cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 360 results. Next

A001109 a(n)^2 is a triangular number: a(n) = 6*a(n-1) - a(n-2) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214, 46611179, 271669860, 1583407981, 9228778026, 53789260175, 313506783024, 1827251437969, 10650001844790, 62072759630771, 361786555939836, 2108646576008245, 12290092900109634, 71631910824649559, 417501372047787720
Offset: 0

Views

Author

Keywords

Comments

8*a(n)^2 + 1 = 8*A001110(n) + 1 = A055792(n+1) is a perfect square. - Gregory V. Richardson, Oct 05 2002
For n >= 2, A001108(n) gives exactly the positive integers m such that 1,2,...,m has a perfect median. The sequence of associated perfect medians is the present sequence. Let a_1,...,a_m be an (ordered) sequence of real numbers, then a term a_k is a perfect median if Sum_{j=1..k-1} a_j = Sum_{j=k+1..m} a_j. See Puzzle 1 in MSRI Emissary, Fall 2005. - Asher Auel, Jan 12 2006
(a(n), b(n)) where b(n) = A082291(n) are the integer solutions of the equation 2*binomial(b,a) = binomial(b+2,a). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de); comment revised by Michael Somos, Apr 07 2003
This sequence gives the values of y in solutions of the Diophantine equation x^2 - 8y^2 = 1. It also gives the values of the product xy where (x,y) satisfies x^2 - 2y^2 = +-1, i.e., a(n) = A001333(n)*A000129(n). a(n) also gives the inradius r of primitive Pythagorean triangles having legs whose lengths are consecutive integers, with corresponding semiperimeter s = a(n+1) = {A001652(n) + A046090(n) + A001653(n)}/2 and area rs = A029549(n) = 6*A029546(n). - Lekraj Beedassy, Apr 23 2003 [edited by Jon E. Schoenfield, May 04 2014]
n such that 8*n^2 = floor(sqrt(8)*n*ceiling(sqrt(8)*n)). - Benoit Cloitre, May 10 2003
For n > 0, ratios a(n+1)/a(n) may be obtained as convergents to continued fraction expansion of 3+sqrt(8): either successive convergents of [6;-6] or odd convergents of [5;1, 4]. - Lekraj Beedassy, Sep 09 2003
a(n+1) + A053141(n) = A001108(n+1). Generating floretion: - 2'i + 2'j - 'k + i' + j' - k' + 2'ii' - 'jj' - 2'kk' + 'ij' + 'ik' + 'ji' + 'jk' - 2'kj' + 2e ("jes" series). - Creighton Dement, Dec 16 2004
Kekulé numbers for certain benzenoids (see the Cyvin-Gutman reference). - Emeric Deutsch, Jun 19 2005
Number of D steps on the line y=x in all Delannoy paths of length n (a Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1)). Example: a(2)=6 because in the 13 (=A001850(2)) Delannoy paths of length 2, namely (DD), (D)NE, (D)EN, NE(D), NENE, NEEN, NDE, NNEE, EN(D), ENNE, ENEN, EDN and EENN, we have altogether six D steps on the line y=x (shown between parentheses). - Emeric Deutsch, Jul 07 2005
Define a T-circle to be a first-quadrant circle with integral radius that is tangent to the x- and y-axes. Such a circle has coordinates equal to its radius. Let C(0) be the T-circle with radius 1. Then for n > 0, define C(n) to be the smallest T-circle that does not intersect C(n-1). C(n) has radius a(n+1). Cf. A001653. - Charlie Marion, Sep 14 2005
Numbers such that there is an m with t(n+m)=2t(m), where t(n) are the triangular numbers A000217. For instance, t(20)=2*t(14)=210, so 6 is in the sequence. - Floor van Lamoen, Oct 13 2005
One half the bisection of the Pell numbers (A000129). - Franklin T. Adams-Watters, Jan 08 2006
Pell trapezoids: for n > 0, a(n) = (A000129(n-1)+A000129(n+1))*A000129(n)/2; see also A084158. - Charlie Marion, Apr 01 2006
Tested for 2 < p < 27: If and only if 2^p - 1 (the Mersenne number M(p)) is prime then M(p) divides a(2^(p-1)). - Kenneth J Ramsey, May 16 2006
If 2^p - 1 is prime then M(p) divides a(2^(p-1)-1). - Kenneth J Ramsey, Jun 08 2006; comment corrected by Robert Israel, Mar 18 2007
If 8*n+5 and 8*n+7 are twin primes then their product divides a(4*n+3). - Kenneth J Ramsey, Jun 08 2006
If p is an odd prime, then if p == 1 or 7 (mod 8), then a((p-1)/2) == 0 (mod p) and a((p+1)/2) == 1 (mod p); if p == 3 or 5 (mod 8), then a((p-1)/2) == 1 (mod p) and a((p+1)/2) == 0 (mod p). Kenneth J Ramsey's comment about twin primes follows from this. - Robert Israel, Mar 18 2007
a(n)*(a(n+b) - a(b-2)) = (a(n+1)+1)*(a(n+b-1) - a(b-1)). This identity also applies to any series a(0) = 0 a(1) = 1 a(n) = b*a(n-1) - a(n-2). - Kenneth J Ramsey, Oct 17 2007
For n < 0, let a(n) = -a(-n). Then (a(n+j) + a(k+j)) * (a(n+b+k+j) - a(b-j-2)) = (a(n+j+1) + a(k+j+1)) * (a(n+b+k+j-1) - a(b-j-1)). - Charlie Marion, Mar 04 2011
Sequence gives y values of the Diophantine equation: 0+1+2+...+x = y^2. If (a,b) and (c,d) are two consecutive solutions of the Diophantine equation: 0+1+2+...+x = y^2 with aMohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: 0+1+2+...+x = y^2 with p < r then r = 3*p+4*q+1 and s = 2*p+3*q+1. - Mohamed Bouhamida, Sep 02 2009
a(n)/A002315(n) converges to cos^2(Pi/8) (see A201488). - Gary Detlefs, Nov 25 2009
Binomial transform of A086347. - Johannes W. Meijer, Aug 01 2010
If x=a(n), y=A055997(n+1) and z = x^2+y, then x^4 + y^3 = z^2. - Bruno Berselli, Aug 24 2010
In general, if b(0)=1, b(1)=k and for n > 1, b(n) = 6*b(n-1) - b(n-2), then
for n > 0, b(n) = a(n)*k-a(n-1); e.g.,
for k=2, when b(n) = A038725(n), 2 = 1*2 - 0, 11 = 6*2 - 1, 64 = 35*2 - 6, 373 = 204*2 - 35;
for k=3, when b(n) = A001541(n), 3 = 1*3 - 0, 17 = 6*3 - 1; 99 = 35*3 - 6; 577 = 204*3 - 35;
for k=4, when b(n) = A038723(n), 4 = 1*4 - 0, 23 = 6*4 - 1; 134 = 35*4 - 6; 781 = 204*4 - 35;
for k=5, when b(n) = A001653(n), 5 = 1*5 - 0, 29 = 6*5 - 1; 169 = 35*5 - 6; 985 = 204*5 - 35.
- Charlie Marion, Dec 08 2010
See a Wolfdieter Lang comment on A001653 on a sequence of (u,v) values for Pythagorean triples (x,y,z) with x=|u^2-v^2|, y=2*u*v and z=u^2+v^2, with u odd and v even, generated from (u(0)=1,v(0)=2), the triple (3,4,5), by a substitution rule given there. The present a(n) appears there as b(n). The corresponding generated triangles have catheti differing by one length unit. - Wolfdieter Lang, Mar 06 2012
a(n)*a(n+2k) + a(k)^2 and a(n)*a(n+2k+1) + a(k)*a(k+1) are triangular numbers. Generalizes description of sequence. - Charlie Marion, Dec 03 2012
a(n)*a(n+2k) + a(k)^2 is the triangular square A001110(n+k). a(n)*a(n+2k+1) + a(k)*a(k+1) is the triangular oblong A029549(n+k). - Charlie Marion, Dec 05 2012
From Richard R. Forberg, Aug 30 2013: (Start)
The squares of a(n) are the result of applying triangular arithmetic to the squares, using A001333 as the "guide" on what integers to square, as follows:
a(2n)^2 = A001333(2n)^2 * (A001333(2n)^2 - 1)/2;
a(2n+1)^2 = A001333(2n+1)^2 * (A001333(2n+1)^2 + 1)/2. (End)
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,5}. - Milan Janjic, Jan 25 2015
Panda and Rout call these "balancing numbers" and note that the period of the sequence modulo a prime p is the same as that modulo p^2 when p = 13, 31, 1546463. But these are precisely the p in A238736 such that p^2 divides A000129(p - (2/p)), where (2/p) is a Jacobi symbol. In light of the above observation by Franklin T. Adams-Watters that the present sequence is one half the bisection of the Pell numbers, i.e., a(n) = A000129(2*n)/2, it follows immediately that modulo a fixed prime p, or any power thereof, the period of a(n) is half that of A000129(n). - John Blythe Dobson, Mar 06 2015
The triangular number = square number identity Tri((T(n, 3) - 1)/2) = S(n-1, 6)^2 with Tri, T, and S given in A000217, A053120 and A049310, is the special case k = 1 of the k-family of identities Tri((T(n, 2*k+1) - 1)/2) = Tri(k)*S(n-1, 2*(2*k+1))^2, k >= 0, n >= 0, with S(-1, x) = 0. For k=2 see A108741(n) for S(n-1, 10)^2. This identity boils down to the identities S(n-1, 2*x)^2 = (T(2*n, x) - 1)/(2*(x^2-1)) and 2*T(n, x)^2 - 1 = T(2*n, x) with x = 2*k+1. - Wolfdieter Lang, Feb 01 2016
a(2)=6 is perfect. For n=2*k, k > 0, k not equal to 1, a(n) is a multiple of a(2) and since every multiple (beyond 1) of a perfect number is abundant, then a(n) is abundant. sigma(a(4)) = 504 > 408 = 2*a(4). For n=2*k+1, k > 0, a(n) mod 10 = A000012(n), so a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. So for n=2k+1, k > 0, a(n) is deficient. sigma(a(5)) = 1260 < 2378 = 2*a(5). - Muniru A Asiru, Apr 14 2016
Behera & Panda call these the balancing numbers, and A001541 are the balancers. - Michel Marcus, Nov 07 2017
In general, a second-order linear recurrence with constant coefficients having a signature of (c,d) will be duplicated by a third-order recurrence having a signature of (x,c^2-c*x+d,-d*x+c*d). The formulas of Olivares and Bouhamida in the formula section which have signatures of (7,-7,1) and (5,5,-1), respectively, are specific instances of this general rule for x = 7 and x = 5. - Gary Detlefs, Jan 29 2021
Note that 6 is the largest triangular number in the sequence, because it is proved that 8 and 9 are the largest perfect powers which are consecutive (Catalan's conjecture). 0 and 1 are also in the sequence because they are also perfect powers and 0*1/2 = 0^2 and 8*9/2 = (2*3)^2. - Metin Sariyar, Jul 15 2021

Examples

			G.f. = x + 6*x^2 + 35*x^3 + 204*x^4 + 1189*x^5 + 6930*x^6 + 40391*x^7 + ...
6 is in the sequence since 6^2 = 36 is a triangular number: 36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8. - _Michael B. Porter_, Jul 02 2016
		

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, pp. 193, 197.
  • D. M. Burton, The History of Mathematics, McGraw Hill, (1991), p. 213.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 10.
  • P. Franklin, E. F. Beckenbach, H. S. M Coxeter, N. H. McCoy, K. Menger, and J. L. Synge, Rings And Ideals, No 8, The Carus Mathematical Monographs, The Mathematical Association of America, (1967), pp. 144-146.
  • A. Patra, G. K. Panda, and T. Khemaratchatakumthorn. "Exact divisibility by powers of the balancing and Lucas-balancing numbers." Fibonacci Quart., 59:1 (2021), 57-64; see B(n).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), this sequence (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    a:=[0,1];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Dec 18 2018
  • Haskell
    a001109 n = a001109_list !! n :: Integer
    a001109_list = 0 : 1 : zipWith (-)
       (map (* 6) $ tail a001109_list) a001109_list
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Magma
    [n le 2 select n-1 else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 25 2015
    
  • Maple
    a[0]:=1: a[1]:=6: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n],n=0..26); # Emeric Deutsch
    with (combinat):seq(fibonacci(2*n,2)/2, n=0..20); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{-1,6},#]}]&, {0,1}, 30]][[1]]  (* Harvey P. Dale, Mar 23 2011 *)
    CoefficientList[Series[x/(1-6x+x^2),{x,0,30}],x]  (* Harvey P. Dale, Mar 23 2011 *)
    LinearRecurrence[{6, -1}, {0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
    a[ n_]:= ChebyshevU[n-1, 3]; (* Michael Somos, Sep 02 2012 *)
    Table[Fibonacci[2n, 2]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
    TrigExpand@Table[Sinh[2 n ArcCsch[1]]/(2 Sqrt[2]), {n, 0, 10}] (* Federico Provvedi, Feb 01 2021 *)
  • PARI
    {a(n) = imag((3 + quadgen(32))^n)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = subst( poltchebi( abs(n+1)) - 3 * poltchebi( abs(n)), x, 3) / 8}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = polchebyshev( n-1, 2, 3)}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    is(n)=ispolygonal(n^2,3) \\ Charles R Greathouse IV, Nov 03 2016
    
  • Sage
    [lucas_number1(n,6,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n-1,3) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: x / (1 - 6*x + x^2). - Simon Plouffe in his 1992 dissertation.
a(n) = S(n-1, 6) = U(n-1, 3) with U(n, x) Chebyshev's polynomials of the second kind. S(-1, x) := 0. Cf. triangle A049310 for S(n, x).
a(n) = sqrt(A001110(n)).
a(n) = A001542(n)/2.
a(n) = sqrt((A001541(n)^2-1)/8) (cf. Richardson comment).
a(n) = 3*a(n-1) + sqrt(8*a(n-1)^2+1). - R. J. Mathar, Oct 09 2000
a(n) = A000129(n)*A001333(n) = A000129(n)*(A000129(n)+A000129(n-1)) = ceiling(A001108(n)/sqrt(2)). - Henry Bottomley, Apr 19 2000
a(n) ~ (1/8)*sqrt(2)*(sqrt(2) + 1)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 05 2002
a(n) = ((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n) / (4*sqrt(2)). - Gregory V. Richardson, Oct 13 2002. Corrected for offset 0, and rewritten. - Wolfdieter Lang, Feb 10 2015
a(2*n) = a(n)*A003499(n). 4*a(n) = A005319(n). - Mario Catalani (mario.catalani(AT)unito.it), Mar 21 2003
a(n) = floor((3+2*sqrt(2))^n/(4*sqrt(2))). - Lekraj Beedassy, Apr 23 2003
a(-n) = -a(n). - Michael Somos, Apr 07 2003
For n >= 1, a(n) = Sum_{k=0..n-1} A001653(k). - Charlie Marion, Jul 01 2003
For n > 0, 4*a(2*n) = A001653(n)^2 - A001653(n-1)^2. - Charlie Marion, Jul 16 2003
For n > 0, a(n) = Sum_{k = 0..n-1}((2*k+1)*A001652(n-1-k)) + A000217(n). - Charlie Marion, Jul 18 2003
a(2*n+1) = a(n+1)^2 - a(n)^2. - Charlie Marion, Jan 12 2004
a(k)*a(2*n+k) = a(n+k)^2 - a(n)^2; e.g., 204*7997214 = 40391^2 - 35^2. - Charlie Marion, Jan 15 2004
For j < n+1, a(k+j)*a(2*n+k-j) - Sum_{i = 0..j-1} a(2*n-(2*i+1)) = a(n+k)^2 - a(n)^2. - Charlie Marion, Jan 18 2004
From Paul Barry, Feb 06 2004: (Start)
a(n) = A000129(2*n)/2;
a(n) = ((1+sqrt(2))^(2*n) - (1-sqrt(2))^(2*n))*sqrt(2)/8;
a(n) = Sum_{i=0..n} Sum_{j=0..n} A000129(i+j)*n!/(i!*j!*(n-i-j)!)/2. (End)
E.g.f.: exp(3*x)*sinh(2*sqrt(2)*x)/(2*sqrt(2)). - Paul Barry, Apr 21 2004
A053141(n+1) + A055997(n+1) = A001541(n+1) + a(n+1). - Creighton Dement, Sep 16 2004
a(n) = Sum_{k=0..n} binomial(2*n, 2*k+1)*2^(k-1). - Paul Barry, Oct 01 2004
a(n) = A001653(n+1) - A038723(n); (a(n)) = chuseq[J]( 'ii' + 'jj' + .5'kk' + 'ij' - 'ji' + 2.5e ), apart from initial term. - Creighton Dement, Nov 19 2004, modified by Davide Colazingari, Jun 24 2016
a(n+1) = Sum_{k=0..n} A001850(k)*A001850(n-k), self convolution of central Delannoy numbers. - Benoit Cloitre, Sep 28 2005
a(n) = 7*(a(n-1) - a(n-2)) + a(n-3), a(1) = 0, a(2) = 1, a(3) = 6, n > 3. Also a(n) = ( (1 + sqrt(2) )^(2*n) - (1 - sqrt(2) )^(2*n) ) / (4*sqrt(2)). - Antonio Alberto Olivares, Oct 23 2003
a(n) = 5*(a(n-1) + a(n-2)) - a(n-3). - Mohamed Bouhamida, Sep 20 2006
Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(a(n-1),3), see second formula. - Marcos Carreira, Dec 27 2006
The perfect median m(n) can be expressed in terms of the Pell numbers P() = A000129() by m(n) = P(n + 2) * (P(n + 2) + P(n + 1)) for n >= 0. - Winston A. Richards (ugu(AT)psu.edu), Jun 11 2007
For k = 0..n, a(2*n-k) - a(k) = 2*a(n-k)*A001541(n). Also, a(2*n+1-k) - a(k) = A002315(n-k)*A001653(n). - Charlie Marion, Jul 18 2007
[A001653(n), a(n)] = [1,4; 1,5]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = Sum_{k=0..n-1} 4^k*binomial(n+k,2*k+1). - Paul Barry, Apr 20 2009
a(n+1)^2 - 6*a(n+1)*a(n) + a(n)^2 = 1. - Charlie Marion, Dec 14 2010
a(n) = A002315(m)*A011900(n-m-1) + A001653(m)*A001652(n-m-1) - a(m) = A002315(m)*A053141(n-m-1) + A001653(m)*A046090(n-m-1) + a(m) with m < n; otherwise a(n) = A002315(m)*A053141(m-n) - A001653(m)*A011900(m-n) + a(m) = A002315(m)*A053141(m-n) - A001653(m)*A046090(m-n) - a(m) = (A002315(n) - A001653(n))/2. - Kenneth J Ramsey, Oct 12 2011
16*a(n)^2 + 1 = A056771(n). - James R. Buddenhagen, Dec 09 2011
A010054(A000290(a(n))) = 1. - Reinhard Zumkeller, Dec 17 2011
In general, a(n+k)^2 - A003499(k)*a(n+k)*a(n) + a(n)^2 = a(k)^2. - Charlie Marion, Jan 11 2012
a(n+1) = Sum_{k=0..n} A101950(n,k)*5^k. - Philippe Deléham, Feb 10 2012
PSUM transform of a(n+1) is A053142. PSUMSIGN transform of a(n+1) is A084158. BINOMIAL transform of a(n+1) is A164591. BINOMIAL transform of A086347 is a(n+1). BINOMIAL transform of A057087(n-1). - Michael Somos, May 11 2012
a(n+k) = A001541(k)*a(n) + sqrt(A132592(k)*a(n)^2 + a(k)^2). Generalizes formula dated Oct 09 2000. - Charlie Marion, Nov 27 2012
a(n) + a(n+2*k) = A003499(k)*a(n+k); a(n) + a(n+2*k+1) = A001653(k+1)*A002315(n+k). - Charlie Marion, Nov 29 2012
From Peter Bala, Dec 23 2012: (Start)
Product_{n >= 1} (1 + 1/a(n)) = 1 + sqrt(2).
Product_{n >= 2} (1 - 1/a(n)) = (1/3)*(1 + sqrt(2)). (End)
G.f.: G(0)*x/(2-6*x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
G.f.: H(0)*x/2, where H(k) = 1 + 1/( 1 - x*(6-x)/(x*(6-x) + 1/H(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 18 2014
a(n) = (a(n-1)^2 - a(n-3)^2)/a(n-2) + a(n-4) for n > 3. - Patrick J. McNab, Jul 24 2015
a(n-k)*a(n+k) + a(k)^2 = a(n)^2, a(n+k) + a(n-k) = A003499(k)*a(n), for n >= k >= 0. - Alexander Samokrutov, Sep 30 2015
Dirichlet g.f.: (PolyLog(s,3+2*sqrt(2)) - PolyLog(s,3-2*sqrt(2)))/(4*sqrt(2)). - Ilya Gutkovskiy, Jun 27 2016
4*a(n)^2 - 1 = A278310(n) for n > 0. - Bruno Berselli, Nov 24 2016
From Klaus Purath, Jan 18 2020: (Start)
a(n) = (a(n-3) + a(n+3))/198.
a(n) = Sum_{i=1..n} A001653(i), n>=1.
a(n) = sinh( 2 * n * arccsch(1) ) / ( 2 * sqrt(2) ). - Federico Provvedi, Feb 01 2021
(End)
a(n) = A002965(2*n)*A002965(2*n+1). - Jon E. Schoenfield, Jan 08 2022
a(n) = A002965(4*n)/2. - Gerry Martens, Jul 14 2023
a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1)*binomial(n+k, 2*k+1)*8^k. - Peter Bala, Jul 17 2023

Extensions

Additional comments from Wolfdieter Lang, Feb 10 2000
Duplication of a formula removed by Wolfdieter Lang, Feb 10 2015

A016116 a(n) = 2^floor(n/2).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Powers of 2 doubled up. The usual OEIS policy is to omit the duplicates in such cases (when this would become A000079). This is an exception.
Number of symmetric compositions of n: e.g., 5 = 2+1+2 = 1+3+1 = 1+1+1+1+1 so a(5) = 4; 6 = 3+3 = 2+2+2 = 1+4+1 = 2+1+1+2 = 1+2+2+1 = 1+1+2+1+1 = 1+1+1+1+1+1 so a(6) = 8. - Henry Bottomley, Dec 10 2001
This sequence is the number of digits of each term of A061519. - Dmitry Kamenetsky, Jan 17 2009
Starting with offset 1 = binomial transform of [1, 1, -1, 3, -7, 17, -41, ...]; where A001333 = (1, 1, 3, 7, 17, 41, ...). - Gary W. Adamson, Mar 25 2009
a(n+1) is the number of symmetric subsets of [n]={1,2,...,n}. A subset S of [n] is symmetric if k is an element of S implies (n-k+1) is an element of S. - Dennis P. Walsh, Oct 27 2009
INVERT and inverse INVERT transforms give A006138, A039834(n-1).
The Kn21 sums, see A180662, of triangle A065941 equal the terms of this sequence. - Johannes W. Meijer, Aug 15 2011
First differences of A027383. - Jason Kimberley, Nov 01 2011
Run lengths in A079944. - Jeremy Gardiner, Nov 21 2011
Number of binary palindromes (A006995) between 2^(n-1) and 2^n (for n>1). - Hieronymus Fischer, Feb 17 2012
Pisano period lengths: 1, 1, 4, 1, 8, 4, 6, 1, 12, 8, 20, 4, 24, 6, 8, 1, 16, 12, 36, 8, ... . - R. J. Mathar, Aug 10 2012
Range of row n of the Circular Pascal array of order 4. - Shaun V. Ault, May 30 2014
a(n) is the number of permutations of length n avoiding both 213 and 312 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Also, the decimal representation of the diagonal from the origin to the corner (and from the corner to the origin except for the initial term) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 190", based on the 5-celled von Neumann neighborhood when initialized with a single black (ON) cell at stage zero. - Robert Price, May 10 2017
a(n + 1) + n - 1, n > 0, is the number of maximal subsemigroups of the monoid of partial order-preserving or -reversing mappings on a set with n elements. See the East et al. link. - James Mitchell and Wilf A. Wilson, Jul 21 2017
Number of symmetric stairs with n cells. A stair is a snake polyomino allowing only two directions for adjacent cells: east and north. See A005418. - Christian Barrientos, May 11 2018
For n >= 4, a(n) is the exponent of the group of the Gaussian integers in a reduced system modulo (1+i)^(n+2). See A302254. - Jianing Song, Jun 27 2018
a(n) is the number of length-(n+1) binary sequences, denoted , with s(1)=1 and with s(i+1)=s(i) for odd i. - Dennis P. Walsh, Sep 06 2018
a(n+1) is the number of subsets of {1,2,..,n} in which all differences between successive elements of subsets are even. For example, for n = 7, a(6) = 8 and the 8 subsets are {7}, {1,7}, {3,7}, {5,7}, {1,3,7}, {1,5,7}, {3,5,7}, {1,3,5,7}. For odd differences between elements see Comment in A000045 (Fibonacci numbers). - Enrique Navarrete, Jul 01 2020
Also, the number of walks of length n on the graph x--y--z, starting at x. - Sean A. Irvine, May 30 2025

Examples

			For n=5 the a(5)=4 symmetric subsets of [4] are {1,4}, {2,3}, {1,2,3,4} and the empty set. - _Dennis P. Walsh_, Oct 27 2009
For n=5 the a(5)=4 length-6 binary sequences are <1,1,0,0,0,0>, <1,1,0,0,1,1>, <1,1,1,1,0,0> and <1,1,1,1,1,1>. - _Dennis P. Walsh_, Sep 06 2018
		

Crossrefs

a(n) = A094718(3, n).
Cf. A001333.
See A052955 for partial sums (without the initial term).
A000079 gives the odd-indexed terms of a(n).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

Formula

a(n) = a(n-1)*a(n-2)/a(n-3) = 2*a(n-2) = 2^A004526(n).
G.f.: (1+x)/(1-2*x^2).
a(n) = (1/2 + sqrt(1/8))*sqrt(2)^n + (1/2 - sqrt(1/8))*(-sqrt(2))^n. - Ralf Stephan, Mar 11 2003
E.g.f.: cosh(sqrt(2)*x) + sinh(sqrt(2)*x)/sqrt(2). - Paul Barry, Jul 16 2003
The signed sequence (-1)^n*2^floor(n/2) has a(n) = (sqrt(2))^n(1/2 - sqrt(2)/4) + (-sqrt(2))^n(1/2 + sqrt(2)/4). It is the inverse binomial transform of A000129(n-1). - Paul Barry, Apr 21 2004
Diagonal sums of A046854. a(n) = Sum_{k=0..n} binomial(floor(n/2), k). - Paul Barry, Jul 07 2004
a(n) = a(n-2) + 2^floor((n-2)/2). - Paul Barry, Jul 14 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), floor(k/2)). - Paul Barry, Jul 15 2004
E.g.f.: cosh(asinh(1) + sqrt(2)*x)/sqrt(2). - Michael Somos, Feb 28 2005
a(n) = Sum_{k=0..n} A103633(n,k). - Philippe Deléham, Dec 03 2006
a(n) = 2^(n/2)*((1 + (-1)^n)/2 + (1-(-1)^n)/(2*sqrt(2))). - Paul Barry, Nov 12 2009
a(n) = 2^((2*n - 1 + (-1)^n)/4). - Luce ETIENNE, Sep 20 2014

A002203 Companion Pell numbers: a(n) = 2*a(n-1) + a(n-2), a(0) = a(1) = 2.

Original entry on oeis.org

2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, 94642, 228486, 551614, 1331714, 3215042, 7761798, 18738638, 45239074, 109216786, 263672646, 636562078, 1536796802, 3710155682, 8957108166, 21624372014, 52205852194, 126036076402, 304278004998
Offset: 0

Views

Author

Keywords

Comments

Also the number of matchings (independent edge sets) of the n-sunlet graph. - Eric W. Weisstein, Mar 09 2016
Apart from first term, same as A099425. - Peter Shor, May 12 2005
The signed sequence 2, -2, 6, -14, 34, -82, 198, -478, 1154, -2786, ... is the Lucas V(-2,-1) sequence. - R. J. Mathar, Jan 08 2013
Also named "Pell-Lucas numbers", apparently by Hoggatt and Alexanderson (1976), after the English mathematician John Pell (1611-1685) and the French mathematician Édouard Lucas (1842-1891). - Amiram Eldar, Oct 02 2023

References

  • Paul Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 76.
  • M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 43.
  • Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 3.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 61.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001333 (half), A302946 (squared).
Bisections are A003499 and A077444.

Programs

  • Haskell
    a002203 n = a002203_list !! n
    a002203_list =
       2 : 2 : zipWith (+) (map (* 2) $ tail a002203_list) a002203_list
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Magma
    I:=[2,2]; [n le 2 select I[n] else 2*Self(n-1)+Self(n-2): n in [1..35]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A002203 := proc(n)
        option remember;
        if n <= 1 then
            2;
        else
            2*procname(n-1)+procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, May 11 2013
    # second Maple program:
    a:= n-> (<<0|1>, <1|2>>^n. <<2, 2>>)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 26 2018
    a := n -> 2*I^n*ChebyshevT(n, -I):
    seq(simplify(a(n)), n = 0..30);  # Peter Luschny, Dec 03 2023
  • Mathematica
    Table[LucasL[n, 2], {n, 0, 30}] (* Zerinvary Lajos, Jul 09 2009 *)
    LinearRecurrence[{2, 1}, {2, 2}, 50] (* Vincenzo Librandi, Aug 15 2015 *)
    Table[(1 - Sqrt[2])^n + (1 + Sqrt[2])^n, {n, 0, 20}] // Expand (* Eric W. Weisstein, Oct 03 2017 *)
    LucasL[Range[0, 20], 2] (* Eric W. Weisstein, Oct 03 2017 *)
    CoefficientList[Series[(2 (1 - x))/(1 - 2 x - x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)
  • PARI
    first(m)=my(v=vector(m));v[1]=2;v[2]=2;for(i=3,m,v[i]=2*v[i-1]+v[i-2]);v; \\ Anders Hellström, Aug 15 2015
    
  • PARI
    a(n) = my(w=quadgen(8)); (1+w)^n + (1-w)^n; \\ Michel Marcus, Jun 17 2021
  • Sage
    [lucas_number2(n,2,-1) for n in range(0, 29)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = 2 * A001333(n).
a(n) = A100227(n) + 1.
O.g.f.: (2 - 2*x)/(1 - 2*x - x^2). - Simon Plouffe in his 1992 dissertation
a(n) = (1 + sqrt(2))^n + (1 - sqrt(2))^n. - Mario Catalani (mario.catalani(AT)unito.it), Mar 17 2003
a(n) = A000129(2*n)/A000129(n), n > 0. - Paul Barry, Feb 06 2004
From Miklos Kristof, Mar 19 2007: (Start)
Given F(n) = A000129(n), the Pell numbers, and L(n) = a(n), then:
L(n+m) + (-1)^m*L(n-m) = L(n)*L(m).
L(n+m) - (-1)^m*L(n-m) = 8*F(n)*F(m).
L(n+m+k) + (-1)^k*L(n+m-k) + (-1)^m*(L(n-m+k) + (-1)^k*L(n-m-k)) = L(n)*L(m)*L(k).
L(n+m+k) - (-1)^k*L(n+m-k) + (-1)^m*(L(n-m+k) - (-1)^k*L(n-m-k)) = 8*F(n)*L(m)*F(k).
L(n+m+k) + (-1)^k*L(n+m-k) - (-1)^m*(L(n-m+k) + (-1)^k*L(n-m-k)) = 8*F(n)*F(m)*L(k).
L(n+m+k) - (-1)^k*L(n+m-k) - (-1)^m*(L(n-m+k) - (-1)^k*L(n-m-k)) = 8*L(n)*F(m)*F(k).
(End)
a(n) = 2*(A000129(n+1) - A000129(n)). - R. J. Mathar, Nov 16 2007
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(2*k - 1)/(x*(2*k + 1) - 1/G(k + 1))); (continued fraction). - Sergei N. Gladkovskii, Jun 19 2013
a(n) = [x^n] ( (1 + 2*x + sqrt(1 + 4*x + 8*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
From Kai Wang, Jan 14 2020: (Start)
A000129(m - n) = (-1)^n * (A000129(m) * a(n) - a(m) * A000129(n))/2.
A000129(m + n) = (A000129(m) * a(n) + a(m)*A000129(n))/2.
a(n)^2 - a(n + 1) * a(n - 1) = (-1)^(n) * 8.
a(n)^2 - a(n + r) * a(n - r) = (-1)^(n - r - 1) * 8 * A000129(r)^2.
a(m) * a(n + 1) - a(m + 1) * a(n) = (-1)^(n - 1) * 8 * A000129(m - n).
a(m - n) = (-1)^(n) * (a(m) * a(n) - 8 * A000129(m) * A000129(n))/2.
a(m + n) = (a(m) * a(n) + 8 * A000129(m) * A000129(n))/2.
(End)
E.g.f.: 2*exp(x)*cosh(sqrt(2)*x). - Stefano Spezia, Jan 15 2020
a(n) = A000129(n+1) + A000129(n-1) for n>0 with a(0)=2. - Rigoberto Florez, Jul 12 2020
a(n) = (-1)^n * (a(n)^3 - a(3*n))/3. - Greg Dresden, Jun 16 2021
a(n) = (a(n+2) + a(n-2))/6 for n >= 2. - Greg Dresden, Jun 23 2021
From Greg Dresden and Tongjia Rao, Sep 09 2021: (Start)
a(3n+2)/a(3n-1) = [14, ..., 14, -3] with (n+1) 14's.
a(3n+3)/a( 3n ) = [14, ..., 14, 7] with n 14's.
a(3n+4)/a(3n+1) = [14, ..., 14, 17] with n 14's. (End)
From Peter Bala, Nov 16 2022: (Start)
a(n) = trace([2, 1; 1, 0]^n) for n >= 1.
The Gauss congruences hold: a(n*p^k) == a(n*p^(k-1)) (mod p^k) for all positive integers n and k and all primes p.
a(3^n) == A271222(n) (mod 3^n). (End)
Sum_{n>=1} arctan(2/a(n))*arctan(2/a(n+1)) = Pi^2/32 (A244854) (Ohtsuka, 2019). - Amiram Eldar, Feb 11 2024
From Peter Bala, Jul 09 2025: (Start)
The following series telescope (Cf. A000032):
For k >= 1, Sum_{n >= 1} (-1)^((k+1)*(n+1)) * a(2*n*k)/(a((2*n-1)*k)*a((2*n+1)*k)) = 1/a(k)^2.
For positive even k, Sum_{n >= 1} 1/(a(k*n) - (a(k) + 2)/a(k*n)) = 1/(a(k) - 2) and
Sum_{n >= 1} (-1)^(n+1)/(a(k*n) + (a(k) - 2)/a(k*n)) = 1/(a(k) + 2).
For positive odd k, Sum_{n >= 1} 1/(a(k*n) - (-1)^n*(a(2*k) + 2)/a(k*n)) = (a(k) + 2)/(2*(a(2*k) - 2)) and
Sum_{n >= 1} (-1)^(n+1)/(a(k*n) - (-1)^n*(a(2*k) + 2)/a(k*n)) = (a(k) - 2)/(2*(a(2*k) - 2)). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 03 2001

A001652 a(n) = 6*a(n-1) - a(n-2) + 2 with a(0) = 0, a(1) = 3.

Original entry on oeis.org

0, 3, 20, 119, 696, 4059, 23660, 137903, 803760, 4684659, 27304196, 159140519, 927538920, 5406093003, 31509019100, 183648021599, 1070379110496, 6238626641379, 36361380737780, 211929657785303, 1235216565974040, 7199369738058939, 41961001862379596, 244566641436218639
Offset: 0

Views

Author

Keywords

Comments

Consider all Pythagorean triples (X, X+1, Z) ordered by increasing Z; sequence gives X values.
Numbers n such that triangular number t(n) (see A000217) = n(n+1)/2 is a product of two consecutive integers (cf. A097571).
Members of Diophantine pairs. Solution to a*(a+1) = 2*b*(b+1) in natural numbers including 0; a = a(n), b = b(n) = A053141(n); The solution of a special case of a binomial problem of H. Finner and K. Strassburger (strass(AT)godot.dfi.uni-duesseldorf.de).
The index of all triangular numbers T(a(n)) for which 4T(n)+1 is a perfect square.
The three sequences x (A001652), y (A046090) and z (A001653) may be obtained by setting u and v equal to the Pell numbers (A000129) in the formulas x = 2uv, y = u^2 - v^2, z = u^2 + v^2 [Joseph Wiener and Donald Skow]. - Antonio Alberto Olivares, Dec 22 2003
All Pythagorean triples {X(n), Y(n)=X(n)+1, Z(n)} with X M*W(n), where W(n)=transpose of vector [X(n) Y(n) Z(n)] and M a 3 X 3 matrix given by [2 1 2 / 1 2 2 / 2 2 3]. - Lekraj Beedassy, Aug 14 2006
Let b(n) = A053141 then a(n)*b(n+1) = b(n)*a(n+1) + b(n). - Kenneth J Ramsey, Sep 22 2007
In general, if b(n) = A053141(n), then a(n)*b(n+k) = a(n+k)*b(n)+b(k); e.g., 3*84 = 119*2+14; 3*2870 = 4059*2+492; 20*2870 = 5741*14+84. - Charlie Marion, Nov 19 2007
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2) = A156035. - Klaus Brockhaus, Feb 17 2009
If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q+1) are perfect squares. If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q)/8 are perfect squares. If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X+1)^2 = Y^2 with pMohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X + 1)^2 = y^2 with pMohamed Bouhamida, Sep 02 2009
a(n+k) = A001541(k)*a(n) + A001542(k)*A001653(n+1) + A001108(k). - Charlie Marion, Dec 10 2010
The numbers 3*A001652 = (0, 9, 60, 357, 2088, 12177, 70980, ...) are all the nonnegative values of X such that X^2 + (X+3)^2 = Z^2 (Z is in A075841). - Bruno Berselli, Aug 26 2010
Let T(n) = n*(n+1)/2 (the n-th triangular number). For n > 0,
T(a(n) + 2*k*A001653(n+1)) = 2*T(A053141(n-1) + k*A002315(n)) + k^2 and
T(a(n) + (2*k+1)*A001653(n+1)) = (A001109(n+1) + k*A002315(n))^2 + k*(k+1).
Also (a(n) + k*A001653(n))^2 + (a(n) + k*A001653(n) + 1)^2 = (A001653(n+1) + k*A002315(n))^2 + k^2. - Charlie Marion, Dec 09 2010
For n>0, A143608(n) divides a(n). - Kenneth J Ramsey, Jun 28 2012
Set a(n)=p; a(n)+1=q; the generated triple x=p^2+pq; y=q^2+pq; k=p^2+q^2 satisfies x^2+y^2=k(x+y). - Carmine Suriano, Dec 17 2013
The arms of the triangle are found with (b(n),c(n)) for 2*b(n)*c(n) and c(n)^2 - b(n)^2. Let b(1) = 1 and c(1) = 2, then b(n) = c(n-1) and c(n) = 2*c(n-1) + b(n-1). Alternatively, b(n) = c(n-1) and c(n) equals the nearest integer to b(n)*(1+sqrt(2)). - J. M. Bergot, Oct 09 2014
Conjecture: For n>1 a(n) is the index of the first occurrence of n in sequence A123737. - Vaclav Kotesovec, Jun 02 2015
Numbers m such that Product_{k=1..m} (4*k^4+1) is a square (see A274307). - Chai Wah Wu, Jun 21 2016
Numbers m such that m^2+(m+1)^2 is a square. - César Aguilera, Aug 14 2017
For integers a and d, let P(a,d,1) = a, P(a,d,2) = a+d, and, for n>2, P(a,d,n) = 2*P(a,d,n-1) + P(a,d,n-2). Further, let p(n) = Sum_{i=1..2n} P(a,d,i). Then p(n)^2 + (p(n)+d)^2 + a^2 = P(a,d,2n+1)^2 + d^2. When a = 1 and d = 1, p(n) = a(n) and P(a,d,n) = A000129(n), the n-th Pell number. - Charlie Marion, Dec 08 2018
The terms of this sequence satisfy the Diophantine equation k^2 + (k+1)^2 = m^2, which is equivalent to (2k+1)^2 - 2*m^2 = -1. Now, with x=2k+1 and y=m, we get the Pell-Fermat equation x^2 - 2*y^2 = -1. The solutions (x,y) of this equation are respectively in A002315 and A001653. The relation k = (x-1)/2 explains Lekraj Beedassy's Nov 25 2003 formula. Thus, the corresponding numbers m = y, which express the length of the hypotenuse of these right triangles (k,k+1,m) are in A001653. - Bernard Schott, Mar 10 2019
Members of Diophantine pairs. Related to solutions of p^2 = 2q^2 + 2 in natural numbers; p = p(n) = 2*sqrt(4T(a(n))+1), q = q(n) = sqrt(8*T(a(n))+1). Note that this implies that 4*T(a(n))+1 is a perfect square (numbers of the form 8*T(n)+1 are perfect squares for all n); these T(a(n))'s are the only solutions to the given Diophantine equation. - Steven Blasberg, Mar 04 2021

Examples

			The first few triples are (0,1,1), (3,4,5), (20,21,29), (119,120,169), ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046090(n) = -a(-1-n).
Cf. A001108, A143608, A089950 (partial sums), A156035.
Cf. numbers m such that k*A000217(m)+1 is a square: A006451 for k=1; m=0 for k=2; A233450 for k=3; this sequence for k=4; A129556 for k=5; A001921 for k=6. - Bruno Berselli, Dec 16 2013
Cf. A002315, A001653 (solutions of x^2 - 2*y^2 = -1).

Programs

  • GAP
    a:=[0,3];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]+2; od; a; # Muniru A Asiru, Dec 08 2018
    
  • Haskell
    a001652 n = a001652_list !! n
    a001652_list = 0 : 3 : map (+ 2)
    (zipWith (-) (map (* 6) (tail a001652_list)) a001652_list)
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ (-2+(r2+1)*(3+2*r2)^n-(r2-1)*(3-2*r2)^n)/4: n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Feb 17 2009
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(3-x)/((1-6*x+x^2)*(1-x)))); // G. C. Greubel, Jul 15 2018
    
  • Maple
    A001652 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[0,3]) ;
        else
            6*procname(n-1)-procname(n-2)+2 ;
        end if;
    end proc: # R. J. Mathar, Feb 05 2016
  • Mathematica
    LinearRecurrence[{7,-7,1}, {0,3,20}, 30] (* Harvey P. Dale, Aug 19 2011 *)
    With[{c=3+2*Sqrt[2]},NestList[Floor[c*#]+3&,3,30]] (* Harvey P. Dale, Oct 22 2012 *)
    CoefficientList[Series[x (3 - x)/((1 - 6 x + x^2) (1 - x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 21 2014 *)
    Table[(LucasL[2*n + 1, 2] - 2)/4, {n, 0, 30}] (* G. C. Greubel, Jul 15 2018 *)
  • PARI
    {a(n) = subst( poltchebi(n+1) - poltchebi(n) - 2, x, 3) / 4}; /* Michael Somos, Aug 11 2006 */
    
  • PARI
    concat(0, Vec(x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^50))) \\ Altug Alkan, Nov 08 2015
    
  • PARI
    {a=1+sqrt(2); b=1-sqrt(2); Q(n) = a^n + b^n};
    for(n=0, 30, print1(round((Q(2*n+1) - 2)/4), ", ")) \\ G. C. Greubel, Jul 15 2018
    
  • Sage
    (x*(3-x)/((1-6*x+x^2)*(1-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Mar 08 2019

Formula

G.f.: x *(3 - x) / ((1 - 6*x + x^2) * (1 - x)). - Simon Plouffe in his 1992 dissertation
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). a_{n} = -1/2 + ((1-2^{1/2})/4)*(3 - 2^{3/2})^n + ((1+2^{1/2})/4)*(3 + 2^{3/2})^n. - Antonio Alberto Olivares, Oct 13 2003
a(n) = a(n-2) + 4*sqrt(2*(a(n-1)^2)+2*a(n-1)+1). - Pierre CAMI, Mar 30 2005
a(n) = (sinh((2*n+1)*log(1+sqrt(2)))-1)/2 = (sqrt(1+8*A029549)-1)/2. - Bill Gosper, Feb 07 2010
Binomial(a(n)+1,2) = 2*binomial(A053141(n)+1,2) = A029549(n). See A053141. - Bill Gosper, Feb 07 2010
Let b(n) = A046090(n) and c(n) = A001653(n). Then for k>j, c(i)*(c(k) - c(j)) = a(k+i) + ... + a(i+j+1) + a(k-i-1) + ... + a(j-i) + k - j. For n<0, a(n) = -b(-n-1). Also a(n)*a(n+2*k+1) + b(n)*b(n+2*k+1) + c(n)*c(n+2*k+1) = (a(n+k+1) - a(n+k))^2; a(n)*a(n+2*k) + b(n)*b(n+2*k) + c(n)*c(n+2*k) = 2*c(n+k)^2. - Charlie Marion, Jul 01 2003
a(n)*a(n+1) + A046090(n)*A046090(n+1) = A001542(n+1)^2 = A084703(n+1). - Charlie Marion, Jul 01 2003
For n and j >= 1, Sum_{k=0..j} A001653(k)*a(n) - Sum_{k=0...j-1} A001653(k)*a(n-1) + A053141(j) = A001109(j+1)*a(n) - A001109(j)*a(n-1) + A053141(j) = a(n+j). - Charlie Marion, Jul 07 2003
Sum_{k=0...n} (2*k+1)*a(n-k) = A001109(n+1) - A000217(n+1). - Charlie Marion, Jul 18 2003
a(n) = A055997(n) - 1 + sqrt(2*A055997(n)*A001108(n)). - Charlie Marion, Jul 21 2003
a(n) = {A002315(n) - 1}/2. - Lekraj Beedassy, Nov 25 2003
a(2*n+k) + a(k) + 1 = A001541(n)*A002315(n+k). For k>0, a(2*n+k) - a(k-1) = A001541(n+k)*A002315(n); e.g., 803760-119 = 19601*41. - Charlie Marion, Mar 17 2003
a(n) = (A001653(n+1) - 3*A001653(n) - 2)/4. - Lekraj Beedassy, Jul 13 2004
a(n) = {2*A084159(n) - 1 + (-1)^(n+1)}/2. - Lekraj Beedassy, Jul 21 2004
a(n+1) = 3*a(n) + sqrt(8*a(n)^2 + 8*a(n) +4) + 1, a(1)=0. - Richard Choulet, Sep 18 2007
As noted (Sep 20 2006), a(n) = 5*(a(n-1) + a(n-2)) - a(n-3) + 4. In general, for n > 2*k, a(n) = A001653(k)*(a(n-k) + a(n-k-1) + 1) - a(n-2*k-1) - 1. Also a(n) = 7*(a(n-1) - a(n-2)) + a(n-3). In general, for n > 2*k, A002378(k)*(a(n-k)-a(n-k-1)) + a(n-2*k-1). - Charlie Marion, Dec 26 2007
In general, for n >= k >0, a(n) = (A001653(n+k) - A001541(k) * A001653(n) - 2*A001109(k-1))/(4*A001109(k-1)); e.g., 4059 = (33461-3*5741-2*1)/(4*1); 4059 = (195025-17*5741-2*6)/(4*6). - Charlie Marion, Jan 21 2008
From Charlie Marion, Jan 04 2010: (Start)
a(n) = ( (1 + sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1) - 2)/4 = (A001333(2n+1) - 1)/2.
a(2*n+k-1) = Pell(2*n-1)*Pell(2*n+2*k) + Pell(2*n-2)*Pell(2*n+2*k+1) + A001108(k+1);
a(2*n+k) = Pell(2*n)*Pell(2*n+2*k+1) + Pell(2*n-1)*Pell(2*n+2*k+2) - A055997(k+2). (End)
a(n) = A048739(2*n-1) for n > 0. - Richard R. Forberg, Aug 31 2013
a(n+1) = 3*a(n) + 2*A001653(n) + 1 [Mohamed Bouhamida's 2009 (p,q)(r,s) comment above rewritten]. - Hermann Stamm-Wilbrandt, Jul 27 2014
a(n)^2 + (a(n)+1)^2 = A001653(n+1)^2. - Pierre CAMI, Mar 30 2005; clarified by Hermann Stamm-Wilbrandt, Aug 31 2014
a(n+1) = 3*A001541(n) + 10*A001109(n) + A001108(n). - Hermann Stamm-Wilbrandt, Sep 09 2014
For n>0, a(n) = Sum_{k=1..2*n} A000129(k). - Charlie Marion, Nov 07 2015
a(n) = 3*A053142(n) - A053142(n-1). - R. J. Mathar, Feb 05 2016
E.g.f.: (1/4)*(-2*exp(x) - (sqrt(2) - 1)*exp((3-2*sqrt(2))*x) + (1 + sqrt(2))*exp((3+2*sqrt(2))*x)). - Ilya Gutkovskiy, Apr 11 2016
a(n) = A001108(n) + 2*sqrt(A000217(A001108(n))). - Dimitri Papadopoulos, Jul 06 2017
a(A000217(n-1)) = ((A001653(n)+1)/2) * ((A001653(n)-1)/2), n > 1. - Ezhilarasu Velayutham, Mar 10 2019
a(n) = ((a(n-1)+1)*(a(n-1)-3))/a(n-2) for n > 2. - Vladimir Pletser, Apr 08 2020
In general, for each k >= 0, a(n) = ((a(n-k)+a(k-1)+1)*(a(n-k)-a(k)))/a(n-2*k) for n > 2*k. - Charlie Marion, Dec 27 2020
A generalization of the identity a(n)^2 + A046090(n)^2 = A001653(n+1)^2 follows. Let P(k,n) be the n-th k-gonal number. Then P(k,a(n)) + P(k,A046090(n)) = P(k,A001653(n+1)) + (4-k)*A001109(n). - Charlie Marion, Dec 07 2021
a(n) = A046090(n)-1 = A002024(A029549(n)). - Pontus von Brömssen, Sep 11 2024

Extensions

Additional comments from Wolfdieter Lang, Feb 10 2000

A002315 NSW numbers: a(n) = 6*a(n-1) - a(n-2); also a(n)^2 - 2*b(n)^2 = -1 with b(n) = A001653(n+1).

Original entry on oeis.org

1, 7, 41, 239, 1393, 8119, 47321, 275807, 1607521, 9369319, 54608393, 318281039, 1855077841, 10812186007, 63018038201, 367296043199, 2140758220993, 12477253282759, 72722761475561, 423859315570607, 2470433131948081, 14398739476117879, 83922003724759193
Offset: 0

Views

Author

Keywords

Comments

Named after the Newman-Shanks-Williams reference.
Also numbers k such that A125650(3*k^2) is an odd perfect square. Such numbers 3*k^2 form a bisection of A125651. - Alexander Adamchuk, Nov 30 2006
For positive n, a(n) corresponds to the sum of legs of near-isosceles primitive Pythagorean triangles (with consecutive legs). - Lekraj Beedassy, Feb 06 2007
Also numbers m such that m^2 is a centered 16-gonal number; or a number of the form 8k(k+1)+1, where k = A053141(m) = {0, 2, 14, 84, 492, 2870, ...}. - Alexander Adamchuk, Apr 21 2007
The lower principal convergents to 2^(1/2), beginning with 1/1, 7/5, 41/29, 239/169, comprise a strictly increasing sequence; numerators=A002315 and denominators=A001653. - Clark Kimberling, Aug 27 2008
The upper intermediate convergents to 2^(1/2) beginning with 10/7, 58/41, 338/239, 1970/1393 form a strictly decreasing sequence; essentially, numerators=A075870, denominators=A002315. - Clark Kimberling, Aug 27 2008
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->oo} a(n) = x*(k*x+1)^n, k = (a(1)-3), x = (1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
Numbers k such that (ceiling(sqrt(k*k/2)))^2 = (1+k*k)/2. - Ctibor O. Zizka, Nov 09 2009
A001109(n)/a(n) converges to cos^2(Pi/8) = 1/2 + 2^(1/2)/4. - Gary Detlefs, Nov 25 2009
The values 2(a(n)^2+1) are all perfect squares, whose square root is given by A075870. - Neelesh Bodas (neelesh.bodas(AT)gmail.com), Aug 13 2010
a(n) represents all positive integers K for which 2(K^2+1) is a perfect square. - Neelesh Bodas (neelesh.bodas(AT)gmail.com), Aug 13 2010
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(8)'s along the main diagonal, and i's along the superdiagonal and subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
Integers k such that A000217(k-2) + A000217(k-1) + A000217(k) + A000217(k+1) is a square (cf. A202391). - Max Alekseyev, Dec 19 2011
Integer square roots of floor(k^2/2 - 1) or A047838. - Richard R. Forberg, Aug 01 2013
Remark: x^2 - 2*y^2 = +2*k^2, with positive k, and X^2 - 2*Y^2 = +2 reduce to the present Pell equation a^2 - 2*b^2 = -1 with x = k*X = 2*k*b and y = k*Y = k*a. (After a proposed solution for k = 3 by Alexander Samokrutov.) - Wolfdieter Lang, Aug 21 2015
If p is an odd prime, a((p-1)/2) == 1 (mod p). - Altug Alkan, Mar 17 2016
a(n)^2 + 1 = 2*b(n)^2, with b(n) = A001653(n), is the necessary and sufficient condition for a(n) to be a number k for which the diagonal of a 1 X k rectangle is an integer multiple of the diagonal of a 1 X 1 square. If squares are laid out thus along one diagonal of a horizontal 1 X a(n) rectangle, from the lower left corner to the upper right, the number of squares is b(n), and there will always be a square whose top corner lies exactly within the top edge of the rectangle. Numbering the squares 1 to b(n) from left to right, the number of the one square that has a corner in the top edge of the rectangle is c(n) = (2*b(n) - a(n) + 1)/2, which is A055997(n). The horizontal component of the corner of the square in the edge of the rectangle is also an integer, namely d(n) = a(n) - b(n), which is A001542(n). - David Pasino, Jun 30 2016
(a(n)^2)-th triangular number is a square; a(n)^2 = A008843(n) is a subsequence of A001108. - Jaroslav Krizek, Aug 05 2016
a(n-1)/A001653(n) is the closest rational approximation of sqrt(2) with a numerator not larger than a(n-1). These rational approximations together with those obtained from the sequences A001541 and A001542 give a complete set of closest rational approximations of sqrt(2) with restricted numerator or denominator. a(n-1)/A001653(n) < sqrt(2). - A.H.M. Smeets, May 28 2017
Consider the quadrant of a circle with center (0,0) bounded by the positive x and y axes. Now consider, as the start of a series, the circle contained within this quadrant which kisses both axes and the outer bounding circle. Consider further a succession of circles, each kissing the x-axis, the outer bounding circle, and the previous circle in the series. See Holmes link. The center of the n-th circle in this series is ((A001653(n)*sqrt(2)-1)/a(n-1), (A001653(n)*sqrt(2)-1)/a(n-1)^2), the y-coordinate also being its radius. It follows that a(n-1) is the cotangent of the angle subtended at point (0,0) by the center of the n-th circle in the series with respect to the x-axis. - Graham Holmes, Aug 31 2019
There is a link between the two sequences present at the numerator and at the denominator of the fractions that give the coordinates of the center of the kissing circles. A001653 is the sequence of numbers k such that 2*k^2 - 1 is a square, and here, we have 2*A001653(n)^2 - 1 = a(n-1)^2. - Bernard Schott, Sep 02 2019
Let G be a sequence satisfying G(i) = 2*G(i-1) + G(i-2) for arbitrary integers i and without regard to the initial values of G. Then a(n) = (G(i+4*n+2) - G(i))/(2*G(i+2*n+1)) as long as G(i+2*n+1) != 0. - Klaus Purath, Mar 25 2021
All of the positive integer solutions of a*b+1=x^2, a*c+1=y^2, b*c+1=z^2, x+z=2*y, 0 < a < b < c are given by a=A001542(n), b=A005319(n), c=A001542(n+1), x=A001541(n), y=A001653(n+1), z=A002315(n) with 0 < n. - Michael Somos, Jun 26 2022
3*a(n-1) is the n-th almost Lucas-cobalancing number of second type (see Tekcan and Erdem). - Stefano Spezia, Nov 26 2022
In Moret-Blanc (1881) on page 259 some solution of m^2 - 2n^2 = -1 are listed. The values of m give this sequence, and the values of n give A001653. - Michael Somos, Oct 25 2023
From Klaus Purath, May 11 2024: (Start)
For any two consecutive terms (a(n), a(n+1)) = (x,y): x^2 - 6xy + y^2 = 8 = A028884(1). In general, the following applies to all sequences (t) satisfying t(i) = 6t(i-1) - t(i-2) with t(0) = 1 and two consecutive terms (x,y): x^2 - 6xy + y^2 = A028884(t(1)-6). This includes and interprets the Feb 04 2014 comment on A001541 by Colin Barker as well as the Mar 17 2021 comment on A054489 by John O. Oladokun and the Sep 28 2008 formula on A038723 by Michael Somos. By analogy to this, for three consecutive terms (x,y,z) y^2 - xz = A028884(t(1)-6) always applies.
If (t) is a sequence satisfying t(k) = 7t(k-1) - 7t(k-2) + t(k-3) or t(k) = 6t(k-1) - t(k-2) without regard to initial values and including this sequence itself, then a(n) = (t(k+2n+1) - t(k))/(t(k+n+1) - t(k+n)) always applies, as long as t(k+n+1) - t(k+n) != 0 for integer k and n >= 0. (End)

Examples

			G.f. = 1 + 7*x + 41*x^2 + 239*x^3 + 1393*x^4 + 8119*x^5 + 17321*x^6 + ... - _Michael Somos_, Jun 26 2022
		

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 288.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 247.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022

Crossrefs

Bisection of A001333. Cf. A001109, A001653. A065513(n)=a(n)-1.
First differences of A001108 and A055997. Bisection of A084068 and A088014. Cf. A077444.
Row sums of unsigned triangle A127675.
Cf. A053141, A075870. Cf. A000045, A002878, A004146, A026003, A100047, A119915, A192425, A088165 (prime subsequence), A057084 (binomial transform), A108051 (inverse binomial transform).
See comments in A301383.
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Haskell
    a002315 n = a002315_list !! n
    a002315_list = 1 : 7 : zipWith (-) (map (* 6) (tail a002315_list)) a002315_list
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    I:=[1,7]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
  • Maple
    A002315 := proc(n)
        option remember;
        if n = 0 then
            1 ;
        elif n = 1 then
            7;
        else
            6*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # Zerinvary Lajos, Jul 26 2006, modified R. J. Mathar, Apr 30 2017
    a:=n->abs(Im(simplify(ChebyshevT(2*n+1,I)))):seq(a(n),n=0..20); # Leonid Bedratyuk, Dec 17 2017
    # third Maple program:
    a:= n-> (<<0|1>, <-1|6>>^n. <<1, 7>>)[1, 1]:
    seq(a(n), n=0..22);  # Alois P. Heinz, Aug 25 2024
  • Mathematica
    a[0] = 1; a[1] = 7; a[n_] := a[n] = 6a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 20}] (* Robert G. Wilson v, Jun 09 2004 *)
    Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{-1,6},#]}]&, {1,7},20]][[1]]  (* Harvey P. Dale, Mar 23 2011 *)
    Table[ If[n>0, a=b; b=c; c=6b-a, b=-1; c=1], {n, 0, 20}] (* Jean-François Alcover, Oct 19 2012 *)
    LinearRecurrence[{6, -1}, {1, 7}, 20] (* Bruno Berselli, Apr 03 2018 *)
    a[ n_] := -I*(-1)^n*ChebyshevT[2*n + 1, I]; (* Michael Somos, Jun 26 2022 *)
  • PARI
    {a(n) = subst(poltchebi(abs(n+1)) - poltchebi(abs(n)), x, 3)/2};
    
  • PARI
    {a(n) = if(n<0, -a(-1-n), polsym(x^2-2*x-1, 2*n+1)[2*n+2]/2)};
    
  • PARI
    {a(n) = my(w=3+quadgen(32)); imag((1+w)*w^n)};
    
  • PARI
    for (i=1,10000,if(Mod(sigma(i^2+1,2),2)==1,print1(i,",")))
    
  • PARI
    {a(n) = -I*(-1)^n*polchebyshev(2*n+1, 1, I)}; /* Michael Somos, Jun 26 2022 */
    

Formula

a(n) = (1/2)*((1+sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1)).
a(n) = A001109(n)+A001109(n+1).
a(n) = (1+sqrt(2))/2*(3+sqrt(8))^n+(1-sqrt(2))/2*(3-sqrt(8))^n. - Ralf Stephan, Feb 23 2003
a(n) = sqrt(2*(A001653(n+1))^2-1), n >= 0. [Pell equation a(n)^2 - 2*Pell(2*n+1)^2 = -1. - Wolfdieter Lang, Jul 11 2018]
G.f.: (1 + x)/(1 - 6*x + x^2). - Simon Plouffe in his 1992 dissertation
a(n) = S(n, 6)+S(n-1, 6) = S(2*n, sqrt(8)), S(n, x) = U(n, x/2) are Chebyshev's polynomials of the 2nd kind. Cf. A049310. S(n, 6)= A001109(n+1).
a(n) ~ (1/2)*(sqrt(2) + 1)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 06 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then (-1)^n*q(n, -8) = a(n). - Benoit Cloitre, Nov 10 2002
With a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = (a^((2n+1)/2)-b^((2n+1)/2))/2. a(n) = A077444(n)/2. - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
a(n) = Sum_{k=0..n} 2^k*binomial(2*n+1, 2*k). - Zoltan Zachar (zachar(AT)fellner.sulinet.hu), Oct 08 2003
Same as: i such that sigma(i^2+1, 2) mod 2 = 1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 26 2004
a(n) = L(n, -6)*(-1)^n, where L is defined as in A108299; see also A001653 for L(n, +6). - Reinhard Zumkeller, Jun 01 2005
a(n) = A001652(n)+A046090(n); e.g., 239=119+120. - Charlie Marion, Nov 20 2003
A001541(n)*a(n+k) = A001652(2n+k) + A001652(k)+1; e.g., 3*1393 = 4069 + 119 + 1; for k > 0, A001541(n+k)*a(n) = A001652(2n+k) - A001652(k-1); e.g., 99*7 = 696 - 3. - Charlie Marion, Mar 17 2003
a(n) = Jacobi_P(n,1/2,-1/2,3)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006
P_{2n}+P_{2n+1} where P_i are the Pell numbers (A000129). Also the square root of the partial sums of Pell numbers: P_{2n}+P_{2n+1} = sqrt(Sum_{i=0..4n+1} P_i) (Santana and Diaz-Barrero, 2006). - David Eppstein, Jan 28 2007
a(n) = 2*A001652(n) + 1 = 2*A046729(n) + (-1)^n. - Lekraj Beedassy, Feb 06 2007
a(n) = sqrt(A001108(2*n+1)). - Anton Vrba (antonvrba(AT)yahoo.com), Feb 14 2007
a(n) = sqrt(8*A053141(n)*(A053141(n) + 1) + 1). - Alexander Adamchuk, Apr 21 2007
a(n+1) = 3*a(n) + sqrt(8*a(n)^2 + 8), a(1)=1. - Richard Choulet, Sep 18 2007
a(n) = A001333(2*n+1). - Ctibor O. Zizka, Aug 13 2008
a(n) = third binomial transform of 1, 4, 8, 32, 64, 256, 512, ... . - Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
a(n) = (-1)^(n-1)*(1/sqrt(-1))*cos((2*n - 1)*arcsin(sqrt(2)). - Artur Jasinski, Feb 17 2010 *WRONG*
a(n+k) = A001541(k)*a(n) + 4*A001109(k)*A001653(n); e.g., 8119 = 17*239 + 4*6*169. - Charlie Marion, Feb 04 2011
In general, a(n+k) = A001541(k)*a(n)) + sqrt(A001108(2k)*(a(n)^2+1)). See Sep 18 2007 entry above. - Charlie Marion, Dec 07 2011
a(n) = floor((1+sqrt(2))^(2n+1))/2. - Thomas Ordowski, Jun 12 2012
(a(2n-1) + a(2n) + 8)/(8*a(n)) = A001653(n). - Ignacio Larrosa Cañestro, Jan 02 2015
(a(2n) + a(2n-1))/a(n) = 2*sqrt(2)*( (1 + sqrt(2))^(4*n) - (1 - sqrt(2))^(4*n))/((1 + sqrt(2))^(2*n+1) + (1 - sqrt(2))^(2*n+1)). [This was my solution to problem 5325, School Science and Mathematics 114 (No. 8, Dec 2014).] - Henry Ricardo, Feb 05 2015
From Peter Bala, Mar 22 2015: (Start)
The aerated sequence (b(n))n>=1 = [1, 0, 7, 0, 41, 0, 239, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -4, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047.
b(n) = 1/2*((-1)^n - 1)*Pell(n) + 1/2*(1 + (-1)^(n+1))*Pell(n+1). The o.g.f. is x*(1 + x^2)/(1 - 6*x^2 + x^4).
Exp( Sum_{n >= 1} 2*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*A026003(n-1)*x^n.
Exp( Sum_{n >= 1} (-2)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*A026003(n-1)*(-x)^n.
Exp( Sum_{n >= 1} 4*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*Pell(n)*x^n.
Exp( Sum_{n >= 1} (-4)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*Pell(n)*(-x)^n.
Exp( Sum_{n >= 1} 8*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 8*A119915(n)*x^n.
Exp( Sum_{n >= 1} (-8)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 8*A119915(n)*(-x)^n. Cf. A002878, A004146, A113224, and A192425. (End)
E.g.f.: (sqrt(2)*sinh(2*sqrt(2)*x) + cosh(2*sqrt(2)*x))*exp(3*x). - Ilya Gutkovskiy, Jun 30 2016
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(n-k) * 2^k * 2^ceiling(k/2). - David Pasino, Jul 09 2016
a(n) = A001541(n) + 2*A001542(n). - A.H.M. Smeets, May 28 2017
a(n+1) = 3*a(n) + 4*b(n), b(n+1) = 2*a(n) + 3*b(n), with b(n)=A001653(n). - Zak Seidov, Jul 13 2017
a(n) = |Im(T(2n-1,i))|, i=sqrt(-1), T(n,x) is the Chebyshev polynomial of the first kind, Im is the imaginary part of a complex number, || is the absolute value. - Leonid Bedratyuk, Dec 17 2017
a(n) = sinh((2*n + 1)*arcsinh(1)). - Bruno Berselli, Apr 03 2018
a(n) = 5*a(n-1) + A003499(n-1), a(0) = 1. - Ivan N. Ianakiev, Aug 09 2019
From Klaus Purath, Mar 25 2021: (Start)
a(n) = A046090(2*n)/A001541(n).
a(n+1)*a(n+2) = a(n)*a(n+3) + 48.
a(n)^2 + a(n+1)^2 = 6*a(n)*a(n+1) + 8.
a(n+1)^2 = a(n)*a(n+2) + 8.
a(n+1) = a(n) + 2*A001541(n+1).
a(n) = 2*A046090(n) - 1. (End)
3*a(n-1) = sqrt(8*b(n)^2 + 8*b(n) - 7), where b(n) = A358682(n). - Stefano Spezia, Nov 26 2022
a(n) = -(-1)^n - 2 + Sum_{i=0..n} A002203(i)^2. - Adam Mohamed, Aug 22 2024
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 3), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
For arbitrary x, a(n+x)^2 - 6*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 8 with a(n) := (1/2)*((1+sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1)) as above. The particular case x = 0 is noted above,
a(n+1/2) = sqrt(2) * A001542(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/8 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A081554(n) + 1/A081554(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(2) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 2*(1 - 1/A055997(k+2))). (End)

A002605 a(n) = 2*(a(n-1) + a(n-2)), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 6, 16, 44, 120, 328, 896, 2448, 6688, 18272, 49920, 136384, 372608, 1017984, 2781184, 7598336, 20759040, 56714752, 154947584, 423324672, 1156544512, 3159738368, 8632565760, 23584608256, 64434348032, 176037912576, 480944521216, 1313964867584
Offset: 0

Views

Author

Keywords

Comments

Individually, both this sequence and A028859 are convergents to 1 + sqrt(3). Mutually, both sequences are convergents to 2 + sqrt(3) and 1 + sqrt(3)/2. - Klaus E. Kastberg (kastberg(AT)hotkey.net.au), Nov 04 2001
The number of (s(0), s(1), ..., s(n+1)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| <= 1 for i = 1, 2, ..., n + 1, s(0) = 2, s(n+1) = 3. - Herbert Kociemba, Jun 02 2004
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 4 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(4). - Cino Hilliard, Sep 25 2005
The Hankel transform of this sequence is [1, 2, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Nov 21 2007
[1, 3; 1, 1]^n *[1, 0] = [A026150(n), a(n)]. - Gary W. Adamson, Mar 21 2008
(1 + sqrt(3))^n = A026150(n) + a(n)*sqrt(3). - Gary W. Adamson, Mar 21 2008
a(n+1) is the number of ways to tile a board of length n using red and blue tiles of length one and two. - Geoffrey Critzer, Feb 07 2009
Starting with offset 1 = INVERT transform of the Jacobsthal sequence, A001045: (1, 1, 3, 5, 11, 21, ...). - Gary W. Adamson, May 12 2009
Starting with "1" = INVERTi transform of A007482: (1, 3, 11, 39, 139, ...). - Gary W. Adamson, Aug 06 2010
An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 85, 277, 337 and 340, lead to this sequence (without the leading 0). For the central square these vectors lead to the companion sequence A026150, without the first leading 1. - Johannes W. Meijer, Aug 15 2010
The sequence 0, 1, -2, 6, -16, 44, -120, 328, -896, ... (with alternating signs) is the Lucas U(-2,-2)-sequence. - R. J. Mathar, Jan 08 2013
a(n+1) counts n-walks (closed) on the graph G(1-vertex;1-loop,1-loop,2-loop,2-loop). - David Neil McGrath, Dec 11 2014
Number of binary strings of length 2*n - 2 in the regular language (00+11+0101+1010)*. - Jeffrey Shallit, Dec 14 2015
For n >= 1, a(n) equals the number of words of length n - 1 over {0, 1, 2, 3} in which 0 and 1 avoid runs of odd lengths. - Milan Janjic, Dec 17 2015
a(n+1) is the number of compositions of n into parts 1 and 2, both of two kinds. - Gregory L. Simay, Sep 20 2017
Number of associative, quasitrivial, and order-preserving binary operations on the n-element set {1, ..., n} that have neutral elements. - J. Devillet, Sep 28 2017
(1 + sqrt(3))^n = A026150(n) + a(n)*sqrt(3), for n >= 0; integers in the real quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 10 2018
Starting with 1, 2, 6, 16, ..., number of permutations of length n>0 avoiding the partially ordered pattern (POP) {1>3, 1>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the third and fourth elements. - Sergey Kitaev, Dec 09 2020
a(n) is the number of tilings of a 2 X n board missing one corner cell, with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares). Compare to A127864. - Greg Dresden and Yilin Zhu, Jul 17 2025

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.

Crossrefs

First differences are given by A026150.
a(n) = A073387(n, 0), n>=0 (first column of triangle).
Equals (1/3) A083337. First differences of A077846. Pairwise sums of A028860 and abs(A077917).
a(n) = A028860(n)/2 apart from the initial terms.
Row sums of A081577 and row sums of triangle A156710.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Cf. A175289 (Pisano periods).
Cf. A002530.
Cf. A127864.

Programs

  • Haskell
    a002605 n = a002605_list !! n
    a002605_list =
       0 : 1 : map (* 2) (zipWith (+) a002605_list (tail a002605_list))
    -- Reinhard Zumkeller, Oct 15 2011
    
  • Magma
    [Floor(((1 + Sqrt(3))^n - (1 - Sqrt(3))^n)/(2*Sqrt(3))): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
    
  • Magma
    [n le 2 select n-1 else 2*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 07 2018
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+2*a[n-2]od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 15 2008
    a := n -> `if`(n<3, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -2));
    seq(simplify(a(n)), n=0..29); # Peter Luschny, Dec 16 2015
  • Mathematica
    Expand[Table[((1 + Sqrt[3])^n - (1 - Sqrt[3])^n)/(2Sqrt[3]), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *)
    a[n_]:=(MatrixPower[{{1,3},{1,1}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{2, 2}, {0, 1}, 30] (* Robert G. Wilson v, Apr 13 2013 *)
    Round@Table[Fibonacci[n, Sqrt[2]] 2^((n - 1)/2), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
    nxt[{a_,b_}]:={b,2(a+b)}; NestList[nxt,{0,1},30][[All,1]] (* Harvey P. Dale, Sep 17 2022 *)
  • PARI
    Vec(x/(1-2*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    A002605(n)=([2,2;1,0]^n)[2,1] \\ M. F. Hasler, Aug 06 2018
    
  • Sage
    [lucas_number1(n,2,-2) for n in range(0, 30)] # Zerinvary Lajos, Apr 22 2009
    
  • Sage
    a = BinaryRecurrenceSequence(2,2)
    print([a(n) for n in (0..29)])  # Peter Luschny, Aug 29 2016
    

Formula

a(n) = (-I*sqrt(2))^(n-1)*U(n-1, I/sqrt(2)) where U(n, x) is the Chebyshev U-polynomial. - Wolfdieter Lang
G.f.: x/(1 - 2*x - 2*x^2).
From Paul Barry, Sep 17 2003: (Start)
E.g.f.: x*exp(x)*(sinh(sqrt(3)*x)/sqrt(3) + cosh(sqrt(3)*x)).
a(n) = (1 + sqrt(3))^(n-1)*(1/2 + sqrt(3)/6) + (1 - sqrt(3))^(n-1)*(1/2 - sqrt(3)/6), for n>0.
Binomial transform of 1, 1, 3, 3, 9, 9, ... Binomial transform is A079935. (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n - k, k)*2^(n - k). - Paul Barry, Jul 13 2004
a(n) = A080040(n) - A028860(n+1). - Creighton Dement, Jan 19 2005
a(n) = Sum_{k=0..n} A112899(n,k). - Philippe Deléham, Nov 21 2007
a(n) = Sum_{k=0..n} A063967(n,k). - Philippe Deléham, Nov 03 2006
a(n) = ((1 + sqrt(3))^n - (1 - sqrt(3))^n)/(2*sqrt(3)).
a(n) = Sum_{k=0..n} binomial(n, 2*k + 1) * 3^k.
Binomial transform of expansion of sinh(sqrt(3)x)/sqrt(3) (0, 1, 0, 3, 0, 9, ...). E.g.f.: exp(x)*sinh(sqrt(3)*x)/sqrt(3). - Paul Barry, May 09 2003
a(n) = (1/3)*Sum_{k=1..5} sin(Pi*k/2)*sin(2*Pi*k/3)*(1 + 2*cos(Pi*k/6))^n, n >= 1. - Herbert Kociemba, Jun 02 2004
a(n+1) = ((3 + sqrt(3))*(1 + sqrt(3))^n + (3 - sqrt(3))*(1 - sqrt(3))^n)/6. - Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009
Antidiagonals sums of A081577. - J. M. Bergot, Dec 15 2012
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k + 2 + 2*x)/(x*(4*k + 4 + 2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
a(n) = 2^(n - 1)*hypergeom([1 - n/2, (1 - n)/2], [1 - n], -2) for n >= 3. - Peter Luschny, Dec 16 2015
Sum_{k=0..n} a(k)*2^(n-k) = a(n+2)/2 - 2^n. - Greg Dresden, Feb 11 2022
a(n) = 2^floor(n/2) * A002530(n). - Gregory L. Simay, Sep 22 2022
From Peter Bala, May 08 2024: (Start)
G.f.: x/(1 - 2*x - 2*x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (k + 2*x + 1)/(1 + k*x) )
Also x/(1 - 2*x - 2*x^2) = Sum_{n >= 0} (2*x)^n *( x*Product_{k = 1..n} (m*k + 2 - m + x)/(1 + 2*m*k*x) ) for arbitrary m (both series are telescoping). (End)
a(n) = A127864(n-1) + A127864(n-2). - Greg Dresden and Yilin Zhu, Jul 17 2025

Extensions

Edited by N. J. A. Sloane, Apr 15 2009

A001541 a(0) = 1, a(1) = 3; for n > 1, a(n) = 6*a(n-1) - a(n-2).

Original entry on oeis.org

1, 3, 17, 99, 577, 3363, 19601, 114243, 665857, 3880899, 22619537, 131836323, 768398401, 4478554083, 26102926097, 152139002499, 886731088897, 5168247530883, 30122754096401, 175568277047523, 1023286908188737, 5964153172084899, 34761632124320657
Offset: 0

Views

Author

Keywords

Comments

Chebyshev polynomials of the first kind evaluated at 3.
This sequence gives the values of x in solutions of the Diophantine equation x^2 - 8*y^2 = 1, the corresponding values of y are in A001109. For n > 0, the ratios a(n)/A001090(n) may be obtained as convergents to sqrt(8): either successive convergents of [3; -6] or odd convergents of [2; 1, 4]. - Lekraj Beedassy, Sep 09 2003 [edited by Jon E. Schoenfield, May 04 2014]
Also gives solutions to the equation x^2 - 1 = floor(x*r*floor(x/r)) where r = sqrt(8). - Benoit Cloitre, Feb 14 2004
Appears to give all solutions greater than 1 to the equation: x^2 = ceiling(x*r*floor(x/r)) where r = sqrt(2). - Benoit Cloitre, Feb 24 2004
This sequence give numbers n such that (n-1)*(n+1)/2 is a perfect square. Remark: (i-1)*(i+1)/2 = (i^2-1)/2 = -1 = i^2 with i = sqrt(-1) so i is also in the sequence. - Pierre CAMI, Apr 20 2005
a(n) is prime for n = {1, 2, 4, 8}. Prime a(n) are {3, 17, 577, 665857}, which belong to A001601(n). a(2k-1) is divisible by a(1) = 3. a(4k-2) is divisible by a(2) = 17. a(8k-4) is divisible by a(4) = 577. a(16k-8) is divisible by a(8) = 665857. - Alexander Adamchuk, Nov 24 2006
The upper principal convergents to 2^(1/2), beginning with 3/2, 17/12, 99/70, 577/408, comprise a strictly decreasing sequence; essentially, numerators=A001541 and denominators=A001542. - Clark Kimberling, Aug 26 2008
Also index of sequence A082532 for which A082532(n) = 1. - Carmine Suriano, Sep 07 2010
Numbers n such that sigma(n-1) and sigma(n+1) are both odd numbers. - Juri-Stepan Gerasimov, Mar 28 2011
Also, numbers such that floor(a(n)^2/2) is a square: base 2 analog of A031149, A204502, A204514, A204516, A204518, A204520, A004275, A001075. - M. F. Hasler, Jan 15 2012
Numbers such that 2n^2 - 2 is a square. Also integer square roots of the expression 2*n^2 + 1, at values of n given by A001542. Also see A228405 regarding 2n^2 -+ 2^k generally for k >= 0. - Richard R. Forberg, Aug 20 2013
Values of x (or y) in the solutions to x^2 - 6xy + y^2 + 8 = 0. - Colin Barker, Feb 04 2014
Panda and Ray call the numbers in this sequence the Lucas-balancing numbers C_n (see references and links).
Partial sums of X or X+1 of Pythagorean triples (X,X+1,Z). - Peter M. Chema, Feb 03 2017
a(n)/A001542(n) is the closest rational approximation to sqrt(2) with a numerator not larger than a(n), and 2*A001542(n)/a(n) is the closest rational approximation to sqrt(2) with a denominator not larger than a(n). These rational approximations together with those obtained from the sequences A001653 and A002315 give a complete set of closest rational approximations to sqrt(2) with restricted numerator or denominator. a(n)/A001542(n) > sqrt(2) > 2*A001542(n)/a(n). - A.H.M. Smeets, May 28 2017
x = a(n), y = A001542(n) are solutions of the Diophantine equation x^2 - 2y^2 = 1 (Pell equation). x = 2*A001542(n), y = a(n) are solutions of the Diophantine equation x^2 - 2y^2 = -2. Both together give the set of fractional approximations for sqrt(2) obtained from limited fractions obtained from continued fraction representation to sqrt(2). - A.H.M. Smeets, Jun 22 2017
a(n) is the radius of the n-th circle among the sequence of circles generated as follows: Starting with a unit circle centered at the origin, every subsequent circle touches the previous circle as well as the two limbs of hyperbola x^2 - y^2 = 1, and lies in the region y > 0. - Kaushal Agrawal, Nov 10 2018
All of the positive integer solutions of a*b+1=x^2, a*c+1=y^2, b*c+1=z^2, x+z=2*y, 0A001542(n), b=A005319(n), c=A001542(n+1), x=A001541(n), y=A001653(n+1), z=A002315(n) with 0Michael Somos, Jun 26 2022

Examples

			99^2 + 99^2 = 140^2 + 2. - _Carmine Suriano_, Jan 05 2015
G.f. = 1 + 3*x + 17*x^2 + 99*x^3 + 577*x^4 + 3363*x^5 + 19601*x^6 + 114243*x^7 + ...
		

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • J. W. L. Glaisher, On Eulerian numbers (formulas, residues, end-figures), with the values of the first twenty-seven, Quarterly Journal of Mathematics, vol. 45, 1914, pp. 1-51.
  • G. K. Panda, Some fascinating properties of balancing numbers, In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium 194 (2009), 185-189.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022

Crossrefs

Bisection of A001333. A003499(n) = 2a(n).
Cf. A055997 = numbers n such that n(n-1)/2 is a square.
Row 1 of array A188645.
Cf. A055792 (terms squared), A132592.

Programs

  • Haskell
    a001541 n = a001541_list !! (n-1)
    a001541_list =
    1 : 3 : zipWith (-) (map (* 6) $ tail a001541_list) a001541_list
    -- Reinhard Zumkeller, Oct 06 2011
    (Scheme, with memoization-macro definec)
    (definec (A001541 n) (cond ((zero? n) 1) ((= 1 n) 3) (else (- (* 6 (A001541 (- n 1))) (A001541 (- n 2))))))
    ;; Antti Karttunen, Oct 04 2016
  • Magma
    [n: n in [1..10000000] |IsSquare(8*(n^2-1))]; // Vincenzo Librandi, Nov 18 2010
    
  • Maple
    a[0]:=1: a[1]:=3: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
    A001541:=-(-1+3*z)/(1-6*z+z**2); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[Simplify[(1/2) (3 + 2 Sqrt[2])^n + (1/2) (3 - 2 Sqrt[2])^n], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
    a[ n_] := If[n == 0, 1, With[{m = Abs @ n}, m Sum[4^i Binomial[m + i, 2 i]/(m + i), {i, 0, m}]]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := ChebyshevT[ n, 3]; (* Michael Somos, Jul 11 2011 *)
    LinearRecurrence[{6, -1}, {1, 3}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
  • PARI
    {a(n) = real((3 + quadgen(32))^n)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = subst( poltchebi( abs(n)), x, 3)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = if( n<0, a(-n), polsym(1 - 6*x + x^2, n) [n+1] / 2)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = polchebyshev( n, 1, 3)}; /* Michael Somos, Jul 11 2011 */
    
  • PARI
    a(n)=([1,2,2;2,1,2;2,2,3]^n)[3,3] \\ Vim Wenders, Mar 28 2007
    

Formula

G.f.: (1-3*x)/(1-6*x+x^2). - Barry E. Williams and Wolfdieter Lang, May 05 2000
E.g.f.: exp(3*x)*cosh(2*sqrt(2)*x). Binomial transform of A084128. - Paul Barry, May 16 2003
From N. J. A. Sloane, May 16 2003: (Start)
a(n) = sqrt(8*((A001109(n))^2) + 1).
a(n) = T(n, 3), with Chebyshev's T-polynomials A053120. (End)
a(n) = ((3+2*sqrt(2))^n + (3-2*sqrt(2))^n)/2.
a(n) = cosh(2*n*arcsinh(1)). - Herbert Kociemba, Apr 24 2008
a(n) ~ (1/2)*(sqrt(2) + 1)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
For all elements x of the sequence, 2*x^2 - 2 is a square. Limit_{n -> infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 10 2002 [corrected by Peter Pein, Mar 09 2009]
a(n) = 3*A001109(n) - A001109(n-1), n >= 1. - Barry E. Williams and Wolfdieter Lang, May 05 2000
For n >= 1, a(n) = A001652(n) - A001652(n-1). - Charlie Marion, Jul 01 2003
From Paul Barry, Sep 18 2003: (Start)
a(n) = ((-1+sqrt(2))^n + (1+sqrt(2))^n + (1-sqrt(2))^n + (-1-sqrt(2))^n)/4 (with interpolated zeros).
E.g.f.: cosh(x)*cosh(sqrt(2)x) (with interpolated zeros). (End)
For n > 0, a(n)^2 + 1 = 2*A001653(n-1)*A001653(n). - Charlie Marion, Dec 21 2003
a(n)^2 + a(n+1)^2 = 2*(A001653(2*n+1) - A001652(2*n)). - Charlie Marion, Mar 17 2003
a(n) = Sum_{k >= 0} binomial(2*n, 2*k)*2^k = Sum_{k >= 0} A086645(n, k)*2^k. - Philippe Deléham, Feb 29 2004
a(n)*A002315(n+k) = A001652(2*n+k) + A001652(k) + 1; for k > 0, a(n+k)*A002315(n) = A001652(2*n+k) - A001652(k-1). - Charlie Marion, Mar 17 2003
For n > k, a(n)*A001653(k) = A011900(n+k) + A053141(n-k-1). For n <= k, a(n)*A001653(k) = A011900(n+k) + A053141(k-n). - Charlie Marion, Oct 18 2004
A053141(n+1) + A055997(n+1) = a(n+1) + A001109(n+1). - Creighton Dement, Sep 16 2004
a(n+1) - A001542(n+1) = A090390(n+1) - A046729(n) = A001653(n); a(n+1) - 4*A079291(n+1) = (-1)^(n+1). Formula generated by the floretion - .5'i + .5'j - .5i' + .5j' - 'ii' + 'jj' - 2'kk' + 'ij' + .5'ik' + 'ji' + .5'jk' + .5'ki' + .5'kj' + e. - Creighton Dement, Nov 16 2004
a(n) = sqrt( A055997(2*n) ). - Alexander Adamchuk, Nov 24 2006
a(2n) = A056771(n). a(2*n+1) = 3*A077420(n). - Alexander Adamchuk, Feb 01 2007
a(n) = (A000129(n)^2)*4 + (-1)^n. - Vim Wenders, Mar 28 2007
2*a(k)*A001653(n)*A001653(n+k) = A001653(n)^2 + A001653(n+k)^2 + A001542(k)^2. - Charlie Marion, Oct 12 2007
a(n) = A001333(2*n). - Ctibor O. Zizka, Aug 13 2008
A028982(a(n)-1) + 2 = A028982(a(n)+1). - Juri-Stepan Gerasimov, Mar 28 2011
a(n) = 2*A001108(n) + 1. - Paul Weisenhorn, Dec 17 2011
a(n) = sqrt(2*x^2 + 1) with x being A001542(n). - Zak Seidov, Jan 30 2013
a(2n) = 2*a(n)^2 - 1 = a(n)^2 + 2*A001542(n)^2. a(2*n+1) = 1 + 2*A002315(n)^2. - Steven J. Haker, Dec 04 2013
a(n) = 3*a(n-1) + 4*A001542(n-1); e.g., a(4) = 99 = 3*17 + 4*12. - Zak Seidov, Dec 19 2013
a(n) = cos(n * arccos(3)) = cosh(n * log(3 + 2*sqrt(2))). - Daniel Suteu, Jul 28 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
Inverse binomial transform of A084130.
Exponential convolution of A000079 and A084058.
Sum_{n>=0} (-1)^n*a(n)/n! = cosh(2*sqrt(2))/exp(3) = 0.4226407909842764637... (End)
a(2*n+1) = 2*a(n)*a(n+1) - 3. - Timothy L. Tiffin, Oct 12 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Jan 20 2017
a(2^n) = A001601(n+1). - A.H.M. Smeets, May 28 2017
a(A298210(n)) = A002350(2*n^2). - A.H.M. Smeets, Jan 25 2018
a(n) = S(n, 6) - 3*S(n-1, 6), for n >= 0, with S(n, 6) = A001109(n+1), (Chebyshev S of A049310). See the first comment and the formula a(n) = T(n, 3). - Wolfdieter Lang, Nov 22 2020
From Peter Bala, Dec 31 2021: (Start)
a(n) = [x^n] (3*x + sqrt(1 + 8*x^2))^n.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) hold for all prime p and positive integers n and k.
O.g.f. A(x) = 1 + x*d/dx(log(B(x))), where B(x) = 1/sqrt(1 - 6*x + x^2) is the o.g.f. of A001850. (End)
From Peter Bala, Aug 17 2022: (Start)
Sum_{n >= 1} 1/(a(n) - 2/a(n)) = 1/2.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 1/a(n)) = 1/4.
Sum_{n >= 1} 1/(a(n)^2 - 2) = 1/2 - 1/sqrt(8). (End)
From Peter Bala, Jun 23 2025: (Start)
Product_{n >= 0} (1 + 1/a(2^n)) = sqrt(2).
Product_{n >= 0} (1 - 1/(2*a(2^n))) = (4/7)*sqrt(2). See A002812. (End)

A015518 a(n) = 2*a(n-1) + 3*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, 7, 20, 61, 182, 547, 1640, 4921, 14762, 44287, 132860, 398581, 1195742, 3587227, 10761680, 32285041, 96855122, 290565367, 871696100, 2615088301, 7845264902, 23535794707, 70607384120, 211822152361, 635466457082
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct vertices of the complete graph K_4. - Paul Barry and Emeric Deutsch, Apr 01 2004
For n >= 1, a(n) is the number of integers k, 1 <= k <= 3^(n-1), whose ternary representation ends in an even number of zeros (see A007417). - Philippe Deléham, Mar 31 2004
Form the digraph with matrix A=[0,1,1,1;1,0,1,1;1,1,0,1;1,0,1,1]. A015518(n) corresponds to the (1,3) term of A^n. - Paul Barry, Oct 02 2004
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 4 times the bottom to get the new top. The limit of the sequence of fractions is 2. - Cino Hilliard, Sep 25 2005
(A046717(n))^2 + (2*a(n))^2 = A046717(2n). E.g., A046717(3) = 13, 2*a(3) = 14, A046717(6) = 365. 13^2 + 14^2 = 365. - Gary W. Adamson, Jun 17 2006
For n >= 2, number of ordered partitions of n-1 into parts of sizes 1 and 2 where there are two types of 1 (singletons) and three types of 2 (twins). For example, the number of possible configurations of families of n-1 male (M) and female (F) offspring considering only single births and twins, where the birth order of M/F/pair-of-twins is considered and there are three types of twins; namely, both F, both M, or one F and one M - where birth order within a pair of twins itself is disregarded. In particular, for a(3)=7, two children could be either: (1) F, then M; (2) M, then F; (3) F,F; (4) M,M; (5) F,F twins; (6) M,M twins; or (7) M,F twins (emphasizing that birth order is irrelevant here when both/all children are the same gender and when two children are within the same pair of twins). - Rick L. Shepherd, Sep 18 2004
a(n) is prime for n = {2, 3, 5, 7, 13, 23, 43, 281, 359, ...}, where only a(2) = 2 corresponds to a prime of the form (3^k - 1)/4. All prime terms, except a(2) = 2, are the primes of the form (3^k + 1)/4. Numbers k such that (3^k + 1)/4 is prime are listed in A007658. Note that all prime terms have prime indices. Prime terms are listed in A111010. - Alexander Adamchuk, Nov 19 2006
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-2, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=charpoly(A,1). - Milan Janjic, Jan 26 2010
Select an odd size subset S from {1,2,...,n}, then select an even size subset from S. - Geoffrey Critzer, Mar 02 2010
a(n) is the number of ternary sequences of length n where the numbers of (0's, 1's) are (even, odd) respectively, and, by symmetry, the number of such sequences where those numbers are (odd, even) respectively. A122983 covers (even, even), and A081251 covers (odd, odd). - Toby Gottfried, Apr 18 2010
An elephant sequence, see A175654. For the corner squares just one A[5] vector, with decimal value 341, leads to this sequence (without the leading 0). For the central square this vector leads to the companion sequence A046717 (without the first leading 1). - Johannes W. Meijer, Aug 15 2010
Let R be the commutative algebra resulting from adjoining the elements of the Klein four-group to the integers (equivalently, K = Z[x,y,z]/{x*y - z, y*z - x, x*z - y, x^2 - 1, y^2 - 1, z^2 - 1}). Then a(n) is equal to the coefficients of x, y, and z in the expansion of (x + y + z)^n. - Joseph E. Cooper III (easonrevant(AT)gmail.com), Nov 06 2010
Pisano period lengths: 1, 2, 2, 4, 4, 2, 6, 8, 2, 4, 10, 4, 6, 6, 4, 16, 16, 2, 18, 4, ... - R. J. Mathar, Aug 10 2012
The ratio a(n+1)/a(n) converges to 3 as n approaches infinity. - Felix P. Muga II, Mar 09 2014
This is a divisibility sequence, also the values of Chebyshev polynomials, and also the number of ways of packing a 2 X n-1 rectangle with dominoes and unit squares. - R. K. Guy, Dec 16 2016
For n>0, gcd(a(n),a(n+1))=1. - Kengbo Lu, Jul 02 2020

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

a(n) = A080926(n-1) + 1 = (1/3)*A054878(n+1) = (1/3)*abs(A084567(n+1)).
First differences of A033113 and A039300.
Partial sums of A046717.
The following sequences (and others) belong to the same family: A000129, A001333, A002532, A002533, A002605, A015518, A015519, A026150, A046717, A063727, A083098, A083099, A083100, A084057.
Cf. A046717.

Programs

  • Magma
    [Round(3^n/4): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
    
  • Mathematica
    Table[(3^n-(-1)^n)/4,{n,0,30}] (* Alexander Adamchuk, Nov 19 2006 *)
  • Maxima
    a(n):= round(3^n/4)$ /* Dimitri Papadopoulos, Nov 28 2023 */
  • PARI
    a(n)=round(3^n/4)
    
  • Python
    for n in range(0, 20): print(int((3**n-(-1)**n)/4), end=', ') # Stefano Spezia, Nov 30 2018
    
  • Sage
    [round(3^n/4) for n in range(0,27)]
    

Formula

G.f.: x/((1+x)*(1-3*x)).
a(n) = (3^n - (-1)^n)/4 = floor(3^n/4 + 1/2).
a(n) = 3^(n-1) - a(n-1). - Emeric Deutsch, Apr 01 2004
E.g.f.: (exp(3*x) - exp(-x))/4. Second inverse binomial transform of (5^n-1)/4, A003463. Inverse binomial transform for powers of 4, A000302 (when preceded by 0). - Paul Barry, Mar 28 2003
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k+1)*2^(2k). - Paul Barry, May 14 2003
a(n) = Sum_{k=1..n} binomial(n, k)*(-1)^(n+k)*4^(k-1). - Paul Barry, Apr 02 2003
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*2^(n-2*k)*3^k. - Paul Barry, Jul 13 2004
a(n) = U(n-1, i/sqrt(3))(-i*sqrt(3))^(n-1), i^2=-1. - Paul Barry, Nov 17 2003
G.f.: x*(1+x)^2/(1 - 6*x^2 - 8*x^3 - 3*x^4) = x(1+x)^2/characteristic polynomial(x^4*adj(K_4)(1/x)). - Paul Barry, Feb 03 2004
a(n) = sum_{k=0..3^(n-1)} A014578(k) = -(-1)^n*A014983(n) = A051068(3^(n-1)), for n > 0. - Philippe Deléham, Mar 31 2004
E.g.f.: exp(x)*sinh(2*x)/2. - Paul Barry, Oct 02 2004
a(2*n+1) = A054880(n) + 1. - M. F. Hasler, Mar 20 2008
2*a(n) + (-1)^n = A046717(n). - M. F. Hasler, Mar 20 2008
a(n) = ((1+sqrt(4))^n - (1-sqrt(4))^n)/4. - Al Hakanson (hawkuu(AT)gmail.com), Dec 31 2008
a(n) = abs(A014983(n)). - Zerinvary Lajos, May 28 2009
a(n) = round(3^n/4). - Mircea Merca, Dec 28 2010
a(n) = Sum_{k=1,3,5,...} binomial(n,k)*2^(k-1). - Geoffrey Critzer, Mar 02 2010
From Sergei N. Gladkovskii, Jul 19 2012: (Start)
G.f.: G(0)/4 where G(k)= 1 - 1/(9^k - 3*x*81^k/(3*x*9^k - 1/(1 + 1/(3*9^k - 27*x*81^k/(9*x*9^k + 1/G(k+1)))))); (continued fraction).
E.g.f.: G(0)/4 where G(k)= 1 - 1/(9^k - 3*x*81^k/(3*x*9^k - (2*k+1)/(1 + 1/(3*9^k - 27*x*81^k/(9*x*9^k + (2*k+2)/G(k+1)))))); (continued fraction). (End)
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(4*k-1)/(x*(4*k+3) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n+1) = Sum_{k = 0..n} A238801(n,k)*2^k. - Philippe Deléham, Mar 07 2014
a(n) = (-1)^(n-1)*Sum_{k=0..n-1} A135278(n-1,k)*(-4)^k = (-1)^(n-1)*Sum_{k=0..n-1} (-3)^k. Equals (-1)^(n-1)*Phi(n,-3), where Phi is the cyclotomic polynomial when n is an odd prime. (For n > 0.) - Tom Copeland, Apr 14 2014
a(n) = 2*A006342(n-1) - n mod 2 if n > 0, a(0)=0. - Yuchun Ji, Nov 30 2018
a(n) = 2*A033113(n-2) + n mod 2 if n > 0, a(0)=0. - Yuchun Ji, Aug 16 2019
a(2*k) = 2*A002452(k), a(2*k+1) = A066443(k). - Yuchun Ji, Aug 14 2019
a(n+1) = 2*Sum_{k=0..n} a(k) if n odd, and 1 + 2*Sum_{k=0..n} a(k) if n even. - Kengbo Lu, May 30 2020
a(n) = F(n) + Sum_{k=1..(n-1)} a(k)*L(n-k), for F(n) and L(n) the Fibonacci and Lucas numbers. - Kengbo Lu and Greg Dresden, Jun 05 2020
From Kengbo Lu, Jun 11 2020: (Start)
a(n) = A002605(n) + Sum_{k = 1..n-2} a(k)*A002605(n-k-1).
a(n) = A006130(n-1) + Sum_{k = 1..n-1} a(k)*A006130(n-k-1). (End)
a(2n) = Sum_{i>=0, j>=0} binomial(n-j-1,i)*binomial(n-i-1,j)* 2^(2n-2i-2j-1)* 3^(i+j). - Kengbo Lu, Jul 02 2020
a(n) = 3*a(n-1) - (-1)^n. - Dimitri Papadopoulos, Nov 28 2023
G.f.: x/((1 + x)*(1 - 3*x)) = Sum_{n >= 0} x^(n+1) * Product_{k = 1..n} (k + 3*x + 1)(1 + k*x) (a telescoping series). Cf. A007482. - Peter Bala, May 08 2024
From Peter Bala, Jun 29 2025: (Start)
For n >= 1, a(n+1) = 2^n * hypergeom([1/2 - (1/2)*n, -(1/2)*n], [-n], -3).
G.f. A(x) = x*exp(Sum_{n >= 1} a(2*n)/a(n)*x^n/n) = x + 2*x^2 + 7*x^3 + 20*x^4 + ....
sqrt(A(x)/x) is the g.f. of A002426.
The following series telescope:
Sum_{n >= 1} (-3)^n/(a(n)*a(n+1)) = -1; Sum_{n >= 1} (-3)^n/(a(n)*a(n+1)*a(n+2)*a(n+3)) = -1/98.
In general, for k >= 0, Sum_{n >= 1} (-3)^n/(a(n)*a(n+1)*...*a(n+2*k+1)) = -1/((a(1)*a(2)*...*a(2*k+1))*a(2*k+1)).
Sum_{n >= 1} 3^n/(a(n)*a(n+1)*a(n+2)) = 1/4; Sum_{n >= 1} 3^n/(a(n)*a(n+1)*a(n+2)* a(n+3)*a(n+4)) = 1/5600.
In general, for k >= 1, Sum_{n >= 1} 3^n/(a(n)*a(n+1)*...*a(n+2*k)) = 1/((a(1)*a(2)*...*a(2*k))*a(2*k)). (End)

Extensions

More terms from Emeric Deutsch, Apr 01 2004
Edited by Ralf Stephan, Aug 30 2004

A069361 Number of 3 X n binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

1, 17, 197, 1985, 18621, 167337, 1461797, 12519345, 105683341, 882516857, 7308428597, 60131384705, 492202181661, 4012347269577, 32599584662597, 264152863210065, 2135714594033581, 17236446198921497, 138901692341235797, 1117982939085627425, 8989229069675479101
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Examples

			The 17 binary arrays for n=2:
01 10 01 10 01 10 01 10 01 10 11 11 11 11 11 11 11
01 10 01 10 11 11 11 11 11 11 01 10 01 01 11 11 11
01 10 11 11 01 10 10 01 11 11 01 10 11 11 01 10 11 - _R. J. Mathar_, Jun 21 2023
		

Crossrefs

Row 3 of A359576.
Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Programs

  • Mathematica
    CoefficientList[Series[(-2 z - 1)/(16 z^3 - 58 z^2 + 15 z - 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 24 2011 *)
  • PARI
    x='x+O('x^30); Vec(x*(1+2*x)/((1-8*x)*(2*x^2-7*x+1))) \\ G. C. Greubel, Apr 22 2018

Formula

G.f.: x*(1+2*x)/((1-8*x)*(2*x^2-7*x+1)). - Vladeta Jovovic, Jul 02 2003
From Maksym Voznyy (voznyy(AT)mail.ru), Jul 25 2008: (Start)
a(n) = 15*a(n-1) - 58*a(n-2) + 16*a(n-3), where a(1)=1, a(2)=17, a(3)=197;
a(n) = 8^n + 1/sqrt(41)*4^(n+1)*((7+sqrt(41))^(-(n+1)) - (7-sqrt(41))^(-(n+1))). (End)
a(n) = 8^n - A186446(n). - R. J. Mathar, Jan 27 2020

A069395 Number of n X 20 binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

1048575, 1096024843375, 1117982939085627425, 1092719640470296684383473
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.
Previous Showing 31-40 of 360 results. Next