then a(n) = (T(n)+1)^2 + (T(n)+2)^2 + ... + (T(n)+n)^2 - (n+2)*T(n)^2. - Charlie Marion, Dec 31 2019
a(n) = 2*n - 1 - a(n-2) + 2*a(n-1). - Boštjan Gec, Nov 09 2023
a(n) = 2/(2*n)! * Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j). Cf. A060493. - Peter Bala, Mar 31 2025

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A001157 a(n) = sigma_2(n): sum of squares of divisors of n.

Original entry on oeis.org

1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122, 210, 170, 250, 260, 341, 290, 455, 362, 546, 500, 610, 530, 850, 651, 850, 820, 1050, 842, 1300, 962, 1365, 1220, 1450, 1300, 1911, 1370, 1810, 1700, 2210, 1682, 2500, 1850, 2562, 2366, 2650, 2210, 3410, 2451, 3255
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
sigma_2(n) is the sum of the squares of the divisors of n.
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001.
Row sums of triangles A134575 and A134559. - Gary W. Adamson, Nov 02 2007
Also sum of square divisors of n^2. - Michel Marcus, Jan 14 2014
Conjecture: For each k = 2,3,..., all the rational numbers sigma_k(n)/n^k = Sum_{d|n} 1/d^k (n = 1,2,3,...) have pairwise distinct fractional parts. - Zhi-Wei Sun, Oct 15 2015
5 is the only prime entry in the sequence. - Drake Thomas, Dec 18 2016
4*a(n) = sum of squares of even divisors of 2*n. - Wolfdieter Lang, Jan 07 2017

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 827.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 11.
  • P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table I. The entry 53 should be 50. - N. J. A. Sloane, May 21 2014
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A192794, A082063 (gcd(a(n),n) and its largest prime factor); A179931, A192795 (gcd(a(n),A000203(n)) and largest prime factor).
Main diagonal of the array in A242639.
Cf. A333972 (Dgf at s=4).

Programs

  • Haskell
    a001157 n = s n 1 1 a000040_list where
       s 1 1 y _          = y
       s m x y ps'@(p:ps)
         | m `mod` p == 0 = s (m `div` p) (x * p^2) y ps'
         | x > 1          = s m 1 (y * (x * p^2 - 1) `div` (p^2 - 1)) ps
         | otherwise      = s m 1 y ps
    -- Reinhard Zumkeller, Jul 10 2011
    
  • Magma
    [DivisorSigma(2,n): n in [1..50]]; // Bruno Berselli, Apr 10 2013
    
  • Maple
    with(numtheory); A001157 := n->sigma[2](n); [seq(sigma[2](n), n=1..100)];
  • Mathematica
    Table[DivisorSigma[2, n], {n, 1, 50}] (* Stefan Steinerberger, Mar 24 2006 *)
    DivisorSigma[2,Range[50]] (* Harvey P. Dale, Aug 22 2016 *)
  • Maxima
    makelist(divsum(n,2),n,1,20); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    a(n)=if(n<1,0,sigma(n,2))
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)/(1-p^2*X))[n])
    
  • PARI
    a(n)=if(n<1,0,n*polcoeff(sum(k=1,n,x^k/(x^k-1)^2/k,x*O(x^n)),n)) /* Michael Somos, Jan 29 2005 */
    
  • PARI
    N=99; q='q+O('q^N); Vec(sum(n=1,N,n^2*q^n/(1-q^n)))  /* Joerg Arndt, Feb 04 2011 */
    
  • PARI
    a(n) = sumdiv(n^2, d, issquare(d)*d); \\ Michel Marcus, Jan 14 2014
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 2)
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Jan 05 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(2*e+2)-1)//(p**2-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
  • Sage
    [sigma(n,2)for n in range(1,51)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>0} k^2 x^k/(1-x^k). Dirichlet g.f.: zeta(s)*zeta(s-2). - Michael Somos, Apr 05 2003
Multiplicative with a(p^e) = (p^(2e+2)-1)/(p^2-1). - David W. Wilson, Aug 01 2001
G.f. for sigma_k(n): Sum_{m>0} m^k*x^m/(1-x^m). - Vladeta Jovovic, Oct 18 2002
L.g.f.: -log(Product_{j>=1} (1-x^j)^j) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Equals A127093 * [1, 2, 3, ...]. - Gary W. Adamson, May 10 2007
Equals A051731 * [1, 4, 9, 16, 25, ...]. A051731 * [1/1, 1/2, 1/3, 1/4, ...] = [1/1, 5/4, 10/9, 21/16, 26/25, ...]. - Gary W. Adamson, Nov 02 2007
Row sums of triangle A134841. - Gary W. Adamson, Nov 12 2007
a(n) = A035316(n^2). - Michel Marcus, Jan 14 2014
Conjecture: a(n) = sigma(n^2*rad(n))/sigma(rad(n)), where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 20 2017
G.f.: Sum_{k>=1} x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
a(n) = a(n/4) + A050461(n) + A076577(n/2) + A050465(n) where A(.) are zero for non-integer arguments. - R. J. Mathar, May 25 2020
Sum_{k>=1} 1/a(k) = A109694 = 1.53781289182725616253866100273826833091936004947322354929617689659426330445... - Vaclav Kotesovec, Sep 26 2020
G.f.: Sum_{n >= 1} q^(n^2)*(n^2 - ((n-1)^2 - 2)*q^n - ((n+1)^2 - 2)*q^(2*n) + n^2*q^(3*n))/(1 - q^n)^3 - apply the operator x*d/dx twice to equation 5 in Arndt and set x = 1. - Peter Bala, Jan 21 2021
From Vaclav Kotesovec, Aug 07 2022: (Start)
Sum_{k=1..n} a(k) = A064602(n) ~ zeta(3) * n^3 / 3.
Sum_{k=1..n} (-1)^k * a(k) ~ zeta(3) * n^3 / 24. (End)
a(n) = Sum_{1 <= i, j <= n} tau(gcd(i, j, n)) = Sum_{d divides n} tau(d) * J_2(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 22 2024

A003557 n divided by largest squarefree divisor of n; if n = Product p(k)^e(k) then a(n) = Product p(k)^(e(k)-1), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 1, 1, 16, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 32, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 5, 2, 1, 1, 1, 8, 27, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7
Offset: 1

Views

Author

Keywords

Comments

a(n) is the size of the Frattini subgroup of the cyclic group C_n - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 07 2001.
Also of the Frattini subgroup of the dihedral group with 2*n elements. - Sharon Sela (sharonsela(AT)hotmail.com), Jan 01 2002
Number of solutions to x^m==0 (mod n) provided that n < 2^(m+1), i.e. the sequence of sequences A000188, A000189, A000190, etc. converges to this sequence. - Henry Bottomley, Sep 18 2001
a(n) is the number of nilpotent elements in the ring Z/nZ. - Laszlo Toth, May 22 2009
The sequence of partial products of a(n) is A085056(n). - Peter Luschny, Jun 29 2009
The first occurrence of n in this sequence is at A064549(n). - Franklin T. Adams-Watters, Jul 25 2014
From Hal M. Switkay, Jul 03 2025: (Start)
For n > 1, a(n) is a proper divisor of n. Thus the sequence n, a(n), a(a(n)), ... eventually becomes 1. This yields a minimal factorization of n as a product of squarefree numbers (A005117), each factor dividing all larger factors, in a factorization that is conjugate to the minimal factorization of n as a product of prime powers (A000961), as follows.
Let f(n,0) = n, and let f(n,k) = a(f(n,k-1)) for k > 0. A051903(n) is the minimal value of k such that f(n,k) = 1. A051903(n) <= log(n)/log(2). Since n/a(n) = A007947(n) is always squarefree by definition, n is a product of squarefree factors in the form Product_{i=1..A051903(n)} [f(n,i-1)/f(n,i)].
The two factorizations correspond to conjugate partitions of bigomega(n) = A001222(n). (End)

Crossrefs

Cf. A007947, A062378, A062379, A064549, A300717 (Möbius transform), A326306 (inv. Möbius transf.), A328572.
Sequences that are multiples of this sequence (the other factor of a pointwise product is given in parentheses): A000010 (A173557), A000027 (A007947), A001615 (A048250), A003415 (A342001), A007434 (A345052), A057521 (A071773).
Cf. A082695 (Dgf at s=2), A065487 (Dgf at s=3).

Programs

  • Haskell
    a003557 n = product $ zipWith (^)
                          (a027748_row n) (map (subtract 1) $ a124010_row n)
    -- Reinhard Zumkeller, Dec 20 2013
    
  • Julia
    using Nemo
    function A003557(n)
        n < 4 && return 1
        q = prod([p for (p, e) ∈ Nemo.factor(fmpz(n))])
        return n == q ? 1 : div(n, q)
    end
    [A003557(n) for n in 1:90] |> println  # Peter Luschny, Feb 07 2021
  • Magma
    [(&+[(Floor(k^n/n)-Floor((k^n-1)/n)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Nov 02 2018
    
  • Maple
    A003557 := n -> n/ilcm(op(numtheory[factorset](n))):
    seq(A003557(n), n=1..98); # Peter Luschny, Mar 23 2011
    seq(n / NumberTheory:-Radical(n), n = 1..98); # Peter Luschny, Jul 20 2021
  • Mathematica
    Prepend[ Array[ #/Times@@(First[ Transpose[ FactorInteger[ # ] ] ])&, 100, 2 ], 1 ] (* Olivier Gérard, Apr 10 1997 *)
  • PARI
    a(n)=n/factorback(factor(n)[,1]) \\ Charles R Greathouse IV, Nov 17 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + X)/(1 - p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 20 2020
    
  • Python
    from sympy.ntheory.factor_ import core
    from sympy import divisors
    def a(n): return n / max(i for i in divisors(n) if core(i) == i)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 16 2017
    
  • Python
    from math import prod
    from sympy import primefactors
    def A003557(n): return n//prod(primefactors(n)) # Chai Wah Wu, Nov 04 2022
    
  • Sage
    def A003557(n) : return n*mul(1/p for p in prime_divisors(n))
    [A003557(n) for n in (1..98)] # Peter Luschny, Jun 10 2012
    

Formula

Multiplicative with a(p^e) = p^(e-1). - Vladeta Jovovic, Jul 23 2001
a(n) = n/rad(n) = n/A007947(n) = sqrt(J_2(n)/J_2(rad(n))), where J_2(n) is A007434. - Enrique Pérez Herrero, Aug 31 2010
a(n) = (J_k(n)/J_k(rad(n)))^(1/k), where J_k is the k-th Jordan Totient Function: (J_2 is A007434 and J_3 A059376). - Enrique Pérez Herrero, Sep 03 2010
Dirichlet convolution of A000027 and A097945. - R. J. Mathar, Dec 20 2011
a(n) = A000010(n)/|A023900(n)|. - Eric Desbiaux, Nov 15 2013
a(n) = Product_{k = 1..A001221(n)} (A027748(n,k)^(A124010(n,k)-1)). - Reinhard Zumkeller, Dec 20 2013
a(n) = Sum_{k=1..n}(floor(k^n/n)-floor((k^n-1)/n)). - Anthony Browne, May 11 2016
a(n) = e^[Sum_{k=2..n} (floor(n/k)-floor((n-1)/k))*(1-A010051(k))*Mangoldt(k)] where Mangoldt is the Mangoldt function. - Anthony Browne, Jun 16 2016
a(n) = Sum_{d|n} mu(d) * phi(d) * (n/d), where mu(d) is the Moebius function and phi(d) is the Euler totient function (rephrases formula of Dec 2011). - Daniel Suteu, Jun 19 2018
G.f.: Sum_{k>=1} mu(k)*phi(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Nov 02 2018
Dirichlet g.f.: Product_{primes p} (1 + 1/(p^s - p)). - Vaclav Kotesovec, Jun 24 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))*gcd(n,k).
a(n) = Sum_{k=1..n} mu(gcd(n,k))*(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = A001615(n)/A048250(n) = A003415/A342001(n) = A057521(n)/A071773(n). - Antti Karttunen, Jun 08 2021

Extensions

Secondary definition added to the name by Antti Karttunen, Jun 08 2021

A001615 Dedekind psi function: n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, 14, 24, 24, 24, 18, 36, 20, 36, 32, 36, 24, 48, 30, 42, 36, 48, 30, 72, 32, 48, 48, 54, 48, 72, 38, 60, 56, 72, 42, 96, 44, 72, 72, 72, 48, 96, 56, 90, 72, 84, 54, 108, 72, 96, 80, 90, 60, 144, 62, 96, 96, 96, 84, 144, 68, 108, 96
Offset: 1

Views

Author

Keywords

Comments

Number of primitive sublattices of index n in generic 2-dimensional lattice; also index of Gamma_0(n) in SL_2(Z).
A generic 2-dimensional lattice L = consists of all vectors of the form mV + nW, (m,n integers). A sublattice S = has index |ad-bc| and is primitive if gcd(a,b,c,d) = 1. The generic lattice L has precisely a(2) = 3 sublattices of index 2, namely <2V,W>, and (which = ) and so on for other indices.
The sublattices of index n are in 1-to-1 correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} = sigma(n), which is A000203. A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * product_{p|n} (1+1/p), which is the present sequence.
SL_2(Z) = Gamma is the group of all 2 X 2 matrices [a b; c d] where a,b,c,d are integers with ad-bc = 1 and Gamma_0(N) is usually defined as the subgroup of this for which N|c. But conceptually Gamma is best thought of as the group of (positive) automorphisms of a lattice , its typical element taking V -> aV + bW, W -> cV + dW and then Gamma_0(N) can be defined as the subgroup consisting of the automorphisms that fix the sublattice of index N. - J. H. Conway, May 05 2001
Dedekind proved that if n = k_i*j_i for i in I represents all the ways to write n as a product, and e_i=gcd(k_i,j_i), then a(n)= sum(k_i / (e_i * phi(e_i)), i in I ) [cf. Dickson, History of the Theory of Numbers, Vol. 1, p. 123].
Also a(n)= number of cyclic subgroups of order n in an Abelian group of order n^2 and type (1,1) (Fricke). - Len Smiley, Dec 04 2001
The polynomial degree of the classical modular equation of degree n relating j(z) and j(nz) is psi(n) (Fricke). - Michael Somos, Nov 10 2006; clarified by Katherine E. Stange, Mar 11 2022
The Mobius transform of this sequence is A063659. - Gary W. Adamson, May 23 2008
The inverse Mobius transform of this sequence is A060648. - Vladeta Jovovic, Apr 05 2009
The Dirichlet inverse of this sequence is A008836(n) * A048250(n). - Álvar Ibeas, Mar 18 2015
The Riemann Hypothesis is true if and only if a(n)/n - e^gamma*log(log(n)) < 0 for any n > 30. - Enrique Pérez Herrero, Jul 12 2011
The Riemann Hypothesis is also equivalent to another inequality, see the Sole and Planat link. - Thomas Ordowski, May 28 2017
An infinitary analog of this sequence is the sum of the infinitary divisors of n (see A049417). - Vladimir Shevelev, Apr 01 2014
Problem: are there composite numbers n such that n+1 divides psi(n)? - Thomas Ordowski, May 21 2017
The sum of divisors d of n such that n/d is squarefree. - Amiram Eldar, Jan 11 2019
Psi(n)/n is a new maximum for each primorial (A002110) [proof in link: Patrick Sole and Michel Planat, Proposition 1 page 2]. - Bernard Schott, May 21 2020
From Jianing Song, Nov 05 2022: (Start)
a(n) is the number of subgroups of C_n X C_n that are isomorphic to C_n, where C_n is the cyclic group of order n. Proof: the number of elements of order n in C_n X C_n is A007434(n) (they are the elements of the form (a,b) in C_n X C_n where gcd(a,b,n) = 1), and each subgroup isomorphic to C_n contains phi(n) generators, so the number of such subgroups is A007434(n)/phi(n) = a(n).
The total number of order-n subgroups of C_n X C_n is A000203(n). (End)

Examples

			Let L = <V,W> be a 2-dimensional lattice. The 6 primitive sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V+W,2W>, <2V,2W+V>. Compare A000203.
G.f. = x + 3*x^2 + 4*x^3 + 6*x^4 + 6*x^5 + 12*x^6 + 8*x^7 + 12*x^8 + 12*x^9 + ...
		

References

  • Tom Apostol, Intro. to Analyt. Number Theory, page 71, Problem 11, where this is called phi_1(n).
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 228.
  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 220.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other sequences that count lattices/sublattices: A000203 (with primitive condition removed), A003050 (hexagonal lattice instead), A003051, A054345, A160889, A160891.
Cf. A301594.
Cf. A063659 (Möbius transform), A082020 (average order), A156303 (Euler transform), A173290 (partial sums), A175836 (partial products), A203444 (range).
Cf. A210523 (record values).
Algebraic combinations with other core sequences: A000082, A033196, A175732, A291784, A344695.
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), this sequence (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).
Cf. A082695 (Dgf at s=3), A339925 (Dgf at s=4).

Programs

  • Haskell
    import Data.Ratio (numerator)
    a001615 n = numerator (fromIntegral n * (product $
                map ((+ 1) . recip . fromIntegral) $ a027748_row n))
    -- Reinhard Zumkeller, Jun 03 2013, Apr 12 2012
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[MoebiusMu(k)^2*x^k/(1-x^k)^2: k in [1..2*m]]) )); // G. C. Greubel, Nov 23 2018
    
  • Maple
    A001615 := proc(n) n*mul((1+1/i[1]),i=ifactors(n)[2]) end; # Mark van Hoeij, Apr 18 2012
  • Mathematica
    Join[{1}, Table[n Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]), {n, 2, 100}]] (* T. D. Noe, Jun 11 2006 *)
    Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 100}] (* Jan Mangaldan, Aug 22 2013 *)
    a[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}]; (* Michael Somos, Jan 10 2015 *)
    Table[n Product[1 + 1/p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 08 2021 *)
    Table[n DivisorSum[n, MoebiusMu[#]^2/# &], {n, 20}] (* Eric W. Weisstein, Mar 09 2025 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n])};
    
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv( n, d, moebius(d)^2 / d))}; /* Michael Somos, Nov 10 2006 */
    
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2] + f[i,1]^(f[i,2]-1)) \\ Charles R Greathouse IV, Aug 22 2013
    
  • PARI
    a(n) = n * sumdivmult(n, d, issquarefree(d)/d) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist) # Chai Wah Wu, Jun 03 2021
  • Sage
    def A001615(n) : return n*mul(1+1/p for p in prime_divisors(n))
    [A001615(n) for n in (1..69)] # Peter Luschny, Jun 10 2012
    

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s). - Michael Somos, May 19 2000
Multiplicative with a(p^e) = (p+1)*p^(e-1). - David W. Wilson, Aug 01 2001
a(n) = A003557(n)*A048250(n) = n*A000203(A007947(n))/A007947(n). - Labos Elemer, Dec 04 2001
a(n) = n*Sum_{d|n} mu(d)^2/d, Dirichlet convolution of A008966 and A000027. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2 * d. - Joerg Arndt, Jul 06 2011
From Enrique Pérez Herrero, Aug 22 2010: (Start)
a(n) = J_2(n)/J_1(n) = J_2(n)/phi(n) = A007434(n)/A000010(n), where J_k is the k-th Jordan Totient Function.
a(n) = (1/phi(n))*Sum_{d|n} mu(n/d)*d^(b-1), for b=3. (End)
a(n) = n / Sum_{d|n} mu(d)/a(d). - Enrique Pérez Herrero, Jun 06 2012
a(n^k)= n^(k-1) * a(n). - Enrique Pérez Herrero, Jan 05 2013
If n is squarefree, then a(n) = A049417(n) = A000203(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{d^2 | n} mu(d) * A000203(n/d^2). - Álvar Ibeas, Dec 20 2014
The average order of a(n) is 15*n/Pi^2. - Enrique Pérez Herrero, Jan 14 2012. See Apostol. - N. J. A. Sloane, Sep 04 2017
G.f.: Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 25 2018
a(n) = Sum_{d|n} 2^omega(d) * phi(n/d), Dirichlet convolution of A034444 and A000010. - Daniel Suteu, Mar 09 2019
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} 2^omega(gcd(n,k)).
a(n) = Sum_{k=1..n} 2^omega(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = abs(A158523(n)) = A158523(n) * A008836(n). - Enrique Pérez Herrero, Nov 07 2022
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^2). - Ridouane Oudra, Mar 26 2025

Extensions

More terms from Olivier Gérard, Aug 15 1997

A064987 a(n) = n*sigma(n).

Original entry on oeis.org

1, 6, 12, 28, 30, 72, 56, 120, 117, 180, 132, 336, 182, 336, 360, 496, 306, 702, 380, 840, 672, 792, 552, 1440, 775, 1092, 1080, 1568, 870, 2160, 992, 2016, 1584, 1836, 1680, 3276, 1406, 2280, 2184, 3600, 1722, 4032, 1892, 3696, 3510, 3312, 2256, 5952
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Comments

Dirichlet convolution of sigma_2(n)=A001157(n) with phi(n)=A000010(n). - Vladeta Jovovic, Oct 27 2002
Equals row sums of triangle A143311 and of triangle A143308. - Gary W. Adamson, Aug 06 2008
a(n) is also the sum of all n's present in A244580, or in other words, a(n) is also the volume (or number of cubes) below the terraces of the n-th level of the staircase described in A244580 (see also A237593). - Omar E. Pol, Oct 11 2018
If n is a superperfect number then sigma(n) is a Mersenne prime and a(n) is a perfect number, a(A019279(k)) = A000396(k), k >= 1, assuming there are no odd perfect numbers. - Omar E. Pol, Apr 15 2020

References

  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054. see page 43.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 166-167.

Crossrefs

Main diagonal of A319073.
Cf. A000203, A038040, A002618, A000010, A001157, A143308, A143311, A004009, A006352, A000594, A126832, A069097 (Mobius transform), A001001 (inverse Mobius transform), A237593, A244580.

Programs

  • GAP
    a:=List([1..50],n->n*Sigma(n));; Print(a); # Muniru A Asiru, Jan 01 2019
  • Haskell
    a064987 n = a000203 n * n  -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    [n*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jan 01 2019
    
  • Maple
    with(numtheory): [n*sigma(n)$n=1..50]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    # DivisorSigma[1,#]&/@Range[80]  (* Harvey P. Dale, Mar 12 2011 *)
  • MuPAD
    numlib::sigma(n)*n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if ( n==0, 0, n * sigma(n))}
    
  • PARI
    { for (n=1, 1000, write("b064987.txt", n, " ", n*sigma(n)) ) } \\ Harry J. Smith, Oct 02 2009
    

Formula

Multiplicative with a(p^e) = p^e * (p^(e+1) - 1) / (p - 1).
G.f.: Sum_{n>0} n^2*x^n/(1-x^n)^2. - Vladeta Jovovic, Oct 27 2002
G.f.: phi_{2, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}. - Michael Somos, Apr 02 2003
G.f. is also (Q - P^2) / 288 where P, Q are Ramanujan Lambert series. - Michael Somos, Apr 02 2003. See the Hardy reference, p. 136, eq. (10.5.4) (with a proof). For Q and P, (10.5.6) and (10.5.5), see E_4 A004009 and E_2 A006352, respectively. - Wolfdieter Lang, Jan 30 2017
Convolution of A000118 and A186690. Dirichlet convolution of A000027 and A000290. - Michael Somos, Mar 25 2012
Dirichlet g.f.: zeta(s-1)*zeta(s-2). - R. J. Mathar, Feb 16 2011
a(n) = A009194(n)*A009242(n). - Michel Marcus, Oct 23 2013
a(n) (mod 5) = A126832(n) = A000594(n) (mod 5). See A126832 for references. - Wolfdieter Lang, Feb 03 2017
L.g.f.: Sum_{k>=1} k*x^k/(1 - x^k) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 13 2017
Sum_{k>=1} 1/a(k) = 1.4383899259334187832765458631783591251241657856627653748389234270650138768... - Vaclav Kotesovec, Sep 20 2020
From Peter Bala, Jan 21 2021: (Start)
G.f.: Sum_{n >= 1} n*q^n*(1 + q^n)/(1 - q^n)^3 (use the expansion x*(1 + x)/(1 - x)^3 = x + 2^2*x^2 + 3^2*x^3 + 4^2*x^4 + ...).
A faster converging g.f.: Sum_{n >= 1} q^(n^2)*( n^3*q^(3*n) - (n^3 + 3*n^2 - n)*q^(2*n) - (n^3 - 3*n^2 - n)*q^n + n^3 )/(1 - q^n)^3 - differentiate equation 5 in Arndt w.r.t. both x and q and then set x = 1. (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} sigma_2(gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
From Peter Bala, Jan 22 2024: (Start)
a(n) = Sum_{1 <= j, k <= n} sigma_1( gcd(j, k, n) ).
a(n) = Sum_{d divides n} sigma_1(d)*J_2(n/d) = Sum_{d divides n} sigma_2(d)* phi(n/d), where the Jordan totient function J_2(n) = A007434(n). (End)

A059376 Jordan function J_3(n).

Original entry on oeis.org

1, 7, 26, 56, 124, 182, 342, 448, 702, 868, 1330, 1456, 2196, 2394, 3224, 3584, 4912, 4914, 6858, 6944, 8892, 9310, 12166, 11648, 15500, 15372, 18954, 19152, 24388, 22568, 29790, 28672, 34580, 34384, 42408, 39312, 50652, 48006, 57096
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059377 (J_4), A059378 (J_5), A069091 - A069095 (J_6 through J_10).

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 3)
    A059376 := proc(n)
        add(d^3*numtheory[mobius](n/d),d=numtheory[divisors](n)) ;
    end proc: # R. J. Mathar, Nov 03 2015
  • Mathematica
    JordanJ[n_, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 3]; Array[f, 39]
    f[p_, e_] := p^(3*e) - p^(3*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,120,print1(sumdiv(n,d,d^3*moebius(n/d)),","))
    
  • PARI
    for (n = 1, 1000, write("b059376.txt", n, " ", sumdiv(n, d, d^3*moebius(n/d))); ) \\ Harry J. Smith, Jun 26 2009
    
  • PARI
    seq(n) = dirmul(vector(n,k,k^3), vector(n,k,moebius(k)));
    seq(39)  \\ Gheorghe Coserea, May 11 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def A059376(n): return prod(p**(3*(e-1))*(p**3-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024

Formula

Multiplicative with a(p^e) = p^(3e) - p^(3e-3). - Vladeta Jovovic, Jul 26 2001
a(n) = Sum_{d|n} d^3*mu(n/d). - Benoit Cloitre, Apr 05 2002
Dirichlet generating function: zeta(s-3)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
A063453(n) divides a(n). - R. J. Mathar, Mar 30 2011
a(n) = Sum_{k=1..n} gcd(k,n)^3 * cos(2*Pi*k/n). - Enrique Pérez Herrero, Jan 18 2013
a(n) = n^3*Product_{distinct primes p dividing n} (1-1/p^3). - Tom Edgar, Jan 09 2015
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x*(1 + 4*x + x^2)/(1 - x)^4. - Ilya Gutkovskiy, Apr 25 2017
Sum_{d|n} a(d) = n^3. - Werner Schulte, Jan 12 2018
Sum_{k=1..n} a(k) ~ 45*n^4 / (2*Pi^4). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^3 = 1/zeta(4) (A215267).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^3/(p^3-1)^2) = 1.2253556451... (End)
O.g.f.: Sum_{n >= 1} mu(n)*x^n*(1 + 4*x^n + x^(2*n))/(1 - x^n)^4 = x + 7*x^2 + 26*x^3 + 56*x^4 + 124*x^5 + .... - Peter Bala, Jan 31 2022
From Peter Bala, Jan 01 2024: (Start)
a(n) = Sum_{d divides n} d * J_2(d) * phi(n/d) = Sum_{d divides n} d^2 * phi(d) * J_2(n/d), where J_2(n) = A007434(n).
a(n) = Sum_{k = 1..n} gcd(k, n) * J_2(gcd(k, n)) = Sum_{1 <= j, k <= n} gcd(j, k, n)^2 * J_1(gcd(j, k, n)). (End)
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i)*J_2(j) = Sum_{1 <= i, j, k <= n, lcm(i, j, k) = n} phi(i)*phi(j)*phi(k), where J_2(n) = A007434(n). - Peter Bala, Jan 29 2024

A082020 Decimal expansion of 15/Pi^2.

Original entry on oeis.org

1, 5, 1, 9, 8, 1, 7, 7, 5, 4, 6, 3, 5, 0, 6, 6, 5, 7, 1, 6, 5, 8, 1, 9, 1, 9, 4, 8, 1, 4, 5, 9, 1, 4, 5, 8, 3, 5, 6, 5, 3, 8, 1, 6, 2, 0, 0, 8, 3, 6, 9, 8, 2, 3, 2, 6, 8, 4, 1, 3, 5, 4, 7, 8, 4, 1, 2, 5, 9, 6, 8, 1, 4, 4, 3, 3, 5, 3, 1, 6, 1, 7, 8, 6, 8, 1, 3, 9, 1, 0, 8, 8, 8, 4, 3, 2, 7, 5, 6
Offset: 1

Views

Author

N. J. A. Sloane, May 09 2003

Keywords

Comments

3/(2*Pi^2) (the same decimal expansion with an offset 0) is the probability that the greatest common divisor of two numbers selected at random is 2 (Christopher, 1956). - Amiram Eldar, May 23 2020
Sum of 1/n^2 over all squarefree n, see Penn link. - Charles R Greathouse IV, Jan 01 2022
Equals the asymptotic mean of the abundancy index of the cubefree numbers (A004709) (Jakimczuk and Lalín, 2022). - Amiram Eldar, May 12 2023

Examples

			1.51981775463506657...
		

Crossrefs

Programs

Formula

Product_{n >= 1} (1+1/prime(n)^2) = 15/Pi^2 (Ramanujan).
Equals zeta(2)/zeta(4) = A013661/A013662 = Sum_{n>=1} mu(n)^2/n^2 = Sum_{n>=1} |mu(n)|/n^2 . - Enrique Pérez Herrero, Jan 15 2012
Equals Sum_{n>=1} 1/A005117(n)^2 . - Enrique Pérez Herrero, Mar 30 2012
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} psi(k)/k, where psi(k) is the Dedekind psi function (A001615). - Amiram Eldar, May 12 2019.
Equals Sum_{k>=1} A007434(k)/k^4. - Amiram Eldar, Jan 25 2024

A086242 Decimal expansion of the sum of 1/(p-1)^2 over all primes p.

Original entry on oeis.org

1, 3, 7, 5, 0, 6, 4, 9, 9, 4, 7, 4, 8, 6, 3, 5, 2, 8, 7, 9, 1, 7, 2, 5, 3, 1, 3, 0, 5, 2, 2, 4, 3, 9, 6, 9, 9, 1, 7, 9, 5, 9, 9, 9, 6, 0, 1, 7, 5, 3, 1, 7, 4, 5, 8, 7, 0, 9, 1, 8, 9, 3, 3, 5, 8, 9, 1, 2, 3, 5, 7, 1, 3, 1, 4, 1, 5, 5, 5, 2, 5, 5, 4, 2, 9, 9, 0, 7, 6, 5, 2, 4, 1, 6, 5, 8, 8, 1, 1, 4, 5, 2, 7, 6, 0, 6, 5, 7, 4, 4, 8, 0, 6, 5, 7, 4
Offset: 1

Views

Author

Eric W. Weisstein, Jul 13 2003

Keywords

Examples

			1.37506499474863528791725313052243969917959996017...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, pp. 94-98.

Crossrefs

Programs

  • Mathematica
    digits = 116; Np = NSum[(n-1)*PrimeZetaP[n], {n, 2, Infinity}, NSumTerms -> 3*digits, WorkingPrecision -> digits+10]; RealDigits[Np, 10, digits] // First (* Jean-François Alcover, Sep 02 2015 *)
  • PARI
    default(realprecision,256);
    (f(k)=return(sum(n=1,1024,moebius(n)/n*log(zeta(k*n)))));
    sum(k=2,1024,(k-1)*f(k)) /* Robert Gerbicz, Sep 12 2012 */
    
  • PARI
    sumeulerrat(1/(p-1)^2) \\ Amiram Eldar, Mar 19 2021

Formula

Equals Sum_{k>=2} (k-1)*primezeta(k). - Robert Gerbicz, Sep 12 2012
Equals lim_{n -> oo} A119686(n)/A334746(n). - Petros Hadjicostas, May 11 2020
Equals Sum_{k>=2} (J_2(k)-phi(k)) * log(zeta(k)) / k, where J_2 = A007434 and phi = A000010 (Jakimczuk, 2017). - Amiram Eldar, Mar 18 2024

Extensions

More digits copied from Cohen's paper by R. J. Mathar, Dec 05 2008
More terms from Robert Gerbicz, Sep 12 2012

A060648 Number of cyclic subgroups of the group C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 4, 5, 10, 7, 20, 9, 22, 17, 28, 13, 50, 15, 36, 35, 46, 19, 68, 21, 70, 45, 52, 25, 110, 37, 60, 53, 90, 31, 140, 33, 94, 65, 76, 63, 170, 39, 84, 75, 154, 43, 180, 45, 130, 119, 100, 49, 230, 65, 148, 95, 150, 55, 212, 91, 198, 105, 124, 61, 350, 63, 132, 153, 190
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 04 2001

Keywords

Comments

The group U(n) of units modulo n acts on the direct product (Z_n)^k by multiplication. The number g(n,k) of orbits of U(n) acting on Z/(n)^k is g(n,k) = (1/phi(n))*Sum(gcd(n,a-1)^k) where the sum is over a in U(n) and phi(n) is the Euler totient function. A060648 gives g(n,2). - W. Edwin Clark, Jul 20 2001
a(n) is also the number of orbits of length n for the map TxT (Cartesion product) where T is a map with one orbit of each length. - Thomas Ward, Apr 08 2009

Examples

			The cycle index of C_4 X C_4 is (x(1)^4 + x(2)^2 + 2*x(4))^2 = x(1)^8 + 2*x(1)^4*x(2)^2 + 4*x(1)^4*x(4) + x(2)^4 + 4*x(2)^2*x(4) + 4*x(4)^2 and C_4 X C_4 has 1 element of order 1, 3 elements of order 2 and 12 elements of order 4. So a(4) = 1/phi(1) + 3/phi(2) + 12/phi(4) = 10, where phi = Euler totient function, cf. A000010. - _Vladeta Jovovic_, Jul 05 2001
For a(4) the pairs (e,d) are (1,4),(2,4),(4,4),(4,2),(4,1) with gcds 1,2,4,2,1 resp. giving 10 in total. - _Thomas Ward_, Apr 08 2009
		

Crossrefs

Programs

  • Maple
    for n from 1 to 200 do:ans := 1:for i from 1 to nops(ifactors(n)[2]) do p := ifactors(n)[2][i][1]:e := ifactors(n)[2][i][2]:ans := ans*(p^(e+1)+p^e-2)/(p-1):od:printf(`%d,`,ans):od:
  • Mathematica
    Table[ Plus @@ Map[ Times @@ (EulerPhi /@ #)/EulerPhi[ LCM @@ # ] &, Flatten[ Outer[ {##} &, Divisors[ i ], Divisors[ i ] ], 1 ] ], {i, 1, 100} ]
    f[p_, e_] := (p^(e+1)+p^e-2)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
  • PARI
    a(n) = sumdiv(n, d,  2^omega(d)*(n/d) ); \\ Joerg Arndt, Sep 16 2012
  • Sage
    def A060648(n) :
        def dedekind_psi(n) : return n*mul(1+1/p for p in prime_divisors(n))
        return reduce(lambda x,y: x+y, [dedekind_psi(d) for d in divisors(n)])
    [A060648(n) for n in (1..64)]  # Peter Luschny, Sep 10 2012
    

Formula

a(n) is multiplicative: if the canonical factorization of n is the product of p^e(p) over primes then a(n) = product a(p^e(p)). If n = p^e, p prime, a(n) = (p^(e+1)+p^e-2)/(p-1).
a(n) = Sum_{i|n, j|n} phi(i)*phi(j)/phi(lcm(i, j)). - Vladeta Jovovic, Jul 07 2001
a(n) = Sum_{i|n, j|n} phi(gcd(i, j)).
a(n) = Sum_{d|n} phi(n/d)*tau(d^2).
a(n) = sum(d|n, sigma(d)*moebius(n/d)^2 ). - Benoit Cloitre, Sep 08 2002
Inverse Euler transform of A156302. - Vladeta Jovovic, Feb 14 2009
Moebius transform of A060724. - Vladeta Jovovic, Apr 05 2009
Also a(n) = (1/n)*Sum_{d|n} sigma(d)^2*moebius(n/d). - Vladeta Jovovic, Mar 31 2009
Inverse Moebius transform of A001615. - Vladeta Jovovic, Apr 05 2009
From Thomas Ward, Apr 08 2009: (Start)
a(n) = Sum_{lcm(e,d)=n} gcd(e,d).
Dirichlet g.f.: zeta(s)^2*zeta(s-1)/zeta(2s). (End)
For the proofs of these formulas see the papers of L. Toth.
a(n) = Sum_{d|n} psi(d), where psi is Dedekind's psi function A001615. - Peter Luschny, Sep 10 2012
a(n) = Sum_{d|n} 2^omega(d)*(n/d). - Peter Luschny, Sep 15 2012
Sum_{k=1..n} a(k) ~ (5/4) * n^2. - Amiram Eldar, Oct 19 2022
a(n) = Sum_{k=1..n} tau(gcd(n,k)^2). - Ridouane Oudra, Apr 10 2023
a(n) = Sum_{d divides n} J_2(d)/phi(d) = Sum_{1 <= i, j <= n} 1/phi(n/gcd(i,j,n)), where the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 23 2024

Extensions

More terms and additional comments from Vladeta Jovovic, Jul 05 2001
Previous Showing 11-20 of 107 results. Next