cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A000045 Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155
Offset: 0

Views

Author

Keywords

Comments

D. E. Knuth writes: "Before Fibonacci wrote his work, the sequence F_{n} had already been discussed by Indian scholars, who had long been interested in rhythmic patterns that are formed from one-beat and two-beat notes. The number of such rhythms having n beats altogether is F_{n+1}; therefore both Gopāla (before 1135) and Hemachandra (c. 1150) mentioned the numbers 1, 2, 3, 5, 8, 13, 21, ... explicitly." (TAOCP Vol. 1, 2nd ed.) - Peter Luschny, Jan 11 2015
In keeping with historical accounts (see the references by P. Singh and S. Kak), the generalized Fibonacci sequence a, b, a + b, a + 2b, 2a + 3b, 3a + 5b, ... can also be described as the Gopala-Hemachandra numbers H(n) = H(n-1) + H(n-2), with F(n) = H(n) for a = b = 1, and Lucas sequence L(n) = H(n) for a = 2, b = 1. - Lekraj Beedassy, Jan 11 2015
Susantha Goonatilake writes: "[T]his sequence was well known in South Asia and used in the metrical sciences. Its development is attributed in part to Pingala (200 BC), later being associated with Virahanka (circa 700 AD), Gopala (circa 1135), and Hemachandra (circa 1150)—all of whom lived and worked prior to Fibonacci." (Toward a Global Science: Mining Civilizational Knowledge, p. 126) - Russ Cox, Sep 08 2021
Also sometimes called Hemachandra numbers.
Also sometimes called Lamé's sequence.
For a photograph of "Fibonacci"'s 1202 book, see the Leonardo of Pisa link below.
F(n+2) = number of binary sequences of length n that have no consecutive 0's.
F(n+2) = number of subsets of {1,2,...,n} that contain no consecutive integers.
F(n+1) = number of tilings of a 2 X n rectangle by 2 X 1 dominoes.
F(n+1) = number of matchings (i.e., Hosoya index) in a path graph on n vertices: F(5)=5 because the matchings of the path graph on the vertices A, B, C, D are the empty set, {AB}, {BC}, {CD} and {AB, CD}. - Emeric Deutsch, Jun 18 2001
F(n) = number of compositions of n+1 with no part equal to 1. [Cayley, Grimaldi]
Positive terms are the solutions to z = 2*x*y^4 + (x^2)*y^3 - 2*(x^3)*y^2 - y^5 - (x^4)*y + 2*y for x,y >= 0 (Ribenboim, page 193). When x=F(n), y=F(n + 1) and z > 0 then z=F(n + 1).
For Fibonacci search see Knuth, Vol. 3; Horowitz and Sahni; etc.
F(n) is the diagonal sum of the entries in Pascal's triangle at 45 degrees slope. - Amarnath Murthy, Dec 29 2001 (i.e., row sums of A030528, R. J. Mathar, Oct 28 2021)
F(n+1) is the number of perfect matchings in ladder graph L_n = P_2 X P_n. - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
F(n+1) = number of (3412,132)-, (3412,213)- and (3412,321)-avoiding involutions in S_n.
This is also the Horadam sequence (0,1,1,1). - Ross La Haye, Aug 18 2003
An INVERT transform of A019590. INVERT([1,1,2,3,5,8,...]) gives A000129. INVERT([1,2,3,5,8,13,21,...]) gives A028859. - Antti Karttunen, Dec 12 2003
Number of meaningful differential operations of the k-th order on the space R^3. - Branko Malesevic, Mar 02 2004
F(n) = number of compositions of n-1 with no part greater than 2. Example: F(4) = 3 because we have 3 = 1+1+1 = 1+2 = 2+1.
F(n) = number of compositions of n into odd parts; e.g., F(6) counts 1+1+1+1+1+1, 1+1+1+3, 1+1+3+1, 1+3+1+1, 1+5, 3+1+1+1, 3+3, 5+1. - Clark Kimberling, Jun 22 2004
F(n) = number of binary words of length n beginning with 0 and having all runlengths odd; e.g., F(6) counts 010101, 010111, 010001, 011101, 011111, 000101, 000111, 000001. - Clark Kimberling, Jun 22 2004
The number of sequences (s(0),s(1),...,s(n)) such that 0 < s(i) < 5, |s(i)-s(i-1)|=1 and s(0)=1 is F(n+1); e.g., F(5+1) = 8 corresponds to 121212, 121232, 121234, 123212, 123232, 123234, 123432, 123434. - Clark Kimberling, Jun 22 2004 [corrected by Neven Juric, Jan 09 2009]
Likewise F(6+1) = 13 corresponds to these thirteen sequences with seven numbers: 1212121, 1212123, 1212321, 1212323, 1212343, 1232121, 1232123, 1232321, 1232323, 1232343, 1234321, 1234323, 1234343. - Neven Juric, Jan 09 2008
A relationship between F(n) and the Mandelbrot set is discussed in the link "Le nombre d'or dans l'ensemble de Mandelbrot" (in French). - Gerald McGarvey, Sep 19 2004
For n > 0, the continued fraction for F(2n-1)*phi = [F(2n); L(2n-1), L(2n-1), L(2n-1), ...] and the continued fraction for F(2n)*phi = [F(2n+1)-1; 1, L(2n)-2, 1, L(2n)-2, ...]. Also true: F(2n)*phi = [F(2n+1); -L(2n), L(2n), -L(2n), L(2n), ...] where L(i) is the i-th Lucas number (A000204). - Clark Kimberling, Nov 28 2004 [corrected by Hieronymus Fischer, Oct 20 2010]
For any nonzero number k, the continued fraction [4,4,...,4,k], which is n 4's and a single k, equals (F(3n) + k*F(3n+3))/(F(3n-3) + k*F(3n)). - Greg Dresden, Aug 07 2019
F(n+1) (for n >= 1) = number of permutations p of 1,2,3,...,n such that |k-p(k)| <= 1 for k=1,2,...,n. (For <= 2 and <= 3, see A002524 and A002526.) - Clark Kimberling, Nov 28 2004
The ratios F(n+1)/F(n) for n > 0 are the convergents to the simple continued fraction expansion of the golden section. - Jonathan Sondow, Dec 19 2004
Lengths of successive words (starting with a) under the substitution: {a -> ab, b -> a}. - Jeroen F.J. Laros, Jan 22 2005
The Fibonacci sequence, like any additive sequence, naturally tends to be geometric with common ratio not a rational power of 10; consequently, for a sufficiently large number of terms, Benford's law of first significant digit (i.e., first digit 1 <= d <= 9 occurring with probability log_10(d+1) - log_10(d)) holds. - Lekraj Beedassy, Apr 29 2005 (See Brown-Duncan, 1970. - N. J. A. Sloane, Feb 12 2017)
F(n+2) = Sum_{k=0..n} binomial(floor((n+k)/2),k), row sums of A046854. - Paul Barry, Mar 11 2003
Number of order ideals of the "zig-zag" poset. See vol. 1, ch. 3, prob. 23 of Stanley. - Mitch Harris, Dec 27 2005
F(n+1)/F(n) is also the Farey fraction sequence (see A097545 for explanation) for the golden ratio, which is the only number whose Farey fractions and continued fractions are the same. - Joshua Zucker, May 08 2006
a(n+2) is the number of paths through 2 plates of glass with n reflections (reflections occurring at plate/plate or plate/air interfaces). Cf. A006356-A006359. - Mitch Harris, Jul 06 2006
F(n+1) equals the number of downsets (i.e., decreasing subsets) of an n-element fence, i.e., an ordered set of height 1 on {1,2,...,n} with 1 > 2 < 3 > 4 < ... n and no other comparabilities. Alternatively, F(n+1) equals the number of subsets A of {1,2,...,n} with the property that, if an odd k is in A, then the adjacent elements of {1,2,...,n} belong to A, i.e., both k - 1 and k + 1 are in A (provided they are in {1,2,...,n}). - Brian Davey, Aug 25 2006
Number of Kekulé structures in polyphenanthrenes. See the paper by Lukovits and Janezic for details. - Parthasarathy Nambi, Aug 22 2006
Inverse: With phi = (sqrt(5) + 1)/2, round(log_phi(sqrt((sqrt(5) a(n) + sqrt(5 a(n)^2 - 4))(sqrt(5) a(n) + sqrt(5 a(n)^2 + 4)))/2)) = n for n >= 3, obtained by rounding the arithmetic mean of the inverses given in A001519 and A001906. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
A result of Jacobi from 1848 states that every symmetric matrix over a p.i.d. is congruent to a triple-diagonal matrix. Consider the maximal number T(n) of summands in the determinant of an n X n triple-diagonal matrix. This is the same as the number of summands in such a determinant in which the main-, sub- and superdiagonal elements are all nonzero. By expanding on the first row we see that the sequence of T(n)'s is the Fibonacci sequence without the initial stammer on the 1's. - Larry Gerstein (gerstein(AT)math.ucsb.edu), Mar 30 2007
Suppose psi=log(phi). We get the representation F(n)=(2/sqrt(5))*sinh(n*psi) if n is even; F(n)=(2/sqrt(5))*cosh(n*psi) if n is odd. There is a similar representation for Lucas numbers (A000032). Many Fibonacci formulas now easily follow from appropriate sinh and cosh formulas. For example: the de Moivre theorem (cosh(x)+sinh(x))^m = cosh(mx)+sinh(mx) produces L(n)^2 + 5F(n)^2 = 2L(2n) and L(n)F(n) = F(2n) (setting x=n*psi and m=2). - Hieronymus Fischer, Apr 18 2007
Inverse: floor(log_phi(sqrt(5)*F(n)) + 1/2) = n, for n > 1. Also for n > 0, floor((1/2)*log_phi(5*F(n)*F(n+1))) = n. Extension valid for integer n, except n=0,-1: floor((1/2)*sign(F(n)*F(n+1))*log_phi|5*F(n)*F(n+1)|) = n (where sign(x) = sign of x). - Hieronymus Fischer, May 02 2007
F(n+2) = the number of Khalimsky-continuous functions with a two-point codomain. - Shiva Samieinia (shiva(AT)math.su.se), Oct 04 2007
This is a_1(n) in the Doroslovacki reference.
Let phi = A001622 then phi^n = (1/phi)*a(n) + a(n+1). - Gary W. Adamson, Dec 15 2007
The sequence of first differences, F(n+1)-F(n), is essentially the same sequence: 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... - Colm Mulcahy, Mar 03 2008
Equals row sums of triangle A144152. - Gary W. Adamson, Sep 12 2008
Except for the initial term, the numerator of the convergents to the recursion x = 1/(x+1). - Cino Hilliard, Sep 15 2008
F(n) is the number of possible binary sequences of length n that obey the sequential construction rule: if last symbol is 0, add the complement (1); else add 0 or 1. Here 0,1 are metasymbols for any 2-valued symbol set. This rule has obvious similarities to JFJ Laros's rule, but is based on addition rather than substitution and creates a tree rather than a single sequence. - Ross Drewe, Oct 05 2008
F(n) = Product_{k=1..(n-1)/2} (1 + 4*cos^2 k*Pi/n), where terms = roots to the Fibonacci product polynomials, A152063. - Gary W. Adamson, Nov 22 2008
Fp == 5^((p-1)/2) mod p, p = prime [Schroeder, p. 90]. - Gary W. Adamson & Alexander R. Povolotsky, Feb 21 2009
A000032(n)^2 - 5*F(n)^2 = 4*(-1)^n. - Gary W. Adamson, Mar 11 2009
Output of Kasteleyn's formula for the number of perfect matchings of an m X n grid specializes to the Fibonacci sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
(F(n),F(n+4)) satisfies the Diophantine equation: X^2 + Y^2 - 7XY = 9*(-1)^n. - Mohamed Bouhamida, Sep 06 2009
(F(n),F(n+2)) satisfies the Diophantine equation: X^2 + Y^2 - 3XY = (-1)^n. - Mohamed Bouhamida, Sep 08 2009
a(n+2) = A083662(A131577(n)). - Reinhard Zumkeller, Sep 26 2009
Difference between number of closed walks of length n+1 from a node on a pentagon and number of walks of length n+1 between two adjacent nodes on a pentagon. - Henry Bottomley, Feb 10 2010
F(n+1) = number of Motzkin paths of length n having exactly one weak ascent. A Motzkin path of length n is a lattice path from (0,0) to (n,0) consisting of U=(1,1), D=(1,-1) and H=(1,0) steps and never going below the x-axis. A weak ascent in a Motzkin path is a maximal sequence of consecutive U and H steps. Example: a(5)=5 because we have (HHHH), (HHU)D, (HUH)D, (UHH)D, and (UU)DD (the unique weak ascent is shown between parentheses; see A114690). - Emeric Deutsch, Mar 11 2010
(F(n-1) + F(n+1))^2 - 5*F(n-2)*F(n+2) = 9*(-1)^n. - Mohamed Bouhamida, Mar 31 2010
From the Pinter and Ziegler reference's abstract: authors "show that essentially the Fibonacci sequence is the unique binary recurrence which contains infinitely many three-term arithmetic progressions. A criterion for general linear recurrences having infinitely many three-term arithmetic progressions is also given." - Jonathan Vos Post, May 22 2010
F(n+1) = number of paths of length n starting at initial node on the path graph P_4. - Johannes W. Meijer, May 27 2010
F(k) = number of cyclotomic polynomials in denominator of generating function for number of ways to place k nonattacking queens on an n X n board. - Vaclav Kotesovec, Jun 07 2010
As n->oo, (a(n)/a(n-1) - a(n-1)/a(n)) tends to 1.0. Example: a(12)/a(11) - a(11)/a(12) = 144/89 - 89/144 = 0.99992197.... - Gary W. Adamson, Jul 16 2010
From Hieronymus Fischer, Oct 20 2010: (Start)
Fibonacci numbers are those numbers m such that m*phi is closer to an integer than k*phi for all k, 1 <= k < m. More formally: a(0)=0, a(1)=1, a(2)=1, a(n+1) = minimal m > a(n) such that m*phi is closer to an integer than a(n)*phi.
For all numbers 1 <= k < F(n), the inequality |k*phi-round(k*phi)| > |F(n)*phi-round(F(n)*phi)| holds.
F(n)*phi - round(F(n)*phi) = -((-phi)^(-n)), for n > 1.
Fract(1/2 + F(n)*phi) = 1/2 -(-phi)^(-n), for n > 1.
Fract(F(n)*phi) = (1/2)*(1 + (-1)^n) - (-phi)^(-n), n > 1.
Inverse: n = -log_phi |1/2 - fract(1/2 + F(n)*phi)|.
(End)
F(A001177(n)*k) mod n = 0, for any integer k. - Gary Detlefs, Nov 27 2010
F(n+k)^2 - F(n)^2 = F(k)*F(2n+k), for even k. - Gary Detlefs, Dec 04 2010
F(n+k)^2 + F(n)^2 = F(k)*F(2n+k), for odd k. - Gary Detlefs, Dec 04 2010
F(n) = round(phi*F(n-1)) for n > 1. - Joseph P. Shoulak, Jan 13 2012
For n > 0: a(n) = length of n-th row in Wythoff array A003603. - Reinhard Zumkeller, Jan 26 2012
From Bridget Tenner, Feb 22 2012: (Start)
The number of free permutations of [n].
The number of permutations of [n] for which s_k in supp(w) implies s_{k+-1} not in supp(w).
The number of permutations of [n] in which every decomposition into length(w) reflections is actually composed of simple reflections. (End)
The sequence F(n+1)^(1/n) is increasing. The sequence F(n+2)^(1/n) is decreasing. - Thomas Ordowski, Apr 19 2012
Two conjectures: For n > 1, F(n+2)^2 mod F(n+1)^2 = F(n)*F(n+1) - (-1)^n. For n > 0, (F(2n) + F(2n+2))^2 = F(4n+3) + Sum_{k = 2..2n} F(2k). - Alex Ratushnyak, May 06 2012
From Ravi Kumar Davala, Jan 30 2014: (Start)
Proof of Ratushnyak's first conjecture: For n > 1, F(n+2)^2 - F(n)*F(n+1) + (-1)^n = 2*F(n+1)^2.
Consider: F(n+2)^2 - F(n)*F(n+1) - 2*F(n+1)^2
= F(n+2)^2 - F(n+1)^2 - F(n+1)^2 - F(n)*F(n+1)
= (F(n+2) + F(n+1))*(F(n+2) - F(n+1)) - F(n+1)*(F(n+1) + F(n))
= F(n+3)*F(n) - F(n+1)*F(n+2) = -(-1)^n.
Proof of second conjecture: L(n) stands for Lucas number sequence from A000032.
Consider the fact that
L(2n+1)^2 = L(4n+2) - 2
(F(2n) + F(2n+2))^2 = F(4n+1) + F(4n+3) - 2
(F(2n) + F(2n+2))^2 = (Sum_{k = 2..2n} F(2k)) + F(4n+3).
(End)
The relationship: INVERT transform of (1,1,0,0,0,...) = (1, 2, 3, 5, 8, ...), while the INVERT transform of (1,0,1,0,1,0,1,...) = (1, 1, 2, 3, 5, 8, ...) is equivalent to: The numbers of compositions using parts 1 and 2 is equivalent to the numbers of compositions using parts == 1 (mod 2) (i.e., the odd integers). Generally, the numbers of compositions using parts 1 and k is equivalent to the numbers of compositions of (n+1) using parts 1 mod k. Cf. A000930 for k = 3 and A003269 for k = 4. Example: for k = 2, n = 4 we have the compositions (22; 211, 121; 112; 1111) = 5; but using parts 1 and 3 we have for n = 5: (311, 131, 113, 11111, 5) = 5. - Gary W. Adamson, Jul 05 2012
The sequence F(n) is the binomial transformation of the alternating sequence (-1)^(n-1)*F(n), whereas the sequence F(n+1) is the binomial transformation of the alternating sequence (-1)^n*F(n-1). Both of these facts follow easily from the equalities a(n;1)=F(n+1) and b(n;1)=F(n) where a(n;d) and b(n;d) are so-called "delta-Fibonacci" numbers as defined in comments to A014445 (see also the papers of Witula et al.). - Roman Witula, Jul 24 2012
F(n) is the number of different (n-1)-digit binary numbers such that all substrings of length > 1 have at least one digit equal to 1. Example: for n = 5 there are 8 binary numbers with n - 1 = 4 digits (1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111), only the F(n) = 5 numbers 1010, 1011, 1101, 1110 and 1111 have the desired property. - Hieronymus Fischer, Nov 30 2012
For positive n, F(n+1) equals the determinant of the n X n tridiagonal matrix with 1's along the main diagonal, i's along the superdiagonal and along the subdiagonal where i = sqrt(-1). Example: Det([1,i,0,0; i,1,i,0; 0,i,1,i; 0,0,i,1]) = F(4+1) = 5. - Philippe Deléham, Feb 24 2013
For n >= 1, number of compositions of n where there is a drop between every second pair of parts, starting with the first and second part; see example. Also, a(n+1) is the number of compositions where there is a drop between every second pair of parts, starting with the second and third part; see example. - Joerg Arndt, May 21 2013 [see the Hopkins/Tangboonduangjit reference for a proof, see also the Checa reference for alternative proofs and statistics]
Central terms of triangles in A162741 and A208245, n > 0. - Reinhard Zumkeller, Jul 28 2013
For n >= 4, F(n-1) is the number of simple permutations in the geometric grid class given in A226433. - Jay Pantone, Sep 08 2013
a(n) are the pentagon (not pentagonal) numbers because the algebraic degree 2 number rho(5) = 2*cos(Pi/5) = phi (golden section), the length ratio diagonal/side in a pentagon, has minimal polynomial C(5,x) = x^2 - x - 1 (see A187360, n=5), hence rho(5)^n = a(n-1)*1 + a(n)*rho(5), n >= 0, in the power basis of the algebraic number field Q(rho(5)). One needs a(-1) = 1 here. See also the P. Steinbach reference under A049310. - Wolfdieter Lang, Oct 01 2013
A010056(a(n)) = 1. - Reinhard Zumkeller, Oct 10 2013
Define F(-n) to be F(n) for n odd and -F(n) for n even. Then for all n and k, F(n+2k)^2 - F(n)^2 = F(n+k)*( F(n+3k) - F(n-k) ). - Charlie Marion, Dec 20 2013
( F(n), F(n+2k) ) satisfies the Diophantine equation: X^2 + Y^2 - L(2k)*X*Y = F(4k)^2*(-1)^n. This generalizes Bouhamida's comments dated Sep 06 2009 and Sep 08 2009. - Charlie Marion, Jan 07 2014
For any prime p there is an infinite periodic subsequence within F(n) divisible by p, that begins at index n = 0 with value 0, and its first nonzero term at n = A001602(i), and period k = A001602(i). Also see A236479. - Richard R. Forberg, Jan 26 2014
Range of row n of the circular Pascal array of order 5. - Shaun V. Ault, May 30 2014 [orig. Kicey-Klimko 2011, and observations by Glen Whitehead; more general work found in Ault-Kicey 2014]
Nonnegative range of the quintic polynomial 2*y - y^5 + 2*x*y^4 + x^2*y^3 - 2*x^3*y^2 - x^4*y with x, y >= 0, see Jones 1975. - Charles R Greathouse IV, Jun 01 2014
The expression round(1/(F(k+1)/F(n) + F(k)/F(n+1))), for n > 0, yields a Fibonacci sequence with k-1 leading zeros (with rounding 0.5 to 0). - Richard R. Forberg, Aug 04 2014
Conjecture: For n > 0, F(n) is the number of all admissible residue classes for which specific finite subsequences of the Collatz 3n + 1 function consists of n+2 terms. This has been verified for 0 < n < 51. For details see Links. - Mike Winkler, Oct 03 2014
a(4)=3 and a(6)=8 are the only Fibonacci numbers that are of the form prime+1. - Emmanuel Vantieghem, Oct 02 2014
a(1)=1=a(2), a(3)=2 are the only Fibonacci numbers that are of the form prime-1. - Emmanuel Vantieghem, Jun 07 2015
Any consecutive pair (m, k) of the Fibonacci sequence a(n) illustrates a fair equivalence between m miles and k kilometers. For instance, 8 miles ~ 13 km; 13 miles ~ 21 km. - Lekraj Beedassy, Oct 06 2014
a(n+1) counts closed walks on K_2, containing one loop on the other vertex. Equivalently the (1,1)entry of A^(n+1) where the adjacency matrix of digraph is A=(0,1; 1,1). - _David Neil McGrath, Oct 29 2014
a(n-1) counts closed walks on the graph G(1-vertex;l-loop,2-loop). - David Neil McGrath, Nov 26 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x) = [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)].
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)].
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].
(End)
F(n+1) equals the number of binary words of length n avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Russell Jay Hendel, Apr 12 2015: (Start)
We prove Conjecture 1 of Rashid listed in the Formula section.
We use the following notation: F(n)=A000045(n), the Fibonacci numbers, and L(n) = A000032(n), the Lucas numbers. The fundamental Fibonacci-Lucas recursion asserts that G(n) = G(n-1) + G(n-2), with "L" or "F" replacing "G".
We need the following prerequisites which we label (A), (B), (C), (D). The prerequisites are formulas in the Koshy book listed in the References section. (A) F(m-1) + F(m+1) = L(m) (Koshy, p. 97, #32), (B) L(2m) + 2*(-1)^m = L(m)^2 (Koshy p. 97, #41), (C) F(m+k)*F(m-k) = (-1)^n*F(k)^2 (Koshy, p. 113, #24, Tagiuri's identity), and (D) F(n)^2 + F(n+1)^2 = F(2n+1) (Koshy, p. 97, #30).
We must also prove (E), L(n+2)*F(n-1) = F(2n+1)+2*(-1)^n. To prove (E), first note that by (A), proof of (E) is equivalent to proving that F(n+1)*F(n-1) + F(n+3)*F(n-1) = F(2n+1) + 2*(-1)^n. But by (C) with k=1, we have F(n+1)*F(n-1) = F(n)^2 + (-1)^n. Applying (C) again with k=2 and m=n+1, we have F(n+3)*F(n-1) = F(n+1) + (-1)^n. Adding these two applications of (C) together and using (D) we have F(n+1)*F(n-1) + F(n+3)*F(n-1) = F(n)^2 + F(n+1)^2 + 2*(-1)^n = F(2n+1) + 2(-1)^n, completing the proof of (E).
We now prove Conjecture 1. By (A) and the Fibonacci-Lucas recursion, we have F(2n+1) + F(2n+2) + F(2n+3) + F(2n+4) = (F(2n+1) + F(2n+3)) + (F(2n+2) + F(2n+4)) = L(2n+2) +L(2n+3) = L(2n+4). But then by (B), with m=2n+4, we have sqrt(L(2n+4) + 2(-1)^n) = L(n+2). Finally by (E), we have L(n+2)*F(n-1) = F(2n+1) + 2*(-1)^n. Dividing both sides by F(n-1), we have (F(2n+1) + 2*(-1)^n)/F(n-1) = L(n+2) = sqrt(F(2n+1) + F(2n+2) + F(2n+3) + F(2n+4) + 2(-1)^n), as required.
(End)
In Fibonacci's Liber Abaci the rabbit problem appears in the translation of L. E. Sigler on pp. 404-405, and a remark [27] on p. 637. - Wolfdieter Lang, Apr 17 2015
a(n) counts partially ordered partitions of (n-1) into parts 1,2,3 where only the order of adjacent 1's and 2's are unimportant. (See example.) - David Neil McGrath, Jul 27 2015
F(n) divides F(n*k). Proved by Marjorie Bicknell and Verner E Hoggatt Jr. - Juhani Heino, Aug 24 2015
F(n) is the number of UDU-equivalence classes of ballot paths of length n. Two ballot paths of length n with steps U = (1,1), D = (1,-1) are UDU-equivalent whenever the positions of UDU are the same in both paths. - Kostas Manes, Aug 25 2015
Cassini's identity F(2n+1) * F(2n+3) = F(2n+2)^2 + 1 is the basis for a geometrical paradox (or dissection fallacy) in A262342. - Jonathan Sondow, Oct 23 2015
For n >= 4, F(n) is the number of up-down words on alphabet {1,2,3} of length n-2. - Ran Pan, Nov 23 2015
F(n+2) is the number of terms in p(n), where p(n)/q(n) is the n-th convergent of the formal infinite continued fraction [a(0),a(1),...]; e.g., p(3) = a(0)a(1)a(2)a(3) + a(0)a(1) + a(0)a(3) + a(2)a(3) + 1 has F(5) terms. Also, F(n+1) is the number of terms in q(n). - Clark Kimberling, Dec 23 2015
F(n+1) (for n >= 1) is the permanent of an n X n matrix M with M(i,j)=1 if |i-j| <= 1 and 0 otherwise. - Dmitry Efimov, Jan 08 2016
A trapezoid has three sides of lengths in order F(n), F(n+2), F(n). For increasing n a very close approximation to the maximum area will have the fourth side equal to 2*F(n+1). For a trapezoid with lengths of sides in order F(n+2), F(n), F(n+2), the fourth side will be F(n+3). - J. M. Bergot, Mar 17 2016
(1) Join two triangles with lengths of sides L(n), F(n+3), L(n+2) and F(n+2), L(n+1), L(n+2) (where L(n)=A000032(n)) along the common side of length L(n+2) to create an irregular quadrilateral. Its area is approximately 5*F(2*n-1) - (F(2*n-7) - F(2*n-13))/5. (2) Join two triangles with lengths of sides L(n), F(n+2), F(n+3) and L(n+1), F(n+1), F(n+3) along the common side F(n+3) to form an irregular quadrilateral. Its area is approximately 4*F(2*n-1) - 2*(F(2*n-7) + F(2*n-18)). - J. M. Bergot, Apr 06 2016
From Clark Kimberling, Jun 13 2016: (Start)
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*.
Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2, x}, g(3) = {3, 2x, x+1, x^2}, etc.
Let T(r) be the tree obtained by substituting r for x.
If a positive integer N is not a square and r = sqrt(N), then the number of (not necessarily distinct) integers in g(n) is A000045(n), for n >= 1. See A274142. (End)
Consider the partitions of n, with all summands initially listed in nonincreasing order. Freeze all the 1's in place and then allow all the other summands to change their order, without displacing any of the 1's. The resulting number of arrangements is a(n+1). - Gregory L. Simay, Jun 14 2016
Limit of the matrix power M^k shown in A163733, Sep 14 2016, as k->infinity results in a single column vector equal to the Fibonacci sequence. - Gary W. Adamson, Sep 19 2016
F(n) and Lucas numbers L(n), being related by the formulas F(n) = (F(n-1) + L(n-1))/2 and L(n) = 2 F(n+1) - F(n), are a typical pair of "autosequences" (see the link to OEIS Wiki). - Jean-François Alcover, Jun 10 2017
Also the number of independent vertex sets and vertex covers in the (n-2)-path graph. - Eric W. Weisstein, Sep 22 2017
Shifted numbers of {UD, DU, FD, DF}-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths. - Sergey Kirgizov, Apr 08 2018
For n > 0, F(n) = the number of Markov equivalence classes with skeleton the path on n nodes. See Theorem 2.1 in the article by A. Radhakrishnan et al. below. - Liam Solus, Aug 23 2018
For n >= 2, also: number of terms in A032858 (every other base-3 digit is strictly smaller than its neighbors) with n-2 digits in base 3. - M. F. Hasler, Oct 05 2018
F(n+1) is the number of fixed points of the Foata transformation on S_n. - Kevin Long, Oct 17 2018
F(n+2) is the dimension of the Hecke algebra of type A_n with independent parameters (0,1,0,1,...) or (1,0,1,0,...). See Corollary 1.5 in the link "Hecke algebras with independent parameters". - Jia Huang, Jan 20 2019
The sequence is the second INVERT transform of (1, -1, 2, -3, 5, -8, 13, ...) and is the first sequence in an infinite set of successive INVERT transforms generated from (1, 0, 1, 0, 1, ...). Refer to the array shown in A073133. - Gary W. Adamson, Jul 16 2019
From Kai Wang, Dec 16 2019: (Start)
F(n*k)/F(k) = Sum_{i=0..n-1; j=0..n-1; i+2*j=n-1} (-1)^(j*(k-1))*L(k)^i*((i+j)!/(i!*j!)).
F((2*m+1)*k)/F(k) = Sum_{i=0..m-1} (-1)^(i*k)*L((2*m-2*i)*k) + (-1)^(m*k).
F(2*m*k)/F(k) = Sum_{i=0..m-1} (-1)^(i*k)*L((2*m-2*i-1)*k).
F(m+s)*F(n+r) - F(m+r)*F(n+s) = (-1)^(n+s)*F(m-n)*F(r-s).
F(m+r)*F(n+s) + F(m+s)*F(n+r) = (2*L(m+n+r+s) - (-1)^(n+s)*L(m-n)*L(r-s))/5.
L(m+r)*L(n+s) - 5*F(m+s)*F(n+r) = (-1)^(n+s)*L(m-n)*L(r-s).
L(m+r)*L(n+s) + 5*F(m+s)*F(n+r) = 2*L(m+n+r+s) + (-1)^(n+s)*5*F(m-n)*F(r-s).
L(m+r)*L(n+s) - L(m+s)*L(n+r) = (-1)^(n+s)*5*F(m-n)*F(r-s). (End)
F(n+1) is the number of permutations in S_n whose principal order ideals in the weak order are Boolean lattices. - Bridget Tenner, Jan 16 2020
F(n+1) is the number of permutations w in S_n that form Boolean intervals [s, w] in the weak order for every simple reflection s in the support of w. - Bridget Tenner, Jan 16 2020
F(n+1) is the number of subsets of {1,2,.,.,n} in which all differences between successive elements of subsets are odd. For example, for n = 6, F(7) = 13 and the 13 subsets are {6}, {1,6}, {3,6}, {5,6}, {2,3,6}, {2,5,6}, {4,5,6}, {1,2,3,6}, {1,2,5,6}, {1,4,5,6}, {3,4,5,6}, {2,3,4,5,6}, {1,2,3,4,5,6}. For even differences between elements see Comment in A016116. - Enrique Navarrete, Jul 01 2020
F(n) is the number of subsets of {1,2,...,n} in which the smallest element of the subset equals the size of the subset (this type of subset is sometimes called extraordinary). For example, F(6) = 8 and the subsets are {1}, {2,3}, {2,4}, {2,5}, {3,4,5}, {2,6}, {3,4,6}, {3,5,6}. It is easy to see that these subsets follow the Fibonacci recursion F(n) = F(n-1) + F(n-2) since we get F(n) such subsets by keeping all F(n-1) subsets from the previous stage (in the example, the F(5)=5 subsets that don't include 6), and by adding one to all elements and appending an additional element n to each subset in F(n-2) subsets (in the example, by applying this to the F(4)=3 subsets {1}, {2,3}, {2,4} we obtain {2,6}, {3,4,6}, {3,5,6}). - Enrique Navarrete, Sep 28 2020
Named "série de Fibonacci" by Lucas (1877) after the Italian mathematician Fibonacci (Leonardo Bonacci, c. 1170 - c. 1240/50). In 1876 he named the sequence "série de Lamé" after the French mathematician Gabriel Lamé (1795 - 1870). - Amiram Eldar, Apr 16 2021
F(n) is the number of edge coverings of the path with n edges. - M. Farrokhi D. G., Sep 30 2021
LCM(F(m), F(n)) is a Fibonacci number if and only if either F(m) divides F(n) or F(n) divides F(m). - M. Farrokhi D. G., Sep 30 2021
Every nonunit positive rational number has at most one representation as the quotient of two Fibonacci numbers. - M. Farrokhi D. G., Sep 30 2021
The infinite sum F(n)/10^(n-1) for all natural numbers n is equal to 100/89. More generally, the sum of F(n)/(k^(n-1)) for all natural numbers n is equal to k^2/(k^2-k-1). Jonatan Djurachkovitch, Dec 31 2023
For n >= 1, number of compositions (c(1),c(2),...,c(k)) of n where c(1), c(3), c(5), ... are 1. To obtain such compositions K(n) of length n increase all parts c(2) by one in all of K(n-1) and prepend two parts 1 in all of K(n-2). - Joerg Arndt, Jan 05 2024
Cohn (1964) proved that a(12) = 12^2 is the only square in the sequence greater than a(1) = 1. - M. F. Hasler, Dec 18 2024
Product_{i=n-2..n+2} F(i) = F(n)^5 - F(n). For example, (F(4)F(5)F(6)F(7)F(8))=(3 * 5 * 8 * 13 * 21) = 8^5 - 8. - Jules Beauchamp, Apr 28 2025
F(n) is even iff n is a multiple of 3. - Stefano Spezia, Jul 06 2025

Examples

			For x = 0,1,2,3,4, x=1/(x+1) = 1, 1/2, 2/3, 3/5, 5/8. These fractions have numerators 1,1,2,3,5, which are the 2nd to 6th terms of the sequence. - _Cino Hilliard_, Sep 15 2008
From _Joerg Arndt_, May 21 2013: (Start)
There are a(7)=13 compositions of 7 where there is a drop between every second pair of parts, starting with the first and second part:
01:  [ 2 1 2 1 1 ]
02:  [ 2 1 3 1 ]
03:  [ 2 1 4 ]
04:  [ 3 1 2 1 ]
05:  [ 3 1 3 ]
06:  [ 3 2 2 ]
07:  [ 4 1 2 ]
08:  [ 4 2 1 ]
09:  [ 4 3 ]
10:  [ 5 1 1 ]
11:  [ 5 2 ]
12:  [ 6 1 ]
13:  [ 7 ]
There are abs(a(6+1))=13 compositions of 6 where there is no rise between every second pair of parts, starting with the second and third part:
01:  [ 1 2 1 2 ]
02:  [ 1 3 1 1 ]
03:  [ 1 3 2 ]
04:  [ 1 4 1 ]
05:  [ 1 5 ]
06:  [ 2 2 1 1 ]
07:  [ 2 3 1 ]
08:  [ 2 4 ]
09:  [ 3 2 1 ]
10:  [ 3 3 ]
11:  [ 4 2 ]
12:  [ 5 1 ]
13:  [ 6 ]
(End)
Partially ordered partitions of (n-1) into parts 1,2,3 where only the order of the adjacent 1's and 2's are unimportant. E.g., a(8)=21. These are (331),(313),(133),(322),(232),(223),(3211),(2311),(1321),(2131),(1132),(2113),(31111),(13111),(11311),(11131),(11113),(2221),(22111),(211111),(1111111). - _David Neil McGrath_, Jul 25 2015
Consider the partitions of 7 with summands initially listed in nonincreasing order. Keep the 1's frozen in position (indicated by "[]") and then allow the other summands to otherwise vary their order: 7; 6,[1]; 5,2; 2,5; 4,3; 3,4; 5,[1,1], 4,2,[1]; 2,4,[1]; 3,3,[1]; 3,3,2; 3,2,3; 2,3,3; 4,[1,1,1]; 3,2,[1,1]; 2,3,[1,1]; 2,2,2,[1]; 3,[1,1,1,1]; 2,2,[1,1,1]; 2,[1,1,1,1,1]; [1,1,1,1,1,1,1]. There are 21 = a(7+1) arrangements in all. - _Gregory L. Simay_, Jun 14 2016
		

References

  • Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 70.
  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 84.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 4.
  • Marjorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 24 (Ex. 18), 489, 541.
  • A. Cayley, Theorems in Trigonometry and on Partitions, Messenger of Mathematics, 5 (1876), pp. 164, 188 = Mathematical Papers Vol. 10, n. 634, p. 16.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 84, 111-124, 202-203.
  • B. A. Davey and H. A. Priestley, Introduction to Lattices and Order (2nd edition), CUP, 2002. (See Exercise 1.15.)
  • B. Davis, 'The law of first digits' in 'Science Today' (subsequently renamed '2001') March 1980 p. 55, Times of India, Mumbai.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.
  • R. P. Grimaldi, Compositions without the summand 1, Proceedings Thirty-second Southeastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001). Congr. Numer. 152 (2001), 33-43.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, pp. 286-288.
  • H. Halberstam and K. F. Roth, Sequences, Oxford, 1966; see Appendix.
  • S. Happersett, "Mathematical meditations", Journal of Mathematics and the Arts, 1 (2007), 29 - 33.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954; see esp. p. 148.
  • V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
  • E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press, 1976; p. 338.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 63.
  • C. Kicey and K. Klimko, Some geometry of Pascal's triangle, Pi Mu Epsilon Journal, 13(4):229-245 (2011).
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 78; Vol. 3, Section 6.2.1.
  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
  • Leonardo of Pisa [Leonardo Pisano], Liber Abaci [The Book of Calculation], 1202.
  • D. Litchfield, D. Goldenheim and C. H. Dietrich, Euclid, Fibonacci and Sketchpad, Math. Teacher, 90 (1997).
  • Lukovits et al., Nanotubes: Number of Kekulé structures and aromaticity, J. Chem. Inf. Comput. Sci, (2003), vol. 43, 609-614. See eq. 2 on page 610.
  • I. Lukovits and D. Janezic, "Enumeration of conjugated circuits in nanotubes", J. Chem. Inf. Comput. Sci., vol. 44, 410-414 (2004). See Table 1, second column.
  • B. Malesevic: Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
  • G. Mantel, Resten van wederkeerige Reeksen, Nieuw Archief v. Wiskunde, 2nd series, I (1894), 172-184.
  • C. N. Menhinick, The Fibonacci Resonance and other new Golden Ratio discoveries, Onperson, (2015), pages 200-206.
  • S. Mneimneh, Fibonacci in The Curriculum: Not Just a Bad Recurrence, in Proceeding SIGCSE '15 Proceedings of the 46th ACM Technical Symposium on Computer Science Education, Pages 253-258.
  • Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop, Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp 4623-4627.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 49.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 274.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 55-58, 255-260.
  • Alfred S. Posamentier and I. Lehmann, The Fabulous Fibonacci Numbers, Prometheus Books, Amherst, NY 2007.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996.
  • Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 3.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 45, 59.
  • J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978.
  • A. M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 288.
  • Manfred R. Schroeder, "Number Theory in Science and Communication", 5th ed., Springer-Verlag, 2009
  • L. E. Sigler, Fibonacci's Liber Abaci, Springer, 2003, pp. 404-405 and [26] on p. 627.
  • Simson, [No first name given], An explanation of an obscure passage in Albert Girard's Commentary ..., Phil. Trans. Royal Soc., 10 (1753), 430-433.
  • Parmanand Singh, The so-called fibonacci numbers in ancient and medieval India, Historia Mathematica, vol. 12 (1985), 229-244.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 26-30.
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
  • N. N. Vorob'ev, Chisla fibonachchi [Russian], Moscow, 1951. English translation, Fibonacci Numbers, Blaisdell, New York and London, 1961.
  • N. N. Vorobiev, Fibonacci Numbers, Birkhauser (Basel; Boston) 2002.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 61-67, Penguin Books 1987.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 53.
  • R. Witula, D. Slota, delta-Fibonacci Numbers, Appl. Anal. Discrete Math., 3 (2009), 310-329.

Crossrefs

First row of arrays A103323, A172236, A234357. Second row of arrays A099390, A048887, and A092921 (k-generalized Fibonacci numbers).
Cf. also A001175 (Pisano periods), A001177 (Entry points), A001176 (number of zeros in a fundamental period).
Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074.
Fibonacci-Cayley triangle: A327992.
Boustrophedon transforms: A000738, A000744.
Numbers of prime factors: A022307 and A038575.
Cf. A061446 (primitive part of Fibonacci numbers), A000010 (comments on product formulas).
Number of digits of F(n): A020909 (base 2), A020911 (base 3), A020912 (base 4), A020913 (base 5), A060384 (base 10), A261585 (base 60).

Programs

  • Axiom
    [fibonacci(n) for n in 0..50]
    
  • GAP
    Fib:=[0,1];; for n in [3..10^3] do Fib[n]:=Fib[n-1]+Fib[n-2]; od; Fib; # Muniru A Asiru, Sep 03 2017
    
  • Haskell
    -- Based on code from http://www.haskell.org/haskellwiki/The_Fibonacci_sequence
    -- which also has other versions.
    fib :: Int -> Integer
    fib n = fibs !! n
        where
            fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
    {- Example of use: map fib [0..38] Gerald McGarvey, Sep 29 2009 -}
    
  • Julia
    function fib(n)
       F = BigInt[1 1; 1 0]
       Fn = F^n
       Fn[2, 1]
    end
    println([fib(n) for n in 0:38]) # Peter Luschny, Feb 23 2017
    
  • Julia
    # faster
    function fibrec(n::Int)
        n == 0 && return (BigInt(0), BigInt(1))
        a, b = fibrec(div(n, 2))
        c = a * (b * 2 - a)
        d = a * a + b * b
        iseven(n) ? (c, d) : (d, c + d)
    end
    fibonacci(n::Int) = fibrec(n)[1]
    println([fibonacci(n) for n in 0:40]) # Peter Luschny, Apr 03 2022
    
  • Magma
    [Fibonacci(n): n in [0..38]];
    
  • Maple
    A000045 := proc(n) combinat[fibonacci](n); end;
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 1)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..38); # Zerinvary Lajos, Apr 04 2008
    spec := [B, {B=Sequence(Set(Z, card>1))}, unlabeled ]: seq(combstruct[count](spec, size=n), n=1..39); # Zerinvary Lajos, Apr 04 2008
    # The following Maple command isFib(n) yields true or false depending on whether n is a Fibonacci number or not.
    with(combinat): isFib := proc(n) local a: a := proc(n) local j: for j while fibonacci(j) <= n do fibonacci(j) end do: fibonacci(j-1) end proc: evalb(a(n) = n) end proc: # Emeric Deutsch, Nov 11 2014
  • Mathematica
    Table[Fibonacci[k], {k, 0, 50}] (* Mohammad K. Azarian, Jul 11 2015 *)
    Table[2^n Sqrt @ Product[(Cos[Pi k/(n + 1)]^2 + 1/4), {k, n}] // FullSimplify, {n, 15}]; (* Kasteleyn's formula specialized, Sarah-Marie Belcastro, Jul 04 2009 *)
    LinearRecurrence[{1, 1}, {0, 1}, 40] (* Harvey P. Dale, Aug 03 2014 *)
    Fibonacci[Range[0, 20]] (* Eric W. Weisstein, Sep 22 2017 *)
    CoefficientList[Series[-(x/(-1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 22 2017 *)
  • Maxima
    makelist(fib(n),n,0,100); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    a(n) = fibonacci(n)
    
  • PARI
    a(n) = imag(quadgen(5)^n)
    
  • PARI
    a(n)=my(phi=quadgen(5));(phi^n-(-1/phi)^n)/(2*phi-1) \\ Charles R Greathouse IV, Jun 17 2012
    
  • PARI
    is_A000045=A010056 \\ Characteristic function: see there. - M. F. Hasler, Feb 21 2025
    
  • Python
    # From Jaap Spies, Jan 05 2007, updated by Peter Luschny, Feb 21 2023:
    from itertools import islice
    def fib_gen():
        x, y = 0, 1
        while True:
            yield x
            x, y = y, x + y
    fib_list = lambda n: list(islice(fib_gen(), n))
    
  • Python
    is_A000045 = A010056 # See there: Characteristic function. Used e.g. in A377092.
    A000045 = lambda n: (4<M. F. Hasler, improving old code from 2023, Feb 20 2025
    
  • Python
    [(i:=-1)+(j:=1)] + [(j:=i+j)+(i:=j-i) for  in range(100)] # _Jwalin Bhatt, Apr 03 2025
    
  • Sage
    # Demonstration program from Jaap Spies:
    a = sloane.A000045; # choose sequence
    print(a)            # This returns the name of the sequence.
    print(a(38))        # This returns the 38th term of the sequence.
    print(a.list(39))   # This returns a list of the first 39 terms.
    
  • Sage
    a = BinaryRecurrenceSequence(1,1); print([a(n) for n in range(20)])
    # Closed form integer formula with F(1) = 0 from Paul Hankin (see link).
    F = lambda n: (4<<(n-1)*(n+2))//((4<<2*(n-1))-(2<<(n-1))-1)&((2<<(n-1))-1)
    print([F(n) for n in range(20)]) # Peter Luschny, Aug 28 2016
    
  • Sage
    print(list(fibonacci_sequence(0, 40))) # Bruno Berselli, Jun 26 2014
    
  • Scala
    def fibonacci(n: BigInt): BigInt = {
      val zero = BigInt(0)
      def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match {
        case `zero` => a
        case _ => fibTail(n - 1, b, a + b)
      }
      fibTail(n, 0, 1)
    } // Based on "Case 3: Tail Recursion" from Carrasquel (2016) link
    (0 to 49).map(fibonacci()) // _Alonso del Arte, Apr 13 2019

Formula

G.f.: x / (1 - x - x^2).
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x). - Paul D. Hanna, Oct 26 2013
F(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)).
Alternatively, F(n) = ((1/2+sqrt(5)/2)^n - (1/2-sqrt(5)/2)^n)/sqrt(5).
F(n) = F(n-1) + F(n-2) = -(-1)^n F(-n).
F(n) = round(phi^n/sqrt(5)).
F(n+1) = Sum_{j=0..floor(n/2)} binomial(n-j, j).
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 03 2017
E.g.f.: (2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2). - Len Smiley, Nov 30 2001
[0 1; 1 1]^n [0 1] = [F(n); F(n+1)]
x | F(n) ==> x | F(kn).
A sufficient condition for F(m) to be divisible by a prime p is (p - 1) divides m, if p == 1 or 4 (mod 5); (p + 1) divides m, if p == 2 or 3 (mod 5); or 5 divides m, if p = 5. (This is essentially Theorem 180 in Hardy and Wright.) - Fred W. Helenius (fredh(AT)ix.netcom.com), Jun 29 2001
a(n)=F(n) has the property: F(n)*F(m) + F(n+1)*F(m+1) = F(n+m+1). - Miklos Kristof, Nov 13 2003
From Kurmang. Aziz. Rashid, Feb 21 2004: (Start)
Conjecture 1: for n >= 2, sqrt(F(2n+1) + F(2n+2) + F(2n+3) + F(2n+4) + 2*(-1)^n) = (F(2n+1) + 2*(-1)^n)/F(n-1). [For a proof see Comments section.]
Conjecture 2: for n >= 0, (F(n+2)*F(n+3)) - (F(n+1)*F(n+4)) + (-1)^n = 0.
[Two more conjectures removed by Peter Luschny, Nov 17 2017]
Theorem 1: for n >= 0, (F(n+3)^ 2 - F(n+1)^ 2)/F(n+2) = (F(n+3)+ F(n+1)).
Theorem 2: for n >= 0, F(n+10) = 11*F(n+5) + F(n).
Theorem 3: for n >= 6, F(n) = 4*F(n-3) + F(n-6). (End)
Conjecture 2 of Rashid is actually a special case of the general law F(n)*F(m) + F(n+1)*F(m+1) = F(n+m+1) (take n <- n+1 and m <- -(n+4) in this law). - Harmel Nestra (harmel.nestra(AT)ut.ee), Apr 22 2005
Conjecture 2 of Rashid Kurmang simplified: F(n)*F(n+3) = F(n+1)*F(n+2)-(-1)^n. Follows from d'Ocagne's identity: m=n+2. - Alex Ratushnyak, May 06 2012
Conjecture: for all c such that 2-phi <= c < 2*(2-phi) we have F(n) = floor(phi*a(n-1)+c) for n > 2. - Gerald McGarvey, Jul 21 2004
For x > phi, Sum_{n>=0} F(n)/x^n = x/(x^2 - x - 1). - Gerald McGarvey, Oct 27 2004
F(n+1) = exponent of the n-th term in the series f(x, 1) determined by the equation f(x, y) = xy + f(xy, x). - Jonathan Sondow, Dec 19 2004
a(n-1) = Sum_{k=0..n} (-1)^k*binomial(n-ceiling(k/2), floor(k/2)). - Benoit Cloitre, May 05 2005
a(n) = Sum_{k=0..n} abs(A108299(n, k)). - Reinhard Zumkeller, Jun 01 2005
a(n) = A001222(A000304(n)).
F(n+1) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)(1+(-1)^(n-k))/2. - Paul Barry, Aug 28 2005
Fibonacci(n) = Product_{j=1..ceiling(n/2)-1} (1 + 4(cos(j*Pi/n))^2). [Bicknell and Hoggatt, pp. 47-48.] - Emeric Deutsch, Oct 15 2006
F(n) = 2^-(n-1)*Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1)*5^k. - Hieronymus Fischer, Feb 07 2006
a(n) = (b(n+1) + b(n-1))/n where {b(n)} is the sequence A001629. - Sergio Falcon, Nov 22 2006
F(n*m) = Sum_{k = 0..m} binomial(m,k)*F(n-1)^k*F(n)^(m-k)*F(m-k). The generating function of F(n*m) (n fixed, m = 0,1,2,...) is G(x) = F(n)*x / ((1 - F(n-1)*x)^2 - F(n)*x*(1 - F(n-1)*x) - (F(n)*x)^2). E.g., F(15) = 610 = F(5*3) = binomial(3,0)* F(4)^0*F(5)^3*F(3) + binomial(3,1)* F(4)^1*F(5)^2*F(2) + binomial(3,2)* F(4)^2*F(5)^1*F(1) + binomial(3,3)* F(4)^3*F(5)^0*F(0) = 1*1*125*2 + 3*3*25*1 + 3*9*5*1 + 1*27*1*0 = 250 + 225 + 135 + 0 = 610. - Miklos Kristof, Feb 12 2007
From Miklos Kristof, Mar 19 2007: (Start)
Let L(n) = A000032(n) = Lucas numbers. Then:
For a >= b and odd b, F(a+b) + F(a-b) = L(a)*F(b).
For a >= b and even b, F(a+b) + F(a-b) = F(a)*L(b).
For a >= b and odd b, F(a+b) - F(a-b) = F(a)*L(b).
For a >= b and even b, F(a+b) - F(a-b) = L(a)*F(b).
F(n+m) + (-1)^m*F(n-m) = F(n)*L(m);
F(n+m) - (-1)^m*F(n-m) = L(n)*F(m);
F(n+m+k) + (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = F(n)*L(m)*L(k);
F(n+m+k) - (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = L(n)*L(m)*F(k);
F(n+m+k) + (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = L(n)*F(m)*L(k);
F(n+m+k) - (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = 5*F(n)*F(m)*F(k). (End)
A corollary to Kristof 2007 is 2*F(a+b) = F(a)*L(b) + L(a)*F(b). - Graeme McRae, Apr 24 2014
For n > m, the sum of the 2m consecutive Fibonacci numbers F(n-m-1) thru F(n+m-2) is F(n)*L(m) if m is odd, and L(n)*F(m) if m is even (see the McRae link). - Graeme McRae, Apr 24 2014.
F(n) = b(n) + (p-1)*Sum_{k=2..n-1} floor(b(k)/p)*F(n-k+1) where b(k) is the digital sum analog of the Fibonacci recurrence, defined by b(k) = ds_p(b(k-1)) + ds_p(b(k-2)), b(0)=0, b(1)=1, ds_p=digital sum base p. Example for base p=10: F(n) = A010077(n) + 9*Sum_{k=2..n-1} A059995(A010077(k))*F(n-k+1). - Hieronymus Fischer, Jul 01 2007
F(n) = b(n)+p*Sum_{k=2..n-1} floor(b(k)/p)*F(n-k+1) where b(k) is the digital product analog of the Fonacci recurrence, defined by b(k) = dp_p(b(k-1)) + dp_p(b(k-2)), b(0)=0, b(1)=1, dp_p=digital product base p. Example for base p=10: F(n) = A074867(n) + 10*Sum_{k=2..n-1} A059995(A074867(k))*F(n-k+1). - Hieronymus Fischer, Jul 01 2007
a(n) = denominator of continued fraction [1,1,1,...] (with n ones); e.g., 2/3 = continued fraction [1,1,1]; where barover[1] = [1,1,1,...] = 0.6180339.... - Gary W. Adamson, Nov 29 2007
F(n + 3) = 2F(n + 2) - F(n), F(n + 4) = 3F(n + 2) - F(n), F(n + 8) = 7F(n + 4) - F(n), F(n + 12) = 18F(n + 6) - F(n). - Paul Curtz, Feb 01 2008
a(2^n) = Product_{i=0..n-2} B(i) where B(i) is A001566. Example 3*7*47 = F(16). - Kenneth J Ramsey, Apr 23 2008
a(n+1) = Sum_{k=0..n} A109466(n,k)*(-1)^(n-k). -Philippe Deléham, Oct 26 2008
a(n) = Sum_{l_1=0..n+1} Sum_{l_2=0..n}...Sum_{l_i=0..n-i}... Sum_{l_n=0..1} delta(l_1,l_2,...,l_i,...,l_n), where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any l_i + l_(i+1) >= 2 for i=1..n-1 and delta(l_1,l_2,...,l_i,...,l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(n+1) = 2^n sqrt(Product_{k=1..n} cos(k Pi/(n+1))^2+1/4) (Kasteleyn's formula specialized). - Sarah-Marie Belcastro, Jul 04 2009
a(n+1) = Sum_{k=floor(n/2) mod 5} C(n,k) - Sum_{k=floor((n+5)/2) mod 5} C(n,k) = A173125(n) - A173126(n) = |A054877(n)-A052964(n-1)|. - Henry Bottomley, Feb 10 2010
If p[i] = modp(i,2) and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=det A. - Milan Janjic, May 02 2010
Limit_{k->oo} F(k+n)/F(k) = (L(n) + F(n)*sqrt(5))/2 with the Lucas numbers L(n) = A000032(n). - Johannes W. Meijer, May 27 2010
For n >= 1, F(n) = round(log_2(2^(phi*F(n-1)) + 2^(phi*F(n-2)))), where phi is the golden ratio. - Vladimir Shevelev, Jun 24 2010, Jun 27 2010
For n >= 1, a(n+1) = ceiling(phi*a(n)), if n is even and a(n+1) = floor(phi*a(n)), if n is odd (phi = golden ratio). - Vladimir Shevelev, Jul 01 2010
a(n) = 2*a(n-2) + a(n-3), n > 2. - Gary Detlefs, Sep 08 2010
a(2^n) = Product_{i=0..n-1} A000032(2^i). - Vladimir Shevelev, Nov 28 2010
a(n)^2 - a(n-1)^2 = a(n+1)*a(n-2), see A121646.
a(n) = sqrt((-1)^k*(a(n+k)^2 - a(k)*a(2n+k))), for any k. - Gary Detlefs, Dec 03 2010
F(2*n) = F(n+2)^2 - F(n+1)^2 - 2*F(n)^2. - Richard R. Forberg, Jun 04 2011
From Artur Jasinski, Nov 17 2011: (Start)
(-1)^(n+1) = F(n)^2 + F(n)*F(1+n) - F(1+n)^2.
F(n) = F(n+2) - 1 + (F(n+1))^4 + 2*(F(n+1)^3*F(n+2)) - (F(n+1)*F(n+2))^2 - 2*F(n+1)(F(n+2))^3 + (F(n+2))^4 - F(n+1). (End)
F(n) = 1 + Sum_{x=1..n-2} F(x). - Joseph P. Shoulak, Feb 05 2012
F(n) = 4*F(n-2) - 2*F(n-3) - F(n-6). - Gary Detlefs, Apr 01 2012
F(n) = round(phi^(n+1)/(phi+2)). - Thomas Ordowski, Apr 20 2012
From Sergei N. Gladkovskii, Jun 03 2012: (Start)
G.f.: A(x) = x/(1-x-x^2) = G(0)/sqrt(5) where G(k) = 1 - ((-1)^k)*2^k/(a^k - b*x*a^k*2^k/(b*x*2^k - 2*((-1)^k)*c^k/G(k+1))) and a=3+sqrt(5), b=1+sqrt(5), c=3-sqrt(5); (continued fraction, 3rd kind, 3-step).
Let E(x) be the e.g.f., i.e.,
E(x) = 1*x + (1/2)*x^2 + (1/3)*x^3 + (1/8)*x^4 + (1/24)*x^5 + (1/90)*x^6 + (13/5040)*x^7 + ...; then
E(x) = G(0)/sqrt(5); G(k) = 1 - ((-1)^k)*2^k/(a^k - b*x*a^k*2^k/(b*x*2^k - 2*((-1)^k)*(k+1)*c^k/G(k+1))), where a=3+sqrt(5), b=1+sqrt(5), c=3-sqrt(5); (continued fraction, 3rd kind, 3-step).
(End)
From Hieronymus Fischer, Nov 30 2012: (Start)
F(n) = 1 + Sum_{j_1=1..n-2} 1 + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} 1 + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} Sum_{j_3=1..j_2-2} 1 + ... + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} Sum_{j_3=1..j_2-2} ... Sum_{j_k=1..j_(k-1)-2} 1, where k = floor((n-1)/2).
Example: F(6) = 1 + Sum_{j=1..4} 1 + Sum_{j=1..4} Sum_{k=1..(j-2)} 1 + 0 = 1 + (1 + 1 + 1 + 1) + (1 + (1 + 1)) = 8.
F(n) = Sum_{j=0..k} S(j+1,n-2j), where k = floor((n-1)/2) and the S(j,n) are the n-th j-simplex sums: S(1,n) = 1 is the 1-simplex sum, S(2,n) = Sum_{k=1..n} S(1,k) = 1+1+...+1 = n is the 2-simplex sum, S(3,n) = Sum_{k=1..n} S(2,k) = 1+2+3+...+n is the 3-simplex sum (= triangular numbers = A000217), S(4,n) = Sum_{k=1..n} S(3,k) = 1+3+6+...+n(n+1)/2 is the 4-simplex sum (= tetrahedral numbers = A000292) and so on.
Since S(j,n) = binomial(n-2+j,j-1), the formula above equals the well-known binomial formula, essentially. (End)
G.f.: A(x) = x / (1 - x / (1 - x / (1 + x))). - Michael Somos, Jan 04 2013
Sum_{n >= 1} (-1)^(n-1)/(a(n)*a(n+1)) = 1/phi (phi=golden ratio). - Vladimir Shevelev, Feb 22 2013
From Raul Prisacariu, Oct 29 2023: (Start)
For odd k, Sum_{n >= 1} a(k)^2*(-1)^(n-1)/(a(k*n)*a(k*n+k)) = phi^(-k).
For even k, Sum_{n >= 1} a(k)^2/(a(k*n)*a(k*n+k)) = phi^(-k). (End)
From Vladimir Shevelev, Feb 24 2013: (Start)
(1) Expression a(n+1) via a(n): a(n+1) = (a(n) + sqrt(5*(a(n))^2 + 4*(-1)^n))/2;
(2) Sum_{k=1..n} (-1)^(k-1)/(a(k)*a(k+1)) = a(n)/a(n+1);
(3) a(n)/a(n+1) = 1/phi + r(n), where |r(n)| < 1/(a(n+1)*a(n+2)). (End)
F(n+1) = F(n)/2 + sqrt((-1)^n + 5*F(n)^2/4), n >= 0. F(n+1) = U_n(i/2)/i^n, (U:= Chebyshev polynomial of the 2nd kind, i=sqrt(-1)). - Bill Gosper, Mar 04 2013
G.f.: -Q(0) where Q(k) = 1 - (1+x)/(1 - x/(x - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
G.f.: x - 1 - 1/x + (1/x)/Q(0), where Q(k) = 1 - (k+1)*x/(1 - x/(x - (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 23 2013
G.f.: x*G(0), where G(k) = 1 + x*(1+x)/(1 - x*(1+x)/(x*(1+x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
G.f.: x^2 - 1 + 2*x^2/(W(0)-2), where W(k) = 1 + 1/(1 - x*(k + x)/( x*(k+1 + x) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: Q(0) - 1, where Q(k) = 1 + x^2 + (k+2)*x - x*(k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 06 2013
Let b(n) = b(n-1) + b(n-2), with b(0) = 0, b(1) = phi. Then, for n >= 2, F(n) = floor(b(n-1)) if n is even, F(n) = ceiling(b(n-1)), if n is odd, with convergence. - Richard R. Forberg, Jan 19 2014
a(n) = Sum_{t1*g(1)+t2*g(2)+...+tn*g(n)=n} multinomial(t1+t2+...+tn,t1,t2,...,tn), where g(k)=2*k-1. - Mircea Merca, Feb 27 2014
F(n) = round(sqrt(F(n-1)^2 + F(n)^2 + F(n+1)^2)/2), for n > 0. This rule appears to apply to any sequence of the form a(n) = a(n-1) + a(n-2), for any two values of a(0) and a(1), if n is sufficiently large. - Richard R. Forberg, Jul 27 2014
F(n) = round(2/(1/F(n) + 1/F(n+1) + 1/F(n+2))), for n > 0. This rule also appears to apply to any sequence of the form a(n) = a(n-1) + a(n-2), for any two values of a(0) and a(1), if n is sufficiently large. - Richard R. Forberg, Aug 03 2014
F(n) = round(1/(Sum_{j>=n+2} 1/F(j))). - Richard R. Forberg, Aug 14 2014
a(n) = hypergeometric([-n/2+1/2, -n/2+1], [-n+1], -4) for n >= 2. - Peter Luschny, Sep 19 2014
Limit_{n -> oo} (log F(n+1)/log F(n))^n = e. - Thomas Ordowski, Oct 06 2014
F(n) = (L(n+1)^2 - L(n-1)^2)/(5*L(n)), where L(n) is A000032(n), with a similar inverse relationship. - Richard R. Forberg, Nov 17 2014
Consider the graph G[1-vertex;1-loop,2-loop] in comment above. Construct the power matrix array T(n,j) = [A^*j]*[S^*(j-1)] where A=(1,1,0,...) and S=(0,1,0,...)(A063524). [* is convolution operation] Define S^*0=I with I=(1,0,...). Then T(n,j) counts n-walks containing (j) loops and a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Nov 21 2014
Define F(-n) to be F(n) for n odd and -F(n) for n even. Then for all n and k, F(n) = F(k)*F(n-k+3) - F(k-1)*F(n-k+2) - F(k-2)*F(n-k) + (-1)^k*F(n-2k+2). - Charlie Marion, Dec 04 2014
F(n+k)^2 - L(k)*F(n)*F(n+k) + (-1)^k*F(n)^2 = (-1)^n*F(k)^2, if L(k) = A000032(k). - Alexander Samokrutov, Jul 20 2015
F(2*n) = F(n+1)^2 - F(n-1)^2, similar to Koshy (D) and Forberg 2011, but different. - Hermann Stamm-Wilbrandt, Aug 12 2015
F(n+1) = ceiling( (1/phi)*Sum_{k=0..n} F(k) ). - Tom Edgar, Sep 10 2015
a(n) = (L(n-3) + L(n+3))/10 where L(n)=A000032(n). - J. M. Bergot, Nov 25 2015
From Bob Selcoe, Mar 27 2016: (Start)
F(n) = (F(2n+k+1) - F(n+1)*F(n+k+1))/F(n+k), k >= 0.
Thus when k=0: F(n) = sqrt(F(2n+1) - F(n+1)^2).
F(n) = (F(3n) - F(n+1)^3 + F(n-1)^3)^(1/3).
F(n+2k) = binomial transform of any subsequence starting with F(n). Example F(6)=8: 1*8 = F(6)=8; 1*8 + 1*13 = F(8)=21; 1*8 + 2*13 + 1*21 = F(10)=55; 1*8 + 3*13 + 3*21 + 1*34 = F(12)=144, etc. This formula applies to Fibonacci-type sequences with any two seed values for a(0) and a(1) (e.g., Lucas sequence A000032: a(0)=2, a(1)=1).
(End)
F(n) = L(k)*F(n-k) + (-1)^(k+1)*F(n-2k) for all k >= 0, where L(k) = A000032(k). - Anton Zakharov, Aug 02 2016
From Ilya Gutkovskiy, Aug 03 2016: (Start)
a(n) = F_n(1), where F_n(x) are the Fibonacci polynomials.
Inverse binomial transform of A001906.
Number of zeros in substitution system {0 -> 11, 1 -> 1010} at step n from initial string "1" (1 -> 1010 -> 101011101011 -> ...) multiplied by 1/A000079(n). (End)
For n >= 2, a(n) = 2^(n^2+n) - (4^n-2^n-1)*floor(2^(n^2+n)/(4^n-2^n-1)) - 2^n*floor(2^(n^2) - (2^n-1-1/2^n)*floor(2^(n^2+n)/(4^n-2^n-1))). - Benoit Cloitre, Apr 17 2017
f(n+1) = Sum_{j=0..floor(n/2)} Sum_{k=0..j} binomial(n-2j,k)*binomial(j,k). - Tony Foster III, Sep 04 2017
F(n) = Sum_{k=0..floor((n-1)/2)} ( (n-k-1)! / ((n-2k-1)! * k!) ). - Zhandos Mambetaliyev, Nov 08 2017
For x even, F(n) = (F(n+x) + F(n-x))/L(x). For x odd, F(n) = (F(n+x) - F(n-x))/L(x) where n >= x in both cases. Therefore F(n) = F(2*n)/L(n) for n >= 0. - David James Sycamore, May 04 2018
From Isaac Saffold, Jul 19 2018: (Start)
Let [a/p] denote the Legendre symbol. Then, for an odd prime p:
F(p+n) == [5/p]*F([5/p]+n) (mod p), if [5/p] = 1 or -1.
F(p+n) == 3*F(n) (mod p), if [5/p] = 0 (i.e., p = 5).
This is true for negative-indexed terms as well, if this sequence is extended by the negafibonacci numbers (i.e., F(-n) = A039834(n)). (End)
a(n) = A094718(4, n). a(n) = A101220(0, j, n).
a(n) = A090888(0, n+1) = A118654(0, n+1) = A118654(1, n-1) = A109754(0, n) = A109754(1, n-1), for n > 0.
a(n) = (L(n-3) + L(n-2) + L(n-1) + L(n))/5 with L(n)=A000032(n). - Art Baker, Jan 04 2019
F(n) = F(k-1)*F(abs(n-k-2)) + F(k-1)*F(n-k-1) + F(k)*F(abs(n-k-2)) + 2*F(k)*F(n-k-1), for n > k > 0. - Joseph M. Shunia, Aug 12 2019
F(n) = F(n-k+2)*F(k-1) + F(n-k+1)*F(k-2) for all k such that 2 <= k <= n. - Michael Tulskikh, Oct 09 2019
F(n)^2 - F(n+k)*F(n-k) = (-1)^(n+k) * F(k)^2 for 2 <= k <= n [Catalan's identity]. - Hermann Stamm-Wilbrandt, May 07 2021
Sum_{n>=1} 1/a(n) = A079586 is the reciprocal Fibonacci constant. - Gennady Eremin, Aug 06 2021
a(n) = Product_{d|n} b(d) = Product_{k=1..n} b(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} b(n/gcd(n,k))^(1/phi(n/gcd(n,k))) where b(n) = A061446(n) = primitive part of a(n), phi(n) = A000010(n). - Richard L. Ollerton, Nov 08 2021
a(n) = 2*i^(1-n)*sin(n*arccos(i/2))/sqrt(5), i=sqrt(-1). - Bill Gosper, May 05 2022
a(n) = i^(n-1)*sin(n*c)/sin(c) = i^(n-1)*sin(c*n)*csc(c), where c = Pi/2 + i*arccsch(2). - Peter Luschny, May 23 2022
F(2n) = Sum_{k=1..n} (k/5)*binomial(2n, n+k), where (k/5) is the Legendre or Jacobi Symbol; F(2n+1)= Sum_{k=1..n} (-(k+2)/5)*binomial(2n+1, n+k), where (-(k+2)/5) is the Legendre or Jacobi Symbol. For example, F(10) = 1*binomial(10,6) - 1*binomial(10,7) - 1*binomial(10,8) + 1*binomial(10,9) + 0*binomial(10,10), F(11) = 1*binomial(11,6) - 1*binomial(11,7) + 0*binomial(11,8) - 1*binomial(11,9) + 1*binomial(11,10) + 1*binomial(11,11). - Yike Li, Aug 21 2022
For n > 0, 1/F(n) = Sum_{k>=1} F(n*k)/(F(n+2)^(k+1)). - Diego Rattaggi, Oct 26 2022
From Andrea Pinos, Dec 02 2022: (Start)
For n == 0 (mod 4): F(n) = F((n+2)/2)*( F(n/2) + F((n/2)-2) ) + 1;
For n == 1 (mod 4): F(n) = F((n-1)/2)*( F((n-1)/2) + F(2+(n-1)/2) ) + 1;
For n == 2 (mod 4): F(n) = F((n-2)/2)*( F(n/2) + F((n/2)+2) ) + 1;
For n == 3 (mod 4): F(n) = F((n-1)/2)*( F((n-1)/2) + F(2+(n-1)/2) ) - 1. (End)
F(n) = Sum_{i=0..n-1} F(i)^2 / F(n-1). - Jules Beauchamp, May 03 2025

A016116 a(n) = 2^floor(n/2).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Powers of 2 doubled up. The usual OEIS policy is to omit the duplicates in such cases (when this would become A000079). This is an exception.
Number of symmetric compositions of n: e.g., 5 = 2+1+2 = 1+3+1 = 1+1+1+1+1 so a(5) = 4; 6 = 3+3 = 2+2+2 = 1+4+1 = 2+1+1+2 = 1+2+2+1 = 1+1+2+1+1 = 1+1+1+1+1+1 so a(6) = 8. - Henry Bottomley, Dec 10 2001
This sequence is the number of digits of each term of A061519. - Dmitry Kamenetsky, Jan 17 2009
Starting with offset 1 = binomial transform of [1, 1, -1, 3, -7, 17, -41, ...]; where A001333 = (1, 1, 3, 7, 17, 41, ...). - Gary W. Adamson, Mar 25 2009
a(n+1) is the number of symmetric subsets of [n]={1,2,...,n}. A subset S of [n] is symmetric if k is an element of S implies (n-k+1) is an element of S. - Dennis P. Walsh, Oct 27 2009
INVERT and inverse INVERT transforms give A006138, A039834(n-1).
The Kn21 sums, see A180662, of triangle A065941 equal the terms of this sequence. - Johannes W. Meijer, Aug 15 2011
First differences of A027383. - Jason Kimberley, Nov 01 2011
Run lengths in A079944. - Jeremy Gardiner, Nov 21 2011
Number of binary palindromes (A006995) between 2^(n-1) and 2^n (for n>1). - Hieronymus Fischer, Feb 17 2012
Pisano period lengths: 1, 1, 4, 1, 8, 4, 6, 1, 12, 8, 20, 4, 24, 6, 8, 1, 16, 12, 36, 8, ... . - R. J. Mathar, Aug 10 2012
Range of row n of the Circular Pascal array of order 4. - Shaun V. Ault, May 30 2014
a(n) is the number of permutations of length n avoiding both 213 and 312 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Also, the decimal representation of the diagonal from the origin to the corner (and from the corner to the origin except for the initial term) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 190", based on the 5-celled von Neumann neighborhood when initialized with a single black (ON) cell at stage zero. - Robert Price, May 10 2017
a(n + 1) + n - 1, n > 0, is the number of maximal subsemigroups of the monoid of partial order-preserving or -reversing mappings on a set with n elements. See the East et al. link. - James Mitchell and Wilf A. Wilson, Jul 21 2017
Number of symmetric stairs with n cells. A stair is a snake polyomino allowing only two directions for adjacent cells: east and north. See A005418. - Christian Barrientos, May 11 2018
For n >= 4, a(n) is the exponent of the group of the Gaussian integers in a reduced system modulo (1+i)^(n+2). See A302254. - Jianing Song, Jun 27 2018
a(n) is the number of length-(n+1) binary sequences, denoted , with s(1)=1 and with s(i+1)=s(i) for odd i. - Dennis P. Walsh, Sep 06 2018
a(n+1) is the number of subsets of {1,2,..,n} in which all differences between successive elements of subsets are even. For example, for n = 7, a(6) = 8 and the 8 subsets are {7}, {1,7}, {3,7}, {5,7}, {1,3,7}, {1,5,7}, {3,5,7}, {1,3,5,7}. For odd differences between elements see Comment in A000045 (Fibonacci numbers). - Enrique Navarrete, Jul 01 2020
Also, the number of walks of length n on the graph x--y--z, starting at x. - Sean A. Irvine, May 30 2025

Examples

			For n=5 the a(5)=4 symmetric subsets of [4] are {1,4}, {2,3}, {1,2,3,4} and the empty set. - _Dennis P. Walsh_, Oct 27 2009
For n=5 the a(5)=4 length-6 binary sequences are <1,1,0,0,0,0>, <1,1,0,0,1,1>, <1,1,1,1,0,0> and <1,1,1,1,1,1>. - _Dennis P. Walsh_, Sep 06 2018
		

Crossrefs

a(n) = A094718(3, n).
Cf. A001333.
See A052955 for partial sums (without the initial term).
A000079 gives the odd-indexed terms of a(n).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

Formula

a(n) = a(n-1)*a(n-2)/a(n-3) = 2*a(n-2) = 2^A004526(n).
G.f.: (1+x)/(1-2*x^2).
a(n) = (1/2 + sqrt(1/8))*sqrt(2)^n + (1/2 - sqrt(1/8))*(-sqrt(2))^n. - Ralf Stephan, Mar 11 2003
E.g.f.: cosh(sqrt(2)*x) + sinh(sqrt(2)*x)/sqrt(2). - Paul Barry, Jul 16 2003
The signed sequence (-1)^n*2^floor(n/2) has a(n) = (sqrt(2))^n(1/2 - sqrt(2)/4) + (-sqrt(2))^n(1/2 + sqrt(2)/4). It is the inverse binomial transform of A000129(n-1). - Paul Barry, Apr 21 2004
Diagonal sums of A046854. a(n) = Sum_{k=0..n} binomial(floor(n/2), k). - Paul Barry, Jul 07 2004
a(n) = a(n-2) + 2^floor((n-2)/2). - Paul Barry, Jul 14 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), floor(k/2)). - Paul Barry, Jul 15 2004
E.g.f.: cosh(asinh(1) + sqrt(2)*x)/sqrt(2). - Michael Somos, Feb 28 2005
a(n) = Sum_{k=0..n} A103633(n,k). - Philippe Deléham, Dec 03 2006
a(n) = 2^(n/2)*((1 + (-1)^n)/2 + (1-(-1)^n)/(2*sqrt(2))). - Paul Barry, Nov 12 2009
a(n) = 2^((2*n - 1 + (-1)^n)/4). - Luce ETIENNE, Sep 20 2014

A015448 a(0) = 1, a(1) = 1, and a(n) = 4*a(n-1) + a(n-2) for n >= 2.

Original entry on oeis.org

1, 1, 5, 21, 89, 377, 1597, 6765, 28657, 121393, 514229, 2178309, 9227465, 39088169, 165580141, 701408733, 2971215073, 12586269025, 53316291173, 225851433717, 956722026041, 4052739537881, 17167680177565, 72723460248141, 308061521170129, 1304969544928657, 5527939700884757
Offset: 0

Views

Author

Keywords

Comments

If one deletes the leading 0 in A084326, takes the inverse binomial transform, and adds a(0)=1 in front, one obtains this sequence here. - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009
For n >= 1, row sums of triangle
m |k=0 1 2 3 4 5 6 7
====+=============================================
0 | 1
1 | 1 4
2 | 1 4 16
3 | 1 8 16 64
4 | 1 8 48 64 256
5 | 1 12 48 256 256 1024
6 | 1 12 96 256 1280 1024 4096
7 | 1 16 96 640 1280 6144 4096 16384
which is triangle for numbers 4^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) = a(n;-2) = 3^n*Sum_{k=0..n} binomial(n,k)*F(k+1)*(-2/3)^k, where a(n;d), n=0,1,...,d, denotes the delta-Fibonacci numbers defined in comments to A000045 (see also the papers of Witula et al.). We note that (see A033887) F(3n+1) = 3^n*a(n,2/3) = Sum_{k=0..n} binomial(n,k)*F(k-1)*(-2/3)^k, which implies F(3n+1) + 3^(-n)*a(n) = Sum_{k=0..n} binomial(n,k)*L(k)*(-2/3)^k, where L(k) denotes the k-th Lucas number. - Roman Witula, Jul 12 2012
a(n+1) is (for n >= 0) the number of length-n strings of 5 letters {0,1,2,3,4} with no two adjacent nonzero letters identical. The general case (strings of L letters) is the sequence with g.f. (1+x)/(1-(L-1)*x-x^2). - Joerg Arndt, Oct 11 2012
Starting with offset 1 the sequence is the INVERT transform of (1, 4, 4*3, 4*3^2, 4*3^3, ...); i.e., of A003946: (1, 4, 12, 36, 108, ...). - Gary W. Adamson, Aug 06 2016
a(n+1) equals the number of quinary sequences of length n such that no two consecutive terms differ by 3. - David Nacin, May 31 2017

Crossrefs

Cf. A001076, A147722 (INVERT transform), A109499 (INVERTi transform), A154626 (Binomial transform), A086344 (inverse binomial transform), A003946, A049310.

Programs

Formula

a(n) = Fibonacci(3n-1) = ( (1+sqrt(5))*(2-sqrt(5))^n - (1-sqrt(5))*(2+sqrt(5))^n )/ (2*sqrt(5)).
O.g.f.: (1-3*x)/(1-4*x-x^2). - Len Smiley, Dec 09 2001
a(n) = Sum_{k=0..n} 3^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
a(n) = upper left term in the 2 X 2 matrix [1,2; 2,3]^n. - Gary W. Adamson, Mar 02 2008
[a(n), A001076(n)] = [1,4; 1,3]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = A167808(3*n-1) for n > 0. - Reinhard Zumkeller, Nov 12 2009
a(n) = Fibonacci(3n+1) mod Fibonacci(3n), n > 0.
a(n) = (A000032(3*n)-Fibonacci(3*n))/2 = (A014448(n)-A014445(n))/2.
For n >= 2, a(n) = F_n(4) + F_(n+1)(4), where F_n(x) is a Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(n) = A001076(n+1) - 3*A001076(n). - R. J. Mathar, Jul 12 2012
From Gary Detlefs and Wolfdieter Lang, Aug 20 2012: (Start)
a(n) = (5*F(n)^3 + 5*F(n-1)^3 + 3*(-1)^n*F(n-2))/2,
a(n) = (F(n+1)^3 + 2*F(n)^3 - F(n-2)^3)/2, n >= 0, with F(-1) = 1 and F(-2) = -1. Second line from first one with 3*(-1)^n* F(n-2) = F(n-1)^3 - 4*F(n-2)^3 - F(n-3)^3 (in Koshy's book, p. 89, 32. (with a - sign) and 33. For the Koshy reference see A000045) and the F^3 recurrence (see row n=4 of A055870, or Koshy p. 87, 1.). First line from the preceding R. J. Mathar formula with F(3*n) = 5*F(n)^3 + 3*(-1)^n*F(n) (Koshy p. 89, 46.) and the above mentioned formula, Koshy's 32. and 33., with n -> n+2 in order to eliminate F(n+1)^3. (End)
For n > 0, a(n) = L(n-1)*L(n)*F(n) + F(n+1)*(-1)^n with L(n)=A000032(n). - J. M. Bergot, Dec 10 2015
For n > 1, a(n)^2 is the denominator of continued fraction [4,4,...,4, 6, 4,4,...4], which has n-1 4's before, and n-1 4's after, the middle 6. - Greg Dresden, Sep 18 2019
From Gary Detlefs and Wolfdieter Lang, Mar 06 2023: (Start)
a(n) = A001076(n) + A001076(n-1), with A001076(-1) = 1. See the R. J. Mathar formula above.
a(n+1) = i^n*(S(n-1,-4*i) - i*S(n-2,-4*i)), for n >= 0, with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. From the simplified Fibonacci trisection formula for {F(3*n+2)}_{n>=0}. (End)
a(n) = Sum_{k=0..n} A046854(n-1,k)*4^k. - R. J. Mathar, Feb 10 2024
E.g.f.: exp(2*x)*(5*cosh(sqrt(5)*x) - sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, Jun 03 2024

A065941 T(n,k) = binomial(n-floor((k+1)/2), floor(k/2)). Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 3, 3, 1, 1, 1, 5, 4, 6, 3, 1, 1, 1, 6, 5, 10, 6, 4, 1, 1, 1, 7, 6, 15, 10, 10, 4, 1, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1, 1, 1, 11, 10, 45, 36, 84, 56, 70, 35, 21, 6, 1
Offset: 0

Views

Author

Len Smiley, Nov 29 2001

Keywords

Comments

Also the q-Stirling2 numbers at q = -1. - Peter Luschny, Mar 09 2020
Row sums give the Fibonacci sequence. So do the alternating row sums.
Triangle of coefficients of polynomials defined by p(-1,x) = p(0,x) = 1, p(n, x) = x*p(n-1, x) + p(n-2, x), for n >= 1. - Benoit Cloitre, May 08 2005 [rewritten with correct offset. - Wolfdieter Lang, Feb 18 2020]
Another version of triangle in A103631. - Philippe Deléham, Jan 01 2009
The T(n,k) coefficients appear in appendix 2 of Parks's remarkable article "A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov" if we assume that the b(n) coefficients are all equal to 1 and ignore the first column. The complete version of this triangle including the first column is A103631. - Johannes W. Meijer, Aug 11 2011
Signed ++--++..., the roots are chaotic using f(x) --> x^2 - 2 with cycle lengths shown in A003558 by n-th rows. Example: given row 3, x^3 + x^2 - 2x - 1; the roots are (a = 1.24697, ...; b = -0.445041, ...; c = -1.802937, ...). Then (say using seed b with x^2 - 2) we obtain the trajectory -0.445041, ... -> -1.80193, ... -> 1.24697, ...; matching the entry "3" in A003558(3). - Gary W. Adamson, Sep 06 2011
From Gary W. Adamson, Aug 25 2019: (Start)
Roots to the polynomials and terms in A003558 can all be obtained from the numbers below using a doubling series mod N procedure as follows: (more than one row may result). Any row ends when the trajectory produces a term already used. Then try the next higher odd term not used as the leftmost term, then repeat.
For example, for N = 11, we get: (1, 2, 4, 3, 5), showing that when confronted with two choices after the 4: (8 and -3), pick the smaller (abs) term, = 3. Then for the next row pick 7 (not used) and repeat the algorithm; succeeding only if the trajectory produces new terms. But 7 is also (-4) mod 11 and 4 was used. Therefore what I call the "r-t table" (for roots trajectory) has only one row: (1, 2, 4, 3, 5). Conjecture: The numbers of terms in the first row is equal to A003558 corresponding to N, i.e., 5 in this case with period 2.
Now for the roots to the polynomials. Pick N = 7. The polynomial is x^3 - x^2 - 2x + 1 = 0, with roots 1.8019..., -1.2469... and 0.445... corresponding to 2*cos(j*Pi/N), N = 7, and j = (1, 2, and 3). The terms (1, 2, 3) are the r-t terms for N = 7. For 11, the r-t terms are (1, 2, 4, 3, 5). This implies that given any roots of the corresponding polynomial, they are cyclic using f(x) --> x^2 - 2 with cycle lengths shown in A003558. The terms thus generated are 2*cos(j*Pi), with j = (1, 2, 4, 3, 5). Check: Begin with 2*j*Pi/N, with j = 1 (1.9189...). The other trajectory terms are: --> 1.6825..., --> 0.83083..., -1.3097...; 545...; (a 5 period and cyclic since we can begin with any of the constants). The r-t table for odd N begins as follows:
3...............1
5...............1, 2
7...............1, 2, 3
9...............1, 2, 4
...............3 (singleton terms reduce to "1") (9 has two rows)
11...............1, 2, 4, 3, 5
13...............1, 2, 4, 5, 3, 6
15...............1, 2, 4, 7
................3, 6 (dividing through by the gcd gives (1, 2))
................5. (singleton terms reduce to "1")
The result is that 15 has 3 factors (since 3 rows), and the values of those factors are the previous terms "N", corresponding to the r-t terms in each row. Thus, the first row is new, the second (1, 2), corresponds to N = 5, and the "1" in row 3 corresponds to N = 3. The factors are those values apart from 15 and 1. Note that all of the unreduced r-t terms in all rows for N form a complete set of the terms 1 through (N-1)/2 without duplication. (End)
From Gary W. Adamson, Sep 30 2019: (Start)
The 3 factors of the 7th degree polynomial for 15: (x^7 - x^6 - 6x^5 + 5x^4 + 10x^3 - 6x^2 - 4x + 1) can be determined by getting the roots for 2*cos(j*Pi/1), j = (1, 2, 4, 7) and finding the corresponding polynomial, which is x^4 + x^3 - 4x^2 - 4x + 1. This is the minimal polynomial for N = 15 as shown in Table 2, p. 46 of (Lang). The degree of this polynomial is 4, corresponding to the entry in A003558 for 15, = 4. The trajectories (3, 6) and (5) are j values for 2*cos(j*Pi/15) which are roots to x^2 - x - 1 (relating to the pentagon), and (x - 1), relating to the triangle. (End)
From Gary W. Adamson, Aug 21 2019: (Start)
Matrices M of the form: (1's in the main diagonal, -1's in the subdiagonal, and the rest zeros) are chaotic if we replace (f(x) --> x^2 - 2) with f(x) --> M^2 - 2I, where I is the Identity matrix [1, 0, 0; 0, 1, 0; 0, 0, 1]. For example, with the 3 X 3 matrix M: [0, 0, 1; 0, 1, -1; 1, -1, 0]; the f(x) trajectory is:
....M^2 - 2I: [-1, -1, 0; -1, 0, -1; 0, -1, 0], then for the latter,
....M^2 - 2I: [0, 1, 1; 1, 0, 0; 1, 0, -1]. The cycle ends with period 3 since the next matrix is (-1) * the seed matrix. As in the case with f(x) --> x^2 - 2, the eigenvalues of the 3 chaotic matrices are (abs) 1.24697, 0.44504... and 1.80193, ... Also, the characteristic equations of the 3 matrices are the same as or variants of row 4 of the triangle below: (x^3 + x - 2x - 1) with different signs. (End)
Received from Herb Conn, Jan 2004: (Start)
Let x = 2*cos(2A) (A = Angle); then
sin(A)/sin A = 1
sin(3A)/sin A = x + 1
sin(5A)/sin A = x^2 + x - 1
sin(7A)/sin A = x^3 + x - 2x - 1
sin(9A)/sin A = x^4 + x^3 - 3x^2 - 2x + 1
... (signed ++--++...). (End)
Or Pascal's triangle (A007318) with duplicated diagonals. Also triangle of coefficients of polynomials defined by P_0(x) = 1 and for n>=1, P_n(x) = F_n(x) + F_(n+1)(x), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} C(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 12 2012
The matrix inverse is given by
1;
1, 1;
0, -1, 1;
0, 1, -2, 1;
0, 0, 1, -2, 1;
0, 0, -1, 3, -3, 1;
0, 0, 0, -1, 3, -3, 1;
0, 0, 0, 1, -4, 6, -4, 1;
0, 0, 0, 0, 1, -4, 6, -4, 1;
... apart from signs the same as A124645. - R. J. Mathar, Mar 12 2013

Examples

			Triangle T(n, k) begins:
n\k 0  1  2  3   4   5  6   7  8  9 ...
---------------------------------------
[0] 1,
[1] 1, 1,
[2] 1, 1, 1,
[3] 1, 1, 2, 1,
[4] 1, 1, 3, 2,  1,
[5] 1, 1, 4, 3,  3,  1,
[6] 1, 1, 5, 4,  6,  3,  1,
[7] 1, 1, 6, 5, 10,  6,  4,  1,
[8] 1, 1, 7, 6, 15, 10, 10,  4,  1,
[9] 1, 1, 8, 7, 21, 15, 20, 10,  5, 1,
---------------------------------------
From _Gary W. Adamson_, Oct 23 2019: (Start)
Consider the roots of the polynomials corresponding to odd N such that for N=7 the polynomial is (x^3 + x^2 - 2x - 1) and the roots (a, b, c) are (-1.8019377..., 1.247697..., and -0.445041...). The discriminant of a polynomial derived from the roots is the square of the product of successive differences: ((a-b), (b-c), (c-a))^2 in this case, resulting in 49, matching the method derived from the coefficients of a cubic. For our purposes we use the product of the differences, not the square, resulting in (3.048...) * (1.69202...) * (1.35689...) = 7.0. Conjecture: for all polynomials in the set, the product of the differences of the roots = the corresponding N. For N = 7, we get x^3 - 7x + 7. It appears that for all prime N's, these resulting companion polynomials are monic (left coefficient is 1), and all other coefficients are N or multiples thereof, with the rightmost term = N. The companion polynomials for the first few primes are:
  N =  5:  x^2 - 5;
  N =  7:  x^3 - 7x + 7;
  N = 11:  x^5 - 11x^3 + 11x^2 + 11x - 11;
  N = 13:  x^6 - 13x^4 + 13x^3 + 26x^2 - 39x + 13;
  N = 17:  x^8 - 17x^6 + 17x^5 + 68x^4 - 119x^3 + 17x^2 + 51x - 17;
  N = 19:  x^9 - 19x^7 + 19x^6 + 95x^5 - 171x^4 - 19x^3 + 190x^2 - 114x + 19. (End)
		

Crossrefs

Cf. A065942 (central stalk sequence), A000045 (row sums), A108299.
Reflected version of A046854.
Some triangle sums (see A180662): A000045 (Fi1), A016116 (Kn21), A000295 (Kn23), A094967 (Fi2), A000931 (Ca2), A001519 (Gi3), A000930 (Ze3).

Programs

  • Haskell
    a065941 n k = a065941_tabl !! n !! k
    a065941_row n = a065941_tabl !! n
    a065941_tabl = iterate (\row ->
       zipWith (+) ([0] ++ row) (zipWith (*) (row ++ [0]) a059841_list)) [1]
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [Binomial(n - Floor((k+1)/2), Floor(k/2)): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 10 2019
    
  • Maple
    A065941 := proc(n,k): binomial(n-floor((k+1)/2),floor(k/2)) end: seq(seq(A065941(n,k), k=0..n), n=0..15); # Johannes W. Meijer, Aug 11 2011
    A065941 := proc(n,k) option remember: local j: if k=0 then 1 elif k=1 then 1: elif k>=2 then add(procname(j,k-2), j=k-2..n-2) fi: end: seq(seq(A065941(n,k), k=0..n), n=0..15);  # Johannes W. Meijer, Aug 11 2011
    # The function qStirling2 is defined in A333143.
    seq(print(seq(qStirling2(n, k, -1), k=0..n)), n=0..9);
    # Peter Luschny, Mar 09 2020
  • Mathematica
    Flatten[Table[Binomial[n-Floor[(k+1)/2],Floor[k/2]],{n,0,15},{k,0,n}]] (* Harvey P. Dale, Dec 11 2011 *)
  • PARI
    T065941(n, k) = binomial(n-(k+1)\2, k\2); \\ Michel Marcus, Apr 28 2014
    
  • Sage
    [[binomial(n - floor((k+1)/2), floor(k/2)) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jul 10 2019

Formula

T(n, k) = binomial(n-floor((k+1)/2), floor(k/2)).
As a square array read by antidiagonals, this is given by T1(n, k) = binomial(floor(n/2) + k, k). - Paul Barry, Mar 11 2003
Triangle is a reflection of that in A066170 (absolute values). - Gary W. Adamson, Feb 16 2004
Recurrences: T(k, 0) = 1, T(k, n) = T(k-1, n) + T(k-2, n-2), or T(k, n) = T(k-1, n) + T(k-1, n-1) if n even, T(k-1, n-1) if n odd. - Ralf Stephan, May 17 2004
G.f.: sum[n, sum[k, T(k, n)x^ky^n]] = (1+xy)/(1-y-x^2y^2). sum[n>=0, T(k, n)y^n] = y^k/(1-y)^[k/2]. - Ralf Stephan, May 17 2004
T(n, k) = A108299(n, k)*A087960(k) = abs(A108299(n, k)). - Reinhard Zumkeller, Jun 01 2005
From Johannes W. Meijer, Aug 11 2011: (Start)
T(n,k) = A046854(n, n-k) = abs(A066170(n, n-k)).
T(n+k, n-k) = A109223(n,k).
T(n, k) = sum(T(j, k-2), j=k-2..n-2), 2 <= k <= n, n>=2;
T(n, 0) =1, T(n+1, 1) = 1, n >= 0. (End)
For n > 1: T(n, k) = T(n-2, k) + T(n-1, k), 1 < k < n. - Reinhard Zumkeller, Apr 24 2013

A108299 Triangle read by rows, 0 <= k <= n: T(n,k) = binomial(n-[(k+1)/2],[k/2])*(-1)^[(k+1)/2].

Original entry on oeis.org

1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -3, 2, 1, 1, -1, -4, 3, 3, -1, 1, -1, -5, 4, 6, -3, -1, 1, -1, -6, 5, 10, -6, -4, 1, 1, -1, -7, 6, 15, -10, -10, 4, 1, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1, 1, -1, -11, 10, 45, -36, -84, 56, 70
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 01 2005

Keywords

Comments

Matrix inverse of A124645.
Let L(n,x) = Sum_{k=0..n} T(n,k)*x^(n-k) and Pi=3.14...:
L(n,x) = Product_{k=1..n} (x - 2*cos((2*k-1)*Pi/(2*n+1)));
Sum_{k=0..n} T(n,k) = L(n,1) = A010892(n+1);
Sum_{k=0..n} abs(T(n,k)) = A000045(n+2);
abs(T(n,k)) = A065941(n,k), T(n,k) = A065941(n,k)*A087960(k);
T(2*n,k) + T(2*n+1,k+1) = 0 for 0 <= k <= 2*n;
T(n,0) = A000012(n) = 1; T(n,1) = -1 for n > 0;
T(n,2) = -(n-1) for n > 1; T(n,3) = A000027(n)=n for n > 2;
T(n,4) = A000217(n-3) for n > 3; T(n,5) = -A000217(n-4) for n > 4;
T(n,6) = -A000292(n-5) for n > 5; T(n,7) = A000292(n-6) for n > 6;
T(n,n-3) = A058187(n-3)*(-1)^floor(n/2) for n > 2;
T(n,n-2) = A008805(n-2)*(-1)^floor((n+1)/2) for n > 1;
T(n,n-1) = A008619(n-1)*(-1)^floor(n/2) for n > 0;
T(n,n) = L(n,0) = (-1)^floor((n+1)/2);
L(n,1) = A010892(n+1); L(n,-1) = A061347(n+2);
L(n,2) = 1; L(n,-2) = A005408(n)*(-1)^n;
L(n,3) = A001519(n); L(n,-3) = A002878(n)*(-1)^n;
L(n,4) = A001835(n+1); L(n,-4) = A001834(n)*(-1)^n;
L(n,5) = A004253(n); L(n,-5) = A030221(n)*(-1)^n;
L(n,6) = A001653(n); L(n,-6) = A002315(n)*(-1)^n;
L(n,7) = A049685(n); L(n,-7) = A033890(n)*(-1)^n;
L(n,8) = A070997(n); L(n,-8) = A057080(n)*(-1)^n;
L(n,9) = A070998(n); L(n,-9) = A057081(n)*(-1)^n;
L(n,10) = A072256(n+1); L(n,-10) = A054320(n)*(-1)^n;
L(n,11) = A078922(n+1); L(n,-11) = A097783(n)*(-1)^n;
L(n,12) = A077417(n); L(n,-12) = A077416(n)*(-1)^n;
L(n,13) = A085260(n);
L(n,14) = A001570(n); L(n,-14) = A028230(n)*(-1)^n;
L(n,n) = A108366(n); L(n,-n) = A108367(n).
Row n of the matrix inverse (A124645) has g.f.: x^floor(n/2)*(1-x)^(n-floor(n/2)). - Paul D. Hanna, Jun 12 2005
From L. Edson Jeffery, Mar 12 2011: (Start)
Conjecture: Let N=2*n+1, with n > 2. Then T(n,k) (0 <= k <= n) gives the k-th coefficient in the characteristic function p_N(x)=0, of degree n in x, for the n X n tridiagonal unit-primitive matrix G_N (see [Jeffery]) of the form
G_N=A_{N,1}=
(0 1 0 ... 0)
(1 0 1 0 ... 0)
(0 1 0 1 0 ... 0)
...
(0 ... 0 1 0 1)
(0 ... 0 1 1),
with solutions phi_j = 2*cos((2*j-1)*Pi/N), j=1,2,...,n. For example, for n=3,
G_7=A_{7,1}=
(0 1 0)
(1 0 1)
(0 1 1).
We have {T(3,k)}=(1,-1,-2,1), while the characteristic function of G_7 is p(x) = x^3-x^2-2*x+1 = 0, with solutions phi_j = 2*cos((2*j-1)*Pi/7), j=1,2,3. (End)
The triangle sums, see A180662 for their definitions, link A108299 with several sequences, see the crossrefs. - Johannes W. Meijer, Aug 08 2011
The roots to the polynomials are chaotic using iterates of the operation (x^2 - 2), with cycle lengths L and initial seeds returning to the same term or (-1)* the seed. Periodic cycle lengths L are shown in A003558 such that for the polynomial represented by row r, the cycle length L is A003558(r-1). The matrices corresponding to the rows as characteristic polynomials are likewise chaotic [cf. Kappraff et al., 2005] with the same cycle lengths but substituting 2*I for the "2" in (x^2 - 2), where I = the Identity matrix. For example, the roots to x^3 - x^2 - 2x + 1 = 0 are 1.801937..., -1.246979..., and 0.445041... With 1.801937... as the initial seed and using (x^2 - 2), we obtain the 3-period trajectory of 8.801937... -> 1.246979... -> -0.445041... (returning to -1.801937...). We note that A003558(2) = 3. The corresponding matrix M is: [0,1,0; 1,0,1; 0,1,1,]. Using seed M with (x^2 - 2*I), we obtain the 3-period with the cycle completed at (-1)*M. - Gary W. Adamson, Feb 07 2012

Examples

			Triangle begins:
  1;
  1,  -1;
  1,  -1,  -1;
  1,  -1,  -2,   1;
  1,  -1,  -3,   2,   1;
  1,  -1,  -4,   3,   3,  -1;
  1,  -1,  -5,   4,   6,  -3,  -1;
  1,  -1,  -6,   5,  10,  -6,  -4,   1;
  1,  -1,  -7,   6,  15, -10, -10,   4,   1;
  1,  -1,  -8,   7,  21, -15, -20,  10,   5,  -1;
  1,  -1,  -9,   8,  28, -21, -35,  20,  15,  -5,  -1;
  1,  -1, -10,   9,  36, -28, -56,  35,  35, -15,  -6,   1;
  ...
		

References

  • Friedrich L. Bauer, 'De Moivre und Lagrange: Cosinus eines rationalen Vielfachen von Pi', Informatik Spektrum 28 (Springer, 2005).
  • Jay Kappraff, S. Jablan, G. Adamson, & R. Sazdonovich: "Golden Fields, Generalized Fibonacci Sequences, & Chaotic Matrices"; FORMA, Vol 19, No 4, (2005).

Crossrefs

Cf. A049310, A039961, A124645 (matrix inverse).
Triangle sums (see the comments): A193884 (Kn11), A154955 (Kn21), A087960 (Kn22), A000007 (Kn3), A010892 (Fi1), A134668 (Fi2), A078031 (Ca2), A193669 (Gi1), A001519 (Gi3), A193885 (Ze1), A050935 (Ze3). - Johannes W. Meijer, Aug 08 2011
Cf. A003558.

Programs

  • Haskell
    a108299 n k = a108299_tabl !! n !! k
    a108299_row n = a108299_tabl !! n
    a108299_tabl = [1] : iterate (\row ->
       zipWith (+) (zipWith (*) ([0] ++ row) a033999_list)
                   (zipWith (*) (row ++ [0]) a059841_list)) [1,-1]
    -- Reinhard Zumkeller, May 06 2012
  • Maple
    A108299 := proc(n,k): binomial(n-floor((k+1)/2), floor(k/2))*(-1)^floor((k+1)/2) end: seq(seq(A108299 (n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
  • Mathematica
    t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 16 2013 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x*y)/(1-x+x^2*y^2+x^2*O(x^n)),n,x)+y*O(y^k),k,y)} (Hanna)
    

Formula

T(n,k) = binomial(n-floor((k+1)/2),floor(k/2))*(-1)^floor((k+1)/2).
T(n+1, k) = if sign(T(n, k-1))=sign(T(n, k)) then T(n, k-1)+T(n, k) else -T(n, k-1) for 0 < k < n, T(n, 0) = 1, T(n, n) = (-1)^floor((n+1)/2).
G.f.: A(x, y) = (1 - x*y)/(1 - x + x^2*y^2). - Paul D. Hanna, Jun 12 2005
The generating polynomial (in z) of row n >= 0 is (u^(2*n+1) + v^(2*n+1))/(u + v), where u and v are defined by u^2 + v^2 = 1 and u*v = z. - Emeric Deutsch, Jun 16 2011
From Johannes W. Meijer, Aug 08 2011: (Start)
abs(T(n,k)) = A065941(n,k) = abs(A187660(n,n-k));
T(n,n-k) = A130777(n,k); abs(T(n,n-k)) = A046854(n,k) = abs(A066170(n,k)). (End)

Extensions

Corrected and edited by Philippe Deléham, Oct 20 2008

A055830 Triangle T read by rows: diagonal differences of triangle A037027.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 3, 1, 0, 5, 7, 4, 1, 0, 8, 15, 12, 5, 1, 0, 13, 30, 31, 18, 6, 1, 0, 21, 58, 73, 54, 25, 7, 1, 0, 34, 109, 162, 145, 85, 33, 8, 1, 0, 55, 201, 344, 361, 255, 125, 42, 9, 1, 0, 89, 365, 707, 850, 701, 413, 175, 52, 10, 1, 0, 144, 655, 1416, 1918, 1806, 1239, 630, 236, 63, 11, 1, 0
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

Or, coefficients of a generalized Lucas-Pell polynomial read by rows. - Philippe Deléham, Nov 05 2006
Equals A046854(shifted) * Pascal's triangle; where A046854 is shifted down one row and "1" inserted at (0,0). - Gary W. Adamson, Dec 24 2008

Examples

			Triangle begins:
   1
   1,   0
   2,   1,   0
   3,   3,   1,   0
   5,   7,   4,   1,   0
   8,  15,  12,   5,   1,   0
  13,  30,  31,  18,   6,   1,  0
  21,  58,  73,  54,  25,   7,  1, 0
  34, 109, 162, 145,  85,  33,  8, 1, 0
  55, 201, 344, 361, 255, 125, 42, 9, 1, 0
  ...
		

Crossrefs

Left-hand columns include A000045, A023610.
Row sums: A001333 (numerators of continued fraction convergents to sqrt(2)).
Cf. A122075 (another version).
Cf. A046854. - Gary W. Adamson, Dec 24 2008

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq 0 then return Fibonacci(n+1);
      elif n eq 1 and k eq 1 then return 0;
      else return T(n-1,k-1) + T(n-1,k) + T(n-2,k);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 21 2020
    
  • Maple
    with(combinat);
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=0 then fibonacci(n+1)
        elif n=1 and k=1 then 0
        else T(n-1, k-1) + T(n-1, k) + T(n-2, k)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Jan 21 2020
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    T(n,k) = if(k<0 || k>n, 0, if(k==0, fibonacci(n+1), if(n==1 && k==1, 0, T(n-1, k-1) + T(n-1, k) + T(n-2, k) )));
    for(n=0,12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 21 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return fibonacci(n+1)
        elif (n==1 and k==1): return 0
        else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 21 2020

Formula

G.f.: (1-y*z) / (1-y*(1+y+z)).
T(i, j) = R(i-j, j), where R(0, 0)=1, R(0, j)=0 for j >= 1, R(1, j)=1 for j >= 0, R(i, j) = Sum_{k=0..j} (R(i-2, k) + R(i-1, k)) for i >= 1, j >= 1.
Sum_{k=0..n} x^k*T(n,k) = A039834(n-2), A000012(n), A000045(n+1), A001333(n), A003688(n), A015448(n), A015449(n), A015451(n), A015453(n), A015454(n), A015455(n), A015456(n), A015457(n) for x= -2,-1,0,1,2,3,4,5,6,7,8,9,10. - Philippe Deléham, Oct 22 2006
Sum_{k=0..floor(n/2)} T(n-k,k) = A011782(n). - Philippe Deléham, Oct 22 2006
Triangle T(n,k), 0 <= k <= n, given by [1, 1, -1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2006
T(n,0) = Fibonacci(n+1) = A000045(n+1). Sum_{k=0..n} T(n,k) = A001333(n). T(n,k)=0 if k > n or if k < 0, T(0,0)=1, T(1,1)=0, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k). - Philippe Deléham, Nov 05 2006

Extensions

Edited by Ralf Stephan, Jan 12 2005

A114525 Triangle of coefficients of the Lucas (w-)polynomials.

Original entry on oeis.org

2, 0, 1, 2, 0, 1, 0, 3, 0, 1, 2, 0, 4, 0, 1, 0, 5, 0, 5, 0, 1, 2, 0, 9, 0, 6, 0, 1, 0, 7, 0, 14, 0, 7, 0, 1, 2, 0, 16, 0, 20, 0, 8, 0, 1, 0, 9, 0, 30, 0, 27, 0, 9, 0, 1, 2, 0, 25, 0, 50, 0, 35, 0, 10, 0, 1, 0, 11, 0, 55, 0, 77, 0, 44, 0, 11, 0, 1, 2, 0, 36, 0, 105, 0, 112, 0, 54, 0, 12, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 06 2005

Keywords

Comments

Unsigned version of A108045.
The row reversed triangle is A162514. - Paolo Bonzini, Jun 23 2016

Examples

			2, x, 2 + x^2, 3*x + x^3, 2 + 4*x^2 + x^4, 5*x + 5*x^3 + x^5, ... give triangle
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  0:    2
  1:    0  1
  2:    2  0  1
  3:    0  3  0  1
  4:    2  0  4  0  1
  5:    0  5  0  5  0  1
  6:    2  0  9  0  6  0  1
  7:    0  7  0 14  0  7  0  1
  8:    2  0 16  0 20  0  8  0  1
  9:    0  9  0 30  0 27  0  9  0  1
  10:   2  0 25  0 50  0 35  0 10  0  1
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  .... reformatted by _Wolfdieter Lang_, Feb 10 2023
		

Crossrefs

Cf. A108045 (signed version).
Cf. Sequences L(n,x): A000032(x = 1), A002203 (x = 2), A006497 (x = 3), A014448 (x = 4), A087130 (x = 5), A085447 (x = 6), A086902 (x = 7), A086594 (x = 8), A087798 (x = 9), A086927 (x = 10), A001946 (x = 11), A086928 (x = 12), A088316 (x = 13), A090300 (x = 14), A090301 (x = 15), A090305 (x = 16), A090306 (x = 17), A090307 (x = 18), A090308 (x = 19), A090309 (x = 20), A090310 (x = 21), A090313 (x = 22), A090314 (x = 23), A090316 (x = 24), A087281 (x = 29), A087287 (x = 76), A089772 (x = 199).

Programs

  • Maple
    Lucas := proc(n,x)
        option remember;
        if  n=0 then
            2;
        elif n =1 then
            x ;
        else
            x*procname(n-1,x)+procname(n-2,x) ;
        end if;
    end proc:
    A114525 := proc(n,k)
        coeftayl(Lucas(n,x),x=0,k) ;
    end proc:
    seq(seq(A114525(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    row[n_] := CoefficientList[LucasL[n, x], x];
    Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 11 2018 *)

Formula

From Peter Bala, Mar 18 2015: (Start)
The Lucas polynomials L(n,x) satisfy the recurrence L(n+1,x) = x*L(n,x) + L(n-1,x) with L(0,x) = 2 and L(1,x) = x.
O.g.f.: Sum_{n >= 0} L(n,x)*t^n = (2 - x*t)/(1 - t^2 - x*t) = 2 + x*t + (x^2 + 2)*t^2 + (3*x + x^3)*t^3 + ....
L(n,x) = trace( [ x, 1; 1, 0 ]^n ).
exp( Sum_{n >= 1} L(n,x)*t^n/n ) = Sum_{n >= 0} F(n+1,x)*t^n, where F(n,x) denotes the n-th Fibonacci polynomial. (see Appendix A3 in Johnson).
exp( Sum_{n >= 1} L(n,x)*L(2*n,x)*t^n/n ) = 1/( F(1,x)*F(2*x)*F(3,x) ) * Sum_{n >= 0} F(n+1,x)*F(n+2,x)*F(n+3,x)*t^n.
exp( Sum_{n >= 1} L(3*n,x)/L(n,x)*t^n/n ) = Sum_{n >= 0} L(2*n + 1,x)*t^n.
L(n,1) = Lucas(n) = A000032(n); L(n,4) = Lucas(3*n) = A014448(n); L(n,11) = Lucas(5*n) = A001946(n); L(n,29) = Lucas(7*n) = A087281(n); L(n,76) = Lucas(9*n) = A087287(n); L(n,199) = Lucas(11*n) = A089772(n). The general result is L(n,Lucas(2*k + 1)) = Lucas((2*k + 1)*n). (End)
From Jeremy Dover, Jun 10 2016: (Start)
Read as a triangle T(n,k), n >= 0, n >= k >= 0, T(n,k) = (Binomial((n+k)/2,k) + Binomial((n+k-2)/2,k))*(1+(-1)^(n-k))/2.
T(n,k) = A046854(n-1,k-1) + A046854(n-1,k) + A046854(n-2,k) for even n+k with n+k > 0, assuming A046854(n,k) = 0 for n < 0, k < 0, k > n.
T(n,k) is the number of binary strings of length n with exactly k pairs of consecutive 0's and no pair of consecutive 1's, where the first and last bits are considered consecutive. (End)
From Peter Bala, Sep 03 2022: (Start)
L(n,x) = 2*(i)^n*T(n,-i*x/2), where i = sqrt(-1) and T(n,x) is the n-th Chebyshev polynomial of the first kind.
d/dx(L(n,x)) = n*F(n,x), where F(n,x) denotes the n-th Fibonacci polynomial.
Let P_n(x,y) = (L(n,x) - L(n,y))/(x - y). Then {P_n(x,y): n >= 1} is a fourth-order linear divisibility sequence of polynomials in the ring Z[x,y]: if m divides n in Z then P_m(x,y) divides P_n(x,y) in Z[x,y].
P_n(1,1) = A045925(n); P_n(1,4) = A273622; P_n(2,2) = A093967(n).
L(2*n,x)^2 - L(2*n-1,x)*L(2*n+1,x) = x^2 + 4 for n >= 1.
Sum_{n >= 1} L(2*n,x)/( L(2*n-1,x) * L(2*n+1,x) ) = 1/x^2 and
Sum_{n >= 1} (-1)^(n+1)/( L(2*n,x) + x^2/L(2*n,x) ) = 1/(x^2 + 4), both valid for all nonzero real x. (End)
From Peter Bala, Nov 18 2022: (Start)
L(n,x) = Sum_{k = 0..floor(n/2)} (n/(n-k))*binomial(n-k,k)*x^(n-2*k) for n >= 1.
For odd m, L(n, L(m,x)) = L(n*m, x).
For integral x, the sequence {u(n)} := {L(n,x)} satisfies the Gauss congruences: u(m*p^r) == u(m*p^(r-1)) (mod p^r) for all positive integers m and r and all primes p.
Let p be an odd prime and let 0 <= k <= p - 1. Let alpha_k = the p-adic limit_{n -> oo} L(p^n,k). Then alpha_k is a well-defined p-adic-integer and the polynomial L(p,x) - x of degree p factorizes as L(p,x) - x = Product_{k = 0..p-1} (x - alpha_k). For example, L(5,x) - x = x^5 + 5*x^3 + 4*x = x*(x - A269591)*(x - A210850)*(x - A210851)*(x - A269592) in the ring of 5-adic integers. (End)
The formula for L(n,x) given in the first line of the preceding section, with L(0, x) = 2, is rewritten L(n, x) = Sum_{k = 0..floor(n/2)} A034807(n, k)*x^(n - 2*k). See the formula by Alexander Elkins in A034807. - Wolfdieter Lang, Feb 10 2023

A066170 Triangle read by rows: T(n,k) = (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k), 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, -1, 1, 1, -1, -1, -1, 2, 1, -1, 1, -2, -3, 1, 1, -1, 3, 3, -4, -1, 1, 1, -3, -6, 4, 5, -1, -1, -1, 4, 6, -10, -5, 6, 1, -1, 1, -4, -10, 10, 15, -6, -7, 1, 1, -1, 5, 10, -20, -15, 21, 7, -8, -1, 1, 1, -5, -15, 20, 35, -21, -28, 8, 9, -1, -1, -1, 6, 15, -35, -35, 56, 28, -36, -9, 10, 1, -1, 1, -6, -21, 35, 70, -56, -84, 36, 45, -10, -11
Offset: 0

Views

Author

Floor van Lamoen, Dec 14 2001

Keywords

Comments

The original name of this sequence was: Triangle giving coefficients of characteristic function of n X n matrix in which the left upper half and the antidiagonal are filled with 1's and the right lower half is filled with 0's. As was pointed out by L. Edson Jeffery this is only correct if we multiply each triangle row by (-1)^n. For the straightforward version of the coefficients of the characteristic polynomials see A187660. - Johannes W. Meijer, Aug 08 2011

Examples

			The table begins {1}; {-1, 1}; {1, -1, -1}; {-1, 2, 1, -1}; ...
The characteristic function of
( 1 1 1 )
( 1 1 0 )
( 1 0 0 )
is f(x) = x^3 - 2x^2 - x + 1, so the 3rd row is (-1)^3 times the f(x) coefficients, i.e., {-1; 2; 1; -1}.
		

References

  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001 (Chapter 14)

Crossrefs

Cf. A007700, A059455, A065941. For another version see A030111.

Programs

  • Maple
    A066170 := proc(n,k): (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k) end: seq(seq(A066170(n,k),k=0..n), n=0..11); // Johannes W. Meijer, Aug 08 2011
  • Mathematica
    Flatten[Table[(-1)^n*(-1)^Floor[3*k/2]*Binomial[Floor[(n+k)/2],k],{n,0,12}, {k,0,n}]] (* Indranil Ghosh, Feb 19 2017 *)

Formula

From L. Edson Jeffery, Mar 23 2011: (Start)
T(n,k) = (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k);
T(n,k) = (-1)^n*A187660(n,k). (End)
From Johannes W. Meijer, Aug 08 2011: (Start)
abs(T(n,k)) = A046854(n,k) = abs(A108299(n,n-k))
abs(T(n,n-k)) = A065941(n,k). (End)

Extensions

More terms from Vladeta Jovovic, Jan 02 2002
Corrected and edited by Johannes W. Meijer, Aug 08 2011

A003688 a(n) = 3*a(n-1) + a(n-2), with a(1)=1 and a(2)=4.

Original entry on oeis.org

1, 4, 13, 43, 142, 469, 1549, 5116, 16897, 55807, 184318, 608761, 2010601, 6640564, 21932293, 72437443, 239244622, 790171309, 2609758549, 8619446956, 28468099417, 94023745207, 310539335038, 1025641750321, 3387464586001, 11188035508324, 36951571110973
Offset: 1

Views

Author

Keywords

Comments

Number of 2-factors in K_3 X P_n.
Form the graph with matrix [1,1,1,1;1,1,1,0;1,1,0,1;1,0,1,1]. The sequence 1,1,4,13,... with g.f. (1-2*x)/(1-3*x-x^2) counts closed walks of length n at the vertex of degree 5. - Paul Barry, Oct 02 2004
a(n) is term (1,1) in M^n, where M is the 3x3 matrix [1,1,2; 1,1,1; 1,1,1]. - Gary W. Adamson, Mar 12 2009
Starting with 1, INVERT transform of A003945: (1, 3, 6, 12, 24, ...). - Gary W. Adamson, Aug 05 2010
Row sums of triangle
m/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....3
.2..|..1.....3.....9
.3..|..1.....6.....9.....27
.4..|..1.....6....27.....27...81
.5..|..1.....9....27....108...81...243
.6..|..1.....9....54....108..405...243...729
.7..|..1....12....54....270..405..1458...729..2187
which is the triangle for numbers 3^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
Pisano period lengths: 1, 3, 1, 6, 12, 3, 16, 12, 6, 12, 8, 6, 52, 48, 12, 24, 16, 6, 40, 12, ... - R. J. Mathar, Aug 10 2012
a(n-1) is the number of length-n strings of 4 letters {0,1,2,3} with no two adjacent nonzero letters identical. The general case (strings of L letters) is the sequence with g.f. (1+x)/(1-(L-1)*x-x^2). - Joerg Arndt, Oct 11 2012

Examples

			G.f. = x + 4*x^2 + 13*x^3 + 43*x^4 + 142*x^5 + 469*x^6 + 1549*x^7 + 5116*x^8 + ...
		

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Partial sums of A052906. Pairwise sums of A006190.
Cf. A374439.

Programs

  • Magma
    [n le 2 select 4^(n-1) else 3*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    with(combinat): a:=n->fibonacci(n,3)-2*fibonacci(n-1,3): seq(a(n), n=2..25); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    a[n_] := (MatrixPower[{{1, 3}, {1, 2}}, n].{{1}, {1}})[[1, 1]]; Table[ a[n], {n, 0, 23}] (* Robert G. Wilson v, Jan 13 2005 *)
    LinearRecurrence[{3,1},{1,4},30] (* Harvey P. Dale, Mar 15 2015 *)
  • PARI
    a(n)=([0,1; 1,3]^(n-1)*[1;4])[1,1] \\ Charles R Greathouse IV, Aug 14 2017
    
  • SageMath
    @CachedFunction
    def a(n): # a = A003688
        if (n<3): return 4^(n-1)
        else: return 3*a(n-1) + a(n-2)
    [a(n) for n in range(1,41)] # G. C. Greubel, Dec 26 2023

Formula

a(n) = ((13 - sqrt(13))/26)*((3 + sqrt(13))/2)^n + ((13 + sqrt(13))/26)*((3 - sqrt(13))/2)^n. - Paul Barry, Oct 02 2004
a(n) = Sum_{k=0..n} 2^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
Starting (1, 1, 4, 13, 43, 142, 469, ...), row sums (unsigned) of triangle A136159. - Gary W. Adamson, Dec 16 2007
G.f.: x*(1+x)/(1-3*x-x^2). - Philippe Deléham, Nov 03 2008
a(n) = A006190(n) + A006190(n-1). - Sergio Falcon, Nov 26 2009
For n>=2, a(n) = F_n(3) + F_(n+1)(3), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i) * x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
G.f.: G(0)*(1+x)/(2-3*x), where G(k) = 1 + 1/(1 - (x*(13*k-9))/( x*(13*k+4) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n)^2 is the denominator of continued fraction [3,3,...,3, 5, 3,3,...,3], which has n-1 3's before, and n-1 3's after, the middle 5. - Greg Dresden, Sep 18 2019
a(n) = Sum_{k=0..n} A046854(n-1,k)*3^k. - R. J. Mathar, Feb 10 2024
a(n) = 3^n*Sum_{k=0..n} A374439(n, k)*(-1/3)^k. - Peter Luschny, Jul 26 2024

Extensions

Formula added by Olivier Gérard, Aug 15 1997
Name clarified by Michel Marcus, Oct 16 2016

A130777 Coefficients of first difference of Chebyshev S polynomials.

Original entry on oeis.org

1, -1, 1, -1, -1, 1, 1, -2, -1, 1, 1, 2, -3, -1, 1, -1, 3, 3, -4, -1, 1, -1, -3, 6, 4, -5, -1, 1, 1, -4, -6, 10, 5, -6, -1, 1, 1, 4, -10, -10, 15, 6, -7, -1, 1, -1, 5, 10, -20, -15, 21, 7, -8, -1, 1, -1, -5, 15, 20, -35, -21, 28, 8, -9, -1, 1, 1, -6, -15, 35, 35, -56, -28, 36, 9, -10, -1, 1
Offset: 0

Views

Author

Philippe Deléham, Jul 14 2007

Keywords

Comments

Inverse of triangle in A061554.
Signed version of A046854.
From Paul Barry, May 21 2009: (Start)
Riordan array ((1-x)/(1+x^2),x/(1+x^2)).
This triangle is the coefficient triangle for the Hankel transforms of the family of generalized Catalan numbers that satisfy a(n;r)=r*a(n-1;r)+sum{k=1..n-2, a(k)*a(n-1-k;r)}, a(0;r)=a(1;r)=1. The Hankel transform of a(n;r) is h(n)=sum{k=0..n, T(n,k)*r^k} with g.f. (1-x)/(1-r*x+x^2). These sequences include A086246, A000108, A002212. (End)
From Wolfdieter Lang, Jun 11 2011: (Start)
The Riordan array ((1+x)/(1+x^2),x/(1+x^2)) with entries Phat(n,k)= ((-1)^(n-k))*T(n,k) and o.g.f. Phat(x,z)=(1+z)/(1-x*z+z^2) for the row polynomials Phat(n,x) is related to Chebyshev C and S polynomials as follows.
Phat(n,x) = (R(n+1,x)-R(n,x))/(x+2) = S(2*n,sqrt(2+x))
with R(n,x)=C_n(x) in the Abramowitz and Stegun notation, p. 778, 22.5.11. See A049310 for the S polynomials. Proof from the o.g.f.s.
Recurrence for the row polynomials Phat(n,x):
Phat(n,x) = x*Phat(n-1,x) - Phat(n-2,x) for n>=1; Phat(-1,x)=-1, Phat(0,x)=1.
The A-sequence for this Riordan array Phat (see the W. Lang link under A006232 for A- and Z-sequences for Riordan matrices) is given by 1, 0, -1, 0, -1, 0, -2, 0, -5,.., starting with 1 and interlacing the negated A000108 with zeros (o.g.f. 1/c(x^2) = 1-c(x^2)*x^2, with the o.g.f. c(x) of A000108).
The Z-sequence has o.g.f. sqrt((1-2*x)/(1+2*x)), and it is given by A063886(n)*(-1)^n.
The A-sequence of the Riordan array T(n,k) is identical with the one for the Riordan array Phat, and the Z-sequence is -A063886(n).
(End)
The row polynomials P(n,x) are the characteristic polynomials of the adjacency matrices of the graphs which look like P_n (n vertices (nodes), n-1 lines (edges)), but vertex no. 1 has a loop. - Wolfdieter Lang, Nov 17 2011
From Wolfdieter Lang, Dec 14 2013: (Start)
The zeros of P(n,x) are x(n,j) = -2*cos(2*Pi*j/(2*n+1)), j=1..n. From P(n,x) = (-1)^n*S(2*n,sqrt(2-x)) (see, e.g., the Lemma 6 of the W. Lang link).
The discriminants of the P-polynomials are given in A052750. (End)

Examples

			The triangle T(n,k) begins:
n\k  0   1   1   3    4    5    6    7    8    9  10  11  12  13 14 15 ...
0:   1
1:  -1   1
2:  -1  -1   1
3:   1  -2  -1   1
4:   1   2  -3  -1    1
5:  -1   3   3  -4   -1    1
6:  -1  -3   6   4   -5   -1    1
7:   1  -4  -6  10    5   -6   -1    1
8:   1   4 -10 -10   15    6   -7   -1    1
9:  -1   5  10 -20  -15   21    7   -8   -1    1
10: -1  -5  15  20  -35  -21   28    8   -9   -1   1
11:  1  -6 -15  35   35  -56  -28   36    9  -10  -1   1
12:  1   6 -21 -35   70   56  -84  -36   45   10 -11  -1   1
13: -1   7  21 -56  -70  126   84 -120  -45   55  11 -12  -1   1
14: -1  -7  28  56 -126 -126  210  120 -165  -55  66  12 -13  -1  1
15:  1  -8 -28  84  126 -252 -210  330  165 -220 -66  78  13 -14 -1  1
...  reformatted and extended - _Wolfdieter Lang_, Jul 31 2014.
---------------------------------------------------------------------------
From _Paul Barry_, May 21 2009: (Start)
Production matrix is
-1, 1,
-2, 0, 1,
-2, -1, 0, 1,
-4, 0, -1, 0, 1,
-6, -1, 0, -1, 0, 1,
-12, 0, -1, 0, -1, 0, 1,
-20, -2, 0, -1, 0, -1, 0, 1,
-40, 0, -2, 0, -1, 0, -1, 0, 1,
-70, -5, 0, -2, 0, -1, 0, -1, 0, 1 (End)
Row polynomials as first difference of S polynomials:
P(3,x) = S(3,x) - S(2,x) = (x^3 - 2*x) - (x^2 -1) = 1 - 2*x - x^2 +x^3.
Alternative triangle recurrence (see a comment above): T(6,2) = T(5,2) + T(5,1) = 3 + 3 = 6. T(6,3) = -T(5,3) + 0*T(5,1) = -(-4) = 4. - _Wolfdieter Lang_, Jul 31 2014
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available).

Crossrefs

Cf. A066170, A046854, A057077 (first column).
Row sums: A010892(n+1); repeat(1,0,-1,-1,0,1). Alternating row sums: A061347(n+2); repeat(1,-2,1).

Programs

  • Maple
    A130777 := proc(n,k): (-1)^binomial(n-k+1,2)*binomial(floor((n+k)/2),k) end: seq(seq(A130777(n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
  • Mathematica
    T[n_, k_] := (-1)^Binomial[n - k + 1, 2]*Binomial[Floor[(n + k)/2], k];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017, from Maple *)
  • Sage
    @CachedFunction
    def A130777(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = A130777(n-1,k) if n==1 else 0
        return A130777(n-1,k-1) - A130777(n-2,k) - h
    for n in (0..9): [A130777(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

Number triangle T(n,k) = (-1)^C(n-k+1,2)*C(floor((n+k)/2),k). - Paul Barry, May 21 2009
From Wolfdieter Lang, Jun 11 2011: (Start)
Row polynomials: P(n,x) = sum(k=0..n, T(n,k)*x^k) = R(2*n+1,sqrt(2+x)) / sqrt(2+x), with Chebyshev polynomials R with coefficients given in A127672 (scaled T-polynomials).
R(n,x) is called C_n(x) in Abramowitz and Stegun's handbook, p. 778, 22.5.11.
P(n,x) = S(n,x)-S(n-1,x), n>=0, S(-1,x)=0, with the Chebyshev S-polynomials (see the coefficient triangle A049310).
O.g.f. for row polynomials: P(x,z):= sum(n>=0, P(n,x)*z^n ) = (1-z)/(1-x*z+z^2).
(from the o.g.f. for R(2*n+1,x), n>=0, computed from the o.g.f. for the R-polynomials (2-x*z)/(1-x*z+z^2) (see A127672))
Proof of the Chebyshev connection from the o.g.f. for Riordan array property of this triangle (see the P. Barry comment above).
For the A- and Z-sequences of this Riordan array see a comment above. (End)
abs(T(n,k)) = A046854(n,k) = abs(A066170(n,k)) T(n,n-k) = A108299(n,k); abs(T(n,n-k)) = A065941(n,k). - Johannes W. Meijer, Aug 08 2011
From Wolfdieter Lang, Jul 31 2014: (Start)
Similar to the triangles A157751, A244419 and A180070 one can give for the row polynomials P(n,x) besides the usual three term recurrence another one needing only one recurrence step. This uses also a negative argument, namely P(n,x) = (-1)^(n-1)*(-1 + x/2)*P(n-1,-x) + (x/2)*P(n-1,x), n >= 1, P(0,x) = 1. Proof by computing the o.g.f. and comparing with the known one. This entails the alternative triangle recurrence T(n,k) = (-1)^(n-k)*T(n-1,k) + (1/2)*(1 + (-1)^(n-k))*T(n-1,k-1), n >= m >= 1, T(n,k) = 0 if n < k and T(n,0) = (-1)^floor((n+1)/2) = A057077(n+1). [P(n,x) recurrence corrected Aug 03 2014]
(End)

Extensions

New name and Chebyshev comments by Wolfdieter Lang, Jun 11 2010
Previous Showing 21-30 of 58 results. Next