cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 880 results. Next

A001906 F(2n) = bisection of Fibonacci sequence: a(n) = 3*a(n-1) - a(n-2).

Original entry on oeis.org

0, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, 832040, 2178309, 5702887, 14930352, 39088169, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025, 32951280099, 86267571272, 225851433717, 591286729879, 1548008755920
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term, same as A088305.
Second column of array A102310 and of A028412.
Numbers k such that 5*k^2 + 4 is a square. - Gregory V. Richardson, Oct 13 2002
Apart from initial terms, also Pisot sequences E(3,8), P(3,8), T(3,8). See A008776 for definitions of Pisot sequences.
Binomial transform of A000045. - Paul Barry, Apr 11 2003
Number of walks of length 2n+1 in the path graph P_4 from one end to the other one. Example: a(2)=3 because in the path ABCD we have ABABCD, ABCBCD and ABCDCD. - Emeric Deutsch, Apr 02 2004
Simplest example of a second-order recurrence with the sixth term a square.
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 3. - Lekraj Beedassy, Jun 11 2004
a(n) (for n > 0) is the smallest positive integer that cannot be created by summing at most n values chosen among the previous terms (with repeats allowed). - Andrew Weimholt, Jul 20 2004
All nonnegative integer solutions of Pell equation b(n)^2 - 5*a(n)^2 = +4 together with b(n) = A005248(n), n >= 0. - Wolfdieter Lang, Aug 31 2004
a(n+1) is a Chebyshev transform of 3^n (A000244), where the sequence with g.f. G(x) is sent to the sequence with g.f. (1/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 25 2004
a(n) is the number of distinct products of matrices A, B, C, in (A+B+C)^n where commutator [A,B] = 0 but C does not commute with A or B. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
Number of binary words with exactly k-1 strictly increasing runs. Example: a(3)=F(6)=8 because we have 0|0,1|0,1|1,0|01,01|0,1|01,01|1 and 01|01. Column sums of A119900. - Emeric Deutsch, Jul 23 2006
See Table 1 on page 411 of Lukovits and Janezic paper. - Parthasarathy Nambi, Aug 22 2006
Inverse: With phi = (sqrt(5) + 1)/2, log_phi((sqrt(5) a(n) + sqrt(5 a(n)^2 + 4))/2) = n. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
[1,3,8,21,55,144,...] is the Hankel transform of [1,1,4,17,75,339,1558,...](see A026378). - Philippe Deléham, Apr 13 2007
The Diophantine equation a(n) = m has a solution (for m >= 1) if and only if floor(arcsinh(sqrt(5)*m/2)/log(phi)) <> floor(arccosh(sqrt(5)*m/2)/log(phi)) where phi is the golden ratio. An equivalent condition is A130259(m) = A130260(m). - Hieronymus Fischer, May 25 2007
a(n+1) = AB^(n)(1), n >= 0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 1=`1`, 3=`10`, 8=`100`, 21=`1000`, ..., in Wythoff code.
Equals row sums of triangles A140069, A140736 and A140737. - Gary W. Adamson, May 25 2008
a(n) is also the number of idempotent order-preserving partial transformations (of an n-element chain) of width n (width(alpha) = max(Im(alpha))). Equivalently, it is the number of idempotent order-preserving full transformations (of an n-element chain). - Abdullahi Umar, Sep 08 2008
a(n) is the number of ways that a string of 0,1 and 2 of size (n-1) can be arranged with no 12-pairs. - Udita Katugampola, Sep 24 2008
Starting with offset 1 = row sums of triangle A175011. - Gary W. Adamson, Apr 03 2010
As a fraction: 1/71 = 0.01408450... or 1/9701 = 0.0001030821.... - Mark Dols, May 18 2010
Sum of the products of the elements in the compositions of n (example for n=3: the compositions are 1+1+1, 1+2, 2+1, and 3; a(3) = 1*1*1 + 1*2 + 2*1 + 3 = 8). - Dylon Hamilton, Jun 20 2010, Geoffrey Critzer, Joerg Arndt, Dec 06 2010
a(n) relates to regular polygons with even numbers of edges such that Product_{k=1..(n-2)/2} (1 + 4*cos^2 k*Pi/n) = even-indexed Fibonacci numbers with a(n) relating to the 2*n-gons. The constants as products = roots to even-indexed rows of triangle A152063. For example: a(5) = 55 satisfies the product formula relating to the 10-gon. - Gary W. Adamson, Aug 15 2010
Alternatively, product of roots to x^4 - 12x^3 + 51x^2 - 90x + 55, (10th row of triangle A152063) = (4.618...)*(3.618...)*(2.381...)*(1.381...) = 55. - Gary W. Adamson, Aug 15 2010
a(n) is the number of generalized compositions of n when there are i different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010
Starting with "1" = row sums of triangle A180339, and eigensequence of triangle A137710. - Gary W. Adamson, Aug 28 2010
a(2) = 3 is the only prime.
Number of nonisomorphic graded posets with 0 and uniform hasse graph of rank n > 0, with exactly 2 elements of each rank level above 0. (Uniform used in the sense of Retakh, Serconek, and Wilson. Graded used in Stanley's sense that every maximal chain has the same length n.) - David Nacin, Feb 13 2012
Pisano period lengths: 1, 3, 4, 3, 10, 12, 8, 6, 12, 30, 5, 12, 14, 24, 20, 12, 18, 12, 9, 30, ... - R. J. Mathar, Aug 10 2012
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy + 1. - Michel Lagneau, Feb 01 2014
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2}. - Milan Janjic, Jan 25 2015
With a(0) = 0, for n > 1, a(n) is the smallest number not already in the sequence such that a(n)^2 - a(n-1)^2 is a Fibonacci number. - Derek Orr, Jun 08 2015
Let T be the tree generated by these rules: 0 is in T, and if p is in T, then p + 1 is in T and x*p is in T and y*p is in T. The n-th generation of T consists of A001906(n) polynomials, for n >= 0. - Clark Kimberling, Nov 24 2015
For n > 0, a(n) = exactly the maximum area of a quadrilateral with sides in order of lengths F(n), F(n), L(n), and L(n) with L(n)=A000032(n). - J. M. Bergot, Jan 20 2016
a(n) = twice the area of a triangle with vertices at (L(n+1), L(n+2)), (F(n+1), F(n+1)), and (L(n+2), L(n+1)), with L(n)=A000032(n). - J. M. Bergot, Apr 20 2016
Except for the initial 0, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S - S^2; see A291000. - Clark Kimberling, Aug 24 2017
a(n+1) is the number of spanning trees of the graph T_n, where T_n is a sequence of n triangles, where adjacent triangles share an edge. - Kevin Long, May 07 2018
a(n) is the number of ways to partition [n] such that each block is a run of consecutive numbers, and each block has a fixed point, e.g., for n=3, 12|3 with 1 and 3 as fixed points is valid, but 13|2 is not valid as 1 and 3 do not form a run. Consequently, a(n) also counts the spanning trees of the graph given by taking a path with n vertices and adding another vertex adjacent to all of them. - Kevin Long, May 11 2018
From Wolfdieter Lang, May 31 2018: (Start)
The preceding comment can be paraphrased as follows. a(n) is the row sum of the array A305309 for n >= 1. The array A305309(n, k) gives the sum of the products of the block lengths of the set partition of [n] := {1, 2, ..., n} with A048996(n, k) blocks of consecutive numbers, corresponding to the compositions obtained from the k-th partition of n in Abramowitz-Stegun order. See the comments and examples at A305309.
{a(n)} also gives the infinite sequence of nonnegative numbers k for which k * ||k*phi|| < 1/sqrt(5), where the irrational number phi = A001622 (golden section), and ||x|| is the absolute value of the difference between x and the nearest integer. See, e.g., the Havil reference, pp. 171-172. (End)
a(n) is the number of tilings of two n X 1 rectangles joined orthogonally at a common end-square (so to have 2n-1 squares in a right-angle V shape) with only 1 X 1 and 2 X 1 tiles. This is a consequence of F(2n) = F(n+1)*F(n) + F(n)*F(n-1). - Nathaniel Gregg, Oct 10 2021
These are the denominators of the upper convergents to the golden ratio, tau; they are also the numerators of the lower convergents (viz. 1/1 < 3/2 < 8/5 < 21/13 < ... < tau < ... 13/8 < 5/3 < 2/1). - Clark Kimberling, Jan 02 2022
For n > 1, a(n) is the smallest Fibonacci number of unit equilateral triangle tiles needed to make an isosceles trapezoid of height F(n) triangles. - Kiran Ananthpur Bacche, Sep 01 2024

Examples

			G.f. = x + 3*x^2 + 8*x^3 + 21*x^4 + 55*x^5 + 144*x^6 + 377*x^7 + 987*x^8 + ...
a(3) = 8 because there are exactly 8 idempotent order-preserving full transformations on a 3-element chain, namely: (1,2,3)->(1,1,1),(1,2,3)->(2,2,2),(1,2,3)->(3,3,3),(1,2,3)->(1,1,3),(1,2,3)->(2,2,3),(1,2,3)->(1,2,2),(1,2,3)->(1,3,3),(1,2,3)->(1,2,3)-mappings are coordinate-wise. - _Abdullahi Umar_, Sep 08 2008
		

References

  • Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 2,5,6,14,33,55.
  • R. J. Douglas, Tournaments that admit exactly one Hamiltonian cycle, Proc. London Math. Soc., 21 (1970), 716-730.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • A. Gerardin, Reply to Query 4389, L'Intermédiaire des Mathématiciens, 22 (1915), 23.
  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 171-172.
  • Howie, J. M. Combinatorial and probabilistic results in transformation semigroups. Words, languages and combinatorics, II (Kyoto, 1992), 200--206, World Sci. Publ., River Edge, NJ, (1994).
  • Laradji, A. and Umar, A. Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum 72 (2006), 51-62.
  • I. Lukovits, A. Graovac, E. Kalman, G. Kaptay, P. Nagy, S. Nikolic, J. Sytchev and N. Trinajstich, "Nanotubes: Number of Kekulé Structures and Aromaticity", J. Chem. Inf. Comput. Sci, vol. 43 (2003), pp. 609-614. See Equation 6 on page 611.
  • T. Mansour, M. Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 127-140.
  • H. Mathieu, Query 3932, L'Intermédiaire des Mathématiciens, 18 (1911), 222. - N. J. A. Sloane, Mar 08 2022
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 101.
  • Paulo Ribenboim, Primes in Lucas sequences (Chap 4), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 27.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Fibonacci A000045 = union of this sequence and A001519.
Inverse sequences A130259 and A130260.

Programs

  • Haskell
    a001906 n = a001906_list !! n
    a001906_list =
       0 : 1 : zipWith (-) (map (* 3) $ tail a001906_list) a001906_list
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Magma
    [Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Sep 10 2014
  • Maple
    with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S, card > 0), S=Sequence(U, card > 1), U=Sequence(Z, card >0)}, unlabeled]: seq(count(SeqSeqSeqL, size=n+1), n=0..28); # Zerinvary Lajos, Apr 04 2009
    H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4):
    a := n -> `if`(n = 0, 0, H(2*n, 1, 1/2)):
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 03 2019
    A001906 := proc(n)
        combinat[fibonacci](2*n) ;
    end proc:
    seq(A001906(n),n=0..20) ; # R. J. Mathar, Jan 11 2024
  • Mathematica
    f[n_] := Fibonacci[2n]; Array[f, 28, 0] (* or *)
    LinearRecurrence[{3, -1}, {0, 1}, 28] (* Robert G. Wilson v, Jul 13 2011 *)
    Take[Fibonacci[Range[0,60]],{1,-1,2}] (* Harvey P. Dale, May 23 2012 *)
    Table[ ChebyshevU[n-1, 3/2], {n, 0, 30}] (* Jean-François Alcover, Jan 25 2013, after Michael Somos *)
    CoefficientList[Series[(x)/(1 - 3x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 10 2014 *)
  • Maxima
    makelist(fib(2*n),n,0,30); /* Martin Ettl, Oct 21 2012 */
    
  • MuPAD
    numlib::fibonacci(2*n) $ n = 0..35; // Zerinvary Lajos, May 09 2008
    
  • PARI
    {a(n) = fibonacci(2*n)}; /* Michael Somos, Dec 06 2002 */
    
  • PARI
    {a(n) = subst( poltchebi(n+1)*4 - poltchebi(n)*6, x, 3/2)/5}; /* Michael Somos, Dec 06 2002 */
    
  • PARI
    {a(n) = polchebyshev( n-1, 2, 3/2)}; /* Michael Somos Jun 18 2011 */
    
  • PARI
    Vec(x/(1-3*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Oct 24 2012
    
  • Python
    def a(n, adict={0:0, 1:1}):
        if n in adict:
            return adict[n]
        adict[n]=3*a(n-1) - a(n-2)
        return adict[n] # David Nacin, Mar 04 2012
    
  • Sage
    [lucas_number1(n,3,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [fibonacci(2*n) for n in range(0, 28)] # Zerinvary Lajos, May 15 2009
    

Formula

G.f.: x / (1 - 3*x + x^2). - Simon Plouffe in his 1992 dissertation
a(n) = 3*a(n-1) - a(n-2) = A000045(2*n).
a(n) = -a(-n).
a(n) = A060921(n-1, 0), n >= 1.
a(n) = sqrt((A005248(n)^2 - 4)/5).
a(n) = A007598(n) - A007598(n-2), n > 1.
a(n) = (ap^n - am^n)/(ap-am), with ap := (3+sqrt(5))/2, am := (3-sqrt(5))/2.
Invert transform of natural numbers: a(n) = Sum_{k=1..n} k*a(n-k), a(0) = 1. - Vladeta Jovovic, Apr 27 2001
a(n) = S(n-1, 3) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind, see A049310.
a(n) = Sum_{k=0..n} binomial(n, k)*F(k). - Benoit Cloitre, Sep 03 2002
Limit_{n->infinity} a(n)/a(n-1) = 1 + phi = (3 + sqrt(5))/2. This sequence includes all of the elements of A033888 combined with A033890.
a(0)=0, a(1)=1, a(2)=3, a(n)*a(n-2) + 1 = a(n-1)^2. - Benoit Cloitre, Dec 06 2002
a(n) = n + Sum_{k=0..n-1} Sum_{i=0..k} a(i) = n + A054452(n). - Benoit Cloitre, Jan 26 2003
a(n) = Sum_{k=1..n} binomial(n+k-1, n-k). - Vladeta Jovovic, Mar 23 2003
E.g.f.: (2/sqrt(5))*exp(3*x/2)*sinh(sqrt(5)*x/2). - Paul Barry, Apr 11 2003
Second diagonal of array defined by T(i, 1) = T(1, j) = 1, T(i, j) = Max(T(i-1, j) + T(i-1, j-1); T(i-1, j-1) + T(i, j-1)). - Benoit Cloitre, Aug 05 2003
a(n) = F(n)*L(n) = A000045(n)*A000032(n). - Lekraj Beedassy, Nov 17 2003
F(2n+2) = 1, 3, 8, ... is the binomial transform of F(n+2). - Paul Barry, Apr 24 2004
Partial sums of A001519(n). - Lekraj Beedassy, Jun 11 2004
a(n) = Sum_{i=0..n-1} binomial(2*n-1-i, i)*5^(n-i-1)*(-1)^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n) = Sum_{k=0..n} binomial(n+k, n-k-1) = Sum_{k=0..n} binomial(n+k, 2k+1).
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*3^(n-2*k). - Paul Barry, Oct 25 2004
a(n) = (n*L(n) - F(n))/5 = Sum_{k=0..n-1} (-1)^n*L(2*n-2*k-1).
The i-th term of the sequence is the entry (1, 2) in the i-th power of the 2 X 2 matrix M = ((1, 1), (1, 2)). - Simone Severini, Oct 15 2005
Computation suggests that this sequence is the Hankel transform of A005807. The Hankel transform of {a(n)} is Det[{{a(1), ..., a(n)}, {a(2), ..., a(n+1)}, ..., {a(n), ..., a(2n-1)}}]. - John W. Layman, Jul 21 2000
a(n+1) = (A005248(n+1) - A001519(n))/2. - Creighton Dement, Aug 15 2004
a(n+1) = Sum_{i=0..n} Sum_{j=0..n} binomial(n-i, j)*binomial(n-j, i). - N. J. A. Sloane, Feb 20 2005
a(n) = (2/sqrt(5))*sinh(2*n*psi), where psi:=log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, Apr 24 2007
a(n) = ((phi+1)^n - A001519(n))/phi with phi=(1+sqrt(5))/2. - Reinhard Zumkeller, Nov 22 2007
Row sums of triangle A135871. - Gary W. Adamson, Dec 02 2007
a(n)^2 = Sum_{k=1..n} a(2*k-1). This is a property of any sequence S(n) such that S(n) = B*S(n-1) - S(n-2) with S(0) = 0 and S(1) = 1 including {0,1,2,3,...} where B = 2. - Kenneth J Ramsey, Mar 23 2008
a(n) = 1/sqrt(5)*(phi^(2*n+2) - phi^(-2*n-2)), where phi = (1+sqrt(5))/2, the golden ratio. - Udita Katugampola (SIU), Sep 24 2008
If p[i] = i and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, May 02 2010
If p[i] = Stirling2(i,2) and if A is the Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = det(A). - Milan Janjic, May 08 2010
a(n) = F(2*n+10) mod F(2*n+5).
a(n) = 1 + a(n-1) + Sum_{i=1..n-1} a(i), with a(0)=0. - Gary W. Adamson, Feb 19 2011
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 3's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
a(n), n > 1 is equal to the determinant of an (n-x) X (n-1) tridiagonal matrix with 3's in the main diagonal, 1's in the super and subdiagonals, and the rest 0's. - Gary W. Adamson, Jun 27 2011
a(n) = b such that Integral_{x=0..Pi/2} sin(n*x)/(3/2-cos(x)) dx = c + b*log(3). - Francesco Daddi, Aug 01 2011
a(n+1) = Sum_{k=0..n} A101950(n,k)*2^k. - Philippe Deléham, Feb 10 2012
G.f.: A(x) = x/(1-3*x+x^2) = G(0)/sqrt(5); where G(k)= 1 -(a^k)/(1 - b*x/(b*x - 2*(a^k)/G(k+1))), a = (7-3*sqrt(5))/2, b = 3+sqrt(5), if |x|<(3-sqrt(5))/2 = 0.3819660...; (continued fraction 3 kind, 3-step ). - Sergei N. Gladkovskii, Jun 25 2012
a(n) = 2^n*b(n;1/2) = -b(n;-1), where b(n;d), n=0,1,...,d, denote the delta-Fibonacci numbers defined in comments to A000045 (see also Witula's et al. papers). - Roman Witula, Jul 12 2012
Product_{n>=1} (1 + 1/a(n)) = 1 + sqrt(5). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = (1/6)*(1 + sqrt(5)). - Peter Bala, Dec 23 2012
G.f.: x/(1-2*x) + x^2/(1-2*x)/(Q(0)-x) where Q(k) = 1 - x/(x*k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 23 2013
G.f.: G(0)/2 - 1, where G(k) = 1 + 1/( 1 - x/(x + (1-x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: x*G(0)/(2-3*x), where G(k) = 1 + 1/( 1 - x*(5*k-9)/(x*(5*k-4) - 6/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
Sum_{n>=1} 1/(a(n) + 1/a(n)) = 1. Compare with A001519, A049660 and A049670. - Peter Bala, Nov 29 2013
a(n) = U(n-1,3/2) where U(n-1,x) is Chebyshev polynomial of the second kind. - Milan Janjic, Jan 25 2015
The o.g.f. A(x) satisfies A(x) + A(-x) + 6*A(x)*A(-x) = 0. The o.g.f. for A004187 equals -A(sqrt(x))*A(-sqrt(x)). - Peter Bala, Apr 02 2015
For n > 1, a(n) = (3*F(n+1)^2 + 2*F(n-2)*F(n+1) - F(n-2)^2)/4. - J. M. Bergot, Feb 16 2016
For n > 3, a(n) = floor(MA) - 4 for n even and floor(MA) + 5 for n odd. MA is the maximum area of a quadrilateral with lengths of sides in order L(n), L(n), F(n-3), F(n+3), with L(n)=A000032(n). The ratio of the longer diagonal to the shorter approaches 5/3. - J. M. Bergot, Feb 16 2016
a(n+1) = Sum_{j=0..n} Sum_{k=0..j} binomial(n-j,k)*binomial(j,k)*2^(j-k). - Tony Foster III, Sep 18 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k+i,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = Sum_{k=1..A000041(n)} A305309(n, k), n >= 1. Also row sums of triangle A078812.- Wolfdieter Lang, May 31 2018
a(n) = H(2*n, 1, 1/2) for n > 0 where H(n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4). - Peter Luschny, Sep 03 2019
Sum_{n>=1} 1/a(n) = A153386. - Amiram Eldar, Oct 04 2020
a(n) = A249450(n) + 2. - Leo Tavares, Oct 10 2021
a(n) = -2/(sqrt(5)*tan(2*arctan(phi^(2*n)))), where phi = A001622 is the golden ratio. - Diego Rattaggi, Nov 21 2021
a(n) = sinh(2*n*arcsinh(1/2))/sqrt(5/4). - Peter Luschny, May 21 2022
From Amiram Eldar, Dec 02 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1 + 1/sqrt(5) (A344212).
Product_{n>=2} (1 + (-1)^n/a(n)) = (5/6) * (1 + 1/sqrt(5)). (End)
a(n) = Sum_{k>=0} Fibonacci(2*n*k)/(Lucas(2*n)^(k+1)). - Diego Rattaggi, Jan 12 2025
Sum_{n>=0} a(n)/3^n = 3. - Diego Rattaggi, Jan 20 2025

A008472 Sum of the distinct primes dividing n.

Original entry on oeis.org

0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 5, 13, 9, 8, 2, 17, 5, 19, 7, 10, 13, 23, 5, 5, 15, 3, 9, 29, 10, 31, 2, 14, 19, 12, 5, 37, 21, 16, 7, 41, 12, 43, 13, 8, 25, 47, 5, 7, 7, 20, 15, 53, 5, 16, 9, 22, 31, 59, 10, 61, 33, 10, 2, 18, 16, 67, 19, 26, 14, 71, 5, 73
Offset: 1

Views

Author

Keywords

Comments

Sometimes called sopf(n).
Sum of primes dividing n (without repetition) (compare A001414).
Equals A051731 * A061397 = inverse Mobius transform of [0, 2, 3, 0, 5, 0, 7, ...]. - Gary W. Adamson, Feb 14 2008
Equals row sums of triangle A143535. - Gary W. Adamson, Aug 23 2008
a(n) = n if and only if n is prime. - Daniel Forgues, Mar 24 2009
a(n) = n is a new record if and only if n is prime. - Zak Seidov, Jun 27 2009
a(A001043(n)) = A191583(n);
For n > 0: a(A000079(n)) = 2, a(A000244(n)) = 3, a(A000351(n)) = 5, a(A000420(n)) = 7;
a(A006899(n)) <= 3; a(A003586(n)) = 5; a(A033846(n)) = 7; a(A033849(n)) = 8; a(A033847(n)) = 9; a(A033850(n)) = 10; a(A143207(n)) = 10. - Reinhard Zumkeller, Jun 28 2011
For n > 1: a(n) = Sum(A027748(n,k): 1 <= k <= A001221(n)). - Reinhard Zumkeller, Aug 27 2011
If n is the product of twin primes (A037074), a(n) = 2*sqrt(n+1) = sqrt(4n+4). - Wesley Ivan Hurt, Sep 07 2013
From Wilf A. Wilson, Jul 21 2017: (Start)
a(n) + 2, n > 2, is the number of maximal subsemigroups of the monoid of orientation-preserving or -reversing mappings on a set with n elements.
a(n) + 3, n > 2, is the number of maximal subsemigroups of the monoid of orientation-preserving or -reversing partial mappings on a set with n elements.
(End)
The smallest m such that a(m) = n, or 0 if no such number m exists is A064502(n). The only integers that are not in the sequence are 1, 4 and 6. - Bernard Schott, Feb 07 2022

Examples

			a(18) = 5 because 18 = 2 * 3^2 and 2 + 3 = 5.
a(19) = 19 because 19 is prime.
a(20) = 7 because 20 = 2^2 * 5 and 2 + 5 = 7.
		

Crossrefs

First difference of A024924.
Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), this sequence (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
Cf. A010051.

Programs

  • Haskell
    a008472 = sum . a027748_row  -- Reinhard Zumkeller, Mar 29 2012
    
  • Magma
    [n eq 1 select 0 else &+[p[1]: p in Factorization(n)]: n in [1..100]]; // Vincenzo Librandi, Jun 24 2017
    
  • Maple
    A008472 := n -> add(d, d = select(isprime, numtheory[divisors](n))):
    seq(A008472(i), i = 1..40); # Peter Luschny, Jan 31 2012
    A008472 := proc(n)
            add( d, d= numtheory[factorset](n)) ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    Prepend[Array[Plus @@ First[Transpose[FactorInteger[#]]] &, 100, 2], 0]
    Join[{0}, Rest[Total[Transpose[FactorInteger[#]][[1]]]&/@Range[100]]] (* Harvey P. Dale, Jun 18 2012 *)
    (* Requires version 7.0+ *) Table[DivisorSum[n, # &, PrimeQ[#] &], {n, 75}] (* Alonso del Arte, Dec 13 2014 *)
    Table[Sum[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
  • PARI
    sopf(n) = local(fac=factor(n)); sum(i=1,matsize(fac)[1],fac[i,1])
    
  • PARI
    vector(100,n,vecsum(factor(n)[,1]~)) \\ Derek Orr, May 13 2015
    
  • PARI
    A008472(n)=vecsum(factor(n)[,1]) \\ M. F. Hasler, Jul 18 2015
    
  • Python
    from sympy import primefactors
    def A008472(n): return sum(primefactors(n)) # Chai Wah Wu, Feb 03 2022
  • Sage
    def A008472(n):
        return add(d for d in divisors(n) if is_prime(d))
    print([A008472(i) for i in (1..40)]) # Peter Luschny, Jan 31 2012
    
  • Sage
    [sum(prime_factors(n)) for n in range(1,74)] # Giuseppe Coppoletta, Jan 19 2015
    

Formula

Let n = Product_j prime(j)^k(j) where k(j) >= 1, then a(n) = Sum_j prime(j).
Additive with a(p^e) = p.
G.f.: Sum_{k >= 1} prime(k)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
L.g.f.: -log(Product_{k>=1} (1 - x^prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
Dirichlet g.f.: primezeta(s-1)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n, p prime} p. - Wesley Ivan Hurt, Feb 04 2022
From Bernard Schott, Feb 07 2022: (Start)
For n > 0: a(A001020(n)) = 11, a(A001022(n)) = 13, a(A001026(n)) = 17, a(A001029(n)) = 19, a(A009967(n)) = 23, a(A009973(n)) = 29, a(A009975(n)) = 31, a(A009981(n)) = 37, a(A009985(n)) = 41, a(A009987(n)) = 43, a(A009991(n)) = 47.
For p odd prime, a(2*p) = p+2 <==> a(A100484(n)) = A052147(n) for n > 1. (End)
a(n) = Sum_{d|n} d * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024

A003586 3-smooth numbers: numbers of the form 2^i*3^j with i, j >= 0.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576, 648, 729, 768, 864, 972, 1024, 1152, 1296, 1458, 1536, 1728, 1944, 2048, 2187, 2304, 2592, 2916, 3072, 3456, 3888
Offset: 1

Views

Author

Paul Zimmermann, Dec 11 1996

Keywords

Comments

This sequence is easily confused with A033845, which gives numbers of the form 2^i*3^j with i, j >= 1. Don't simply say "numbers of the form 2^i*3^j", but specify which sequence you mean. - N. J. A. Sloane, May 26 2024
These numbers were once called "harmonic numbers", see Lenstra links. - N. J. A. Sloane, Jul 03 2015
Successive numbers k such that phi(6k) = 2k. - Artur Jasinski, Nov 05 2008
Where record values greater than 1 occur in A088468: A160519(n) = A088468(a(n)). - Reinhard Zumkeller, May 16 2009
Also numbers that are divisible by neither 6k - 1 nor 6k + 1, for all k > 0. - Robert G. Wilson v, Oct 26 2010
Also numbers m such that the rooted tree with Matula-Goebel number m has m antichains. The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. The vertices of a rooted tree can be regarded as a partially ordered set, where u<=v holds for two vertices u and v if and only if u lies on the unique path between v and the root. An antichain is a nonempty set of mutually incomparable vertices. Example: m=4 is in the sequence because the corresponding rooted tree is \/=ARB (R is the root) having 4 antichains (A, R, B, AB). - Emeric Deutsch, Jan 30 2012
A204455(3*a(n)) = 3, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
The number of terms less than or equal to n is Sum_{i=0..floor(log_2(n))} floor(log_3(n/2^i) + 1), or Sum_{i=0..floor(log_3(n))} floor(log_2(n/3^i) + 1), which requires fewer terms to compute. - Robert G. Wilson v, Aug 17 2012
Named 3-friables in French. - Michel Marcus, Jul 17 2013
In the 14th century Levi Ben Gerson proved that the only pairs of terms which differ by 1 are (1,2), (2,3), (3,4), and (8,9); see A235365, A235366, A236210. - Jonathan Sondow, Jan 20 2014
Range of values of A000005(n) (and also A181819(n)) for cubefree numbers n. - Matthew Vandermast, May 14 2014
A036561 is a permutation of this sequence. - L. Edson Jeffery, Sep 22 2014
Also the sorted union of A000244 and A007694. - Lei Zhou, Apr 19 2017
The sum of the reciprocals of the 3-smooth numbers is equal to 3. Brief proof: 1 + 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + ... = (Sum_{k>=0} 1/2^k) * (Sum_{m>=0} 1/3^m) = (1/(1-1/2)) * (1/(1-1/3)) = (2/(2-1)) * (3/(3-1)) = 3. - Bernard Schott, Feb 19 2019
Also those integers k for which, for every prime p > 3, p^(2k) - 1 == 0 (mod 24k). - Federico Provvedi, May 23 2022
For n>1, the exponents’ parity {parity(i), parity(j)} of one out of four consecutive terms is {odd, odd}. Therefore, for n>1, at least one out of every four consecutive terms is a Zumkeller number (A083207). If for the term whose parity is {even, odd}, even also means nonzero, then this term is also a Zumkeller number (as is the case with the last of the four consecutive terms 1296, 1458, 1536, 1728). - Ivan N. Ianakiev, Jul 10 2022
Except the initial terms 2, 3, 4, 8, 9 and 16, these are numbers k such that k^6 divides 6^k. Except the initial terms 2, 3, 4, 6, 8, 9, 16, 18 and 27, these are numbers k such that k^12 divides 12^k. - Mohammed Yaseen, Jul 21 2022
In music theory, a comma is a ratio, close to 1 (typically less than 1.04), between two natural numbers divisible by only small primes (typically single digit). In this sequence, a(131) / a(130) = 531441 / 524288 ~ 1.013643 is the Pythagorean comma (A221363), the difference between 12 perfect fifths and 7 octaves. - Hal M. Switkay, Mar 23 2025

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 654 pp. 85, 287-8, Ellipses Paris 2004.
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv.
  • R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.

Crossrefs

Cf. A051037, A002473, A051038, A080197, A080681, A080682, A117221, A105420, A062051, A117222, A117220, A090184, A131096, A131097, A186711, A186712, A186771, A088468, A061987, A080683 (p-smooth numbers with other values of p), A025613 (a subsequence).
Cf. also A000244, A007694. - Lei Zhou, Apr 19 2017
Cf. A191475 (successive values of i), A191476 (successive values of j), A022330 (indices of the pure terms 2^i), A022331 (indices of the pure terms 3^j). - N. J. A. Sloane, May 26 2024
Cf. A221363.

Programs

  • Haskell
    import Data.Set (Set, singleton, insert, deleteFindMin)
    smooth :: Set Integer -> [Integer]
    smooth s = x : smooth (insert (3*x) $ insert (2*x) s')
      where (x, s') = deleteFindMin s
    a003586_list = smooth (singleton 1)
    a003586 n = a003586_list !! (n-1)
    -- Reinhard Zumkeller, Dec 16 2010
    
  • Magma
    [n: n in [1..4000] | PrimeDivisors(n) subset [2,3]]; // Bruno Berselli, Sep 24 2012
  • Maple
    A003586 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do numtheory[factorset](a) minus {2,3} ; if % = {} then return a; end if; end do: end if; end proc: # R. J. Mathar, Feb 28 2011
    with(numtheory): for i from 1 to 23328 do if(i/phi(i)=3)then print(i/6) fi od; # Gary Detlefs, Jun 28 2011
  • Mathematica
    a[1] = 1; j = 1; k = 1; n = 100; For[k = 2, k <= n, k++, If[2*a[k - j] < 3^j, a[k] = 2*a[k - j], {a[k] = 3^j, j++}]]; Table[a[i], {i, 1, n}] (* Hai He (hai(AT)mathteach.net) and Gilbert Traub, Dec 28 2004 *)
    aa = {}; Do[If[EulerPhi[6 n] == 2 n, AppendTo[aa, n]], {n, 1, 1000}]; aa (* Artur Jasinski, Nov 05 2008 *)
    fQ[n_] := Union[ MemberQ[{1, 5}, # ] & /@ Union@ Mod[ Rest@ Divisors@ n, 6]] == {False}; fQ[1] = True; Select[ Range@ 4000, fQ] (* Robert G. Wilson v, Oct 26 2010 *)
    powerOfTwo = 12; Select[Nest[Union@Join[#, 2*#, 3*#] &, {1}, powerOfTwo-1], # < 2^powerOfTwo &] (* Robert G. Wilson v and T. D. Noe, Mar 03 2011 *)
    fQ[n_] := n == 3 EulerPhi@ n; Select[6 Range@ 4000, fQ]/6 (* Robert G. Wilson v, Jul 08 2011 *)
    mx = 4000; Sort@ Flatten@ Table[2^i*3^j, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
    f[n_] := Block[{p2, p3 = 3^Range[0, Floor@ Log[3, n] + 1]}, p2 = 2^Floor[Log[2, n/p3] + 1]; Min[ Select[ p2*p3, IntegerQ]]]; NestList[f, 1, 54] (* Robert G. Wilson v, Aug 22 2012 *)
    Select[Range@4000, Last@Map[First, FactorInteger@#] <= 3 &] (* Vincenzo Librandi, Aug 25 2016 *)
    Select[Range[4000],Max[FactorInteger[#][[All,1]]]<4&] (* Harvey P. Dale, Jan 11 2017 *)
  • PARI
    test(n)=for(p=2,3, while(n%p==0, n/=p)); n==1;
    for(n=1,4000,if(test(n),print1(n",")))
    
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim\1+.5)\log(3),N=3^n;while(N<=lim,listput(v,N);N<<=1));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • PARI
    is_A003586(n)=n<5||vecmax(factor(n,5)[, 1])<5 \\ M. F. Hasler, Jan 16 2015
    
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1,3), N=3^n; while(N<=lim, listput(v, N); N<<=1)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
    
  • Python
    from itertools import count, takewhile
    def aupto(lim):
        pows2 = list(takewhile(lambda x: xMichael S. Branicky, Jul 08 2022
    
  • Python
    from sympy import integer_log
    def A003586(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Sep 15 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A003586gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(A003586gen(), 65))) # Michael S. Branicky, Sep 17 2024
    (C++) // Returns A003586 <= threshold without approximations nor sorting
    #include 
    std::forward_list A003586(const int threshold) {
        std::forward_list sequence;
        auto start_it = sequence.before_begin();
        for (int i = 1; i <= threshold; i *= 2) {
            for (int inc = 1; std::next(start_it) != sequence.end() && inc <= i; inc *= 3)
                ++start_it;
            auto it = start_it;
            for (int j = 1; i * j <= threshold; j *= 3) {
                sequence.emplace_after(it, i * j);
                for (int inc = 1; std::next(it) != sequence.end() && inc <= i; inc *= 2)
                    ++it;
            }
        }
        return sequence;
    } // Eben Gino Lester, Apr 17 2025
    
  • Sage
    def isA003586(n) :
        return not any(d != 2 and d != 3 for d in prime_divisors(n))
    @CachedFunction
    def A003586(n) :
        if n == 1 : return 1
        k = A003586(n-1) + 1
        while not isA003586(k) : k += 1
        return k
    [A003586(n) for n in (1..55)] # Peter Luschny, Jul 20 2012
    

Formula

An asymptotic formula for a(n) is roughly a(n) ~ 1/sqrt(6)*exp(sqrt(2*log(2)*log(3)*n)). - Benoit Cloitre, Nov 20 2001
A061987(n) = a(n + 1) - a(n), a(A084791(n)) = A084789(n), a(A084791(n) + 1) = A084790(n). - Reinhard Zumkeller, Jun 03 2003
Union of powers of 2 and 3 with n such that psi(n) = 2*n, where psi(n) = n*Product_(1 + 1/p) over all prime factors p of n = A001615(n). - Lekraj Beedassy, Sep 07 2004; corrected by Franklin T. Adams-Watters, Mar 19 2009
a(n) = 2^A022328(n)*3^A022329(n). - N. J. A. Sloane, Mar 19 2009
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} moebius(6*n)*x^n/(1 - x^n). - Paul D. Hanna, Sep 18 2011
a(n) = A007694(n+1)/2. - Lei Zhou, Apr 19 2017

Extensions

Deleted claim that this sequence is union of 2^n (A000079) and 3^n (A000244) sequences -- this does not include the terms which are not pure powers. - Walter Roscello (wroscello(AT)comcast.net), Nov 16 2008

A002450 a(n) = (4^n - 1)/3.

Original entry on oeis.org

0, 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, 349525, 1398101, 5592405, 22369621, 89478485, 357913941, 1431655765, 5726623061, 22906492245, 91625968981, 366503875925, 1466015503701, 5864062014805, 23456248059221, 93824992236885, 375299968947541
Offset: 0

Views

Author

Keywords

Comments

For n > 0, a(n) is the degree (n-1) "numbral" power of 5 (see A048888 for the definition of numbral arithmetic). Example: a(3) = 21, since the numbral square of 5 is 5(*)5 = 101(*)101(base 2) = 101 OR 10100 = 10101(base 2) = 21, where the OR is taken bitwise. - John W. Layman, Dec 18 2001
a(n) is composite for all n > 2 and has factors x, (3*x + 2*(-1)^n) where x belongs to A001045. In binary the terms greater than 0 are 1, 101, 10101, 1010101, etc. - John McNamara, Jan 16 2002
Number of n X 2 binary arrays with path of adjacent 1's from upper left corner to right column. - R. H. Hardin, Mar 16 2002
The Collatz-function iteration started at a(n), for n >= 1, will end at 1 after 2*n+1 steps. - Labos Elemer, Sep 30 2002 [corrected by Wolfdieter Lang, Aug 16 2021]
Second binomial transform of A001045. - Paul Barry, Mar 28 2003
All members of sequence are also generalized octagonal numbers (A001082). - Matthew Vandermast, Apr 10 2003
Also sum of squares of divisors of 2^(n-1): a(n) = A001157(A000079(n-1)), for n > 0. - Paul Barry, Apr 11 2003
Binomial transform of A000244 (with leading zero). - Paul Barry, Apr 11 2003
Number of walks of length 2n between two vertices at distance 2 in the cycle graph C_6. For n = 2 we have for example 5 walks of length 4 from vertex A to C: ABABC, ABCBC, ABCDC, AFABC and AFEDC. - Herbert Kociemba, May 31 2004
Also number of walks of length 2n + 1 between two vertices at distance 3 in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004
a(n+1) is the number of steps that are made when generating all n-step random walks that begin in a given point P on a two-dimensional square lattice. To make one step means to mark one vertex on the lattice (compare A080674). - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Mar 13 2005
a(n+1) is the sum of square divisors of 4^n. - Paul Barry, Oct 13 2005
a(n+1) is the decimal number generated by the binary bits in the n-th generation of the Rule 250 elementary cellular automaton. - Eric W. Weisstein, Apr 08 2006
a(n-1) / a(n) = percentage of wasted storage if a single image is stored as a pyramid with a each subsequent higher resolution layer containing four times as many pixels as the previous layer. n is the number of layers. - Victor Brodsky (victorbrodsky(AT)gmail.com), Jun 15 2006
k is in the sequence if and only if C(4k + 1, k) (A052203) is odd. - Paul Barry, Mar 26 2007
This sequence also gives the number of distinct 3-colorings of the odd cycle C(2*n - 1). - Keith Briggs, Jun 19 2007
All numbers of the form m*4^m + (4^m-1)/3 have the property that they are sums of two squares and also their indices are the sum of two squares. This follows from the identity m*4^m + (4^m-1)/3 = 4(4(..4(4m + 1) + 1) + 1) + 1 ..) + 1. - Artur Jasinski, Nov 12 2007
For n > 0, terms are the numbers that, in base 4, are repunits: 1_4, 11_4, 111_4, 1111_4, etc. - Artur Jasinski, Sep 30 2008
Let A be the Hessenberg matrix of order n, defined by: A[1, j] = 1, A[i, i] := 5, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = charpoly(A,1). - Milan Janjic, Jan 27 2010
This is the sequence A(0, 1; 3, 4; 2) = A(0, 1; 4, 0; 1) of the family of sequences [a, b : c, d : k] considered by G. Detlefs, and treated as A(a, b; c, d; k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
6*a(n) + 1 is every second Mersenne number greater than or equal to M3, hence all Mersenne primes greater than M2 must be a 6*a(n) + 1 of this sequence. - Roderick MacPhee, Nov 01 2010
Smallest number having alternating bit sum n. Cf. A065359.
For n = 1, 2, ..., the last digit of a(n) is 1, 5, 1, 5, ... . - Washington Bomfim, Jan 21 2011
Rule 50 elementary cellular automaton generates this sequence. This sequence also appears in the second column of array in A173588. - Paul Muljadi, Jan 27 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 21, ..., in the square spiral whose edges are the Jacobsthal numbers A001045 and whose vertices are the numbers A000975. These parallel lines are two semi-diagonals in the spiral. - Omar E. Pol, Sep 10 2011
a(n), n >= 1, is also the inverse of 3, denoted by 3^(-1), Modd(2^(2*n - 1)). For Modd n see a comment on A203571. E.g., a(2) = 5, 3 * 5 = 15 == 1 (Modd 8), because floor(15/8) = 1 is odd and -15 == 1 (mod 8). For n = 1 note that 3 * 1 = 3 == 1 (Modd 2) because floor(3/2) = 1 and -3 == 1 (mod 2). The inverse of 3 taken Modd 2^(2*n) coincides with 3^(-1) (mod 2^(2*n)) given in A007583(n), n >= 1. - Wolfdieter Lang, Mar 12 2012
If an AVL tree has a leaf at depth n, then the tree can contain no more than a(n+1) nodes total. - Mike Rosulek, Nov 20 2012
Also, this is the Lucas sequence V(5, 4). - Bruno Berselli, Jan 10 2013
Also, for n > 0, a(n) is an odd number whose Collatz trajectory contains no odd number other than n and 1. - Jayanta Basu, Mar 24 2013
Sum_{n >= 1} 1/a(n) converges to (3*(log(4/3) - QPolyGamma[0, 1, 1/4]))/log(4) = 1.263293058100271... = A321873. - K. G. Stier, Jun 23 2014
Consider n spheres in R^n: the i-th one (i=1, ..., n) has radius r(i) = 2^(1-i) and the coordinates of its center are (0, 0, ..., 0, r(i), 0, ..., 0) where r(i) is in position i. The coordinates of the intersection point in the positive orthant of these spheres are (2/a(n), 4/a(n), 8/a(n), 16/a(n), ...). For example in R^2, circles centered at (1, 0) and (0, 1/2), and with radii 1 and 1/2, meet at (2/5, 4/5). - Jean M. Morales, May 19 2015
From Peter Bala, Oct 11 2015: (Start)
a(n) gives the values of m such that binomial(4*m + 1,m) is odd. Cf. A003714, A048716, A263132.
2*a(n) = A020988(n) gives the values of m such that binomial(4*m + 2, m) is odd.
4*a(n) = A080674(n) gives the values of m such that binomial(4*m + 4, m) is odd. (End)
Collatz Conjecture Corollary: Except for powers of 2, the Collatz iteration of any positive integer must eventually reach a(n) and hence terminate at 1. - Gregory L. Simay, May 09 2016
Number of active (ON, black) cells at stage 2^n - 1 of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood. - Robert Price, May 16 2016
From Luca Mariot and Enrico Formenti, Sep 26 2016: (Start)
a(n) is also the number of coprime pairs of polynomials (f, g) over GF(2) where both f and g have degree n + 1 and nonzero constant term.
a(n) is also the number of pairs of one-dimensional binary cellular automata with linear and bipermutive local rule of neighborhood size n+1 giving rise to orthogonal Latin squares of order 2^m, where m is a multiple of n. (End)
Except for 0, 1 and 5, all terms are Brazilian repunits numbers in base 4, and so belong to A125134. For n >= 3, all these terms are composite because a(n) = {(2^n-1) * (2^n + 1)}/3 and either (2^n - 1) or (2^n + 1) is a multiple of 3. - Bernard Schott, Apr 29 2017
Given the 3 X 3 matrix A = [2, 1, 1; 1, 2, 1; 1, 1, 2] and the 3 X 3 unit matrix I_3, A^n = a(n)(A - I_3) + I_3. - Nicolas Patrois, Jul 05 2017
The binary expansion of a(n) (n >= 1) consists of n 1's alternating with n - 1 0's. Example: a(4) = 85 = 1010101_2. - Emeric Deutsch, Aug 30 2017
a(n) (n >= 1) is the viabin number of the integer partition [n, n - 1, n - 2, ..., 2, 1] (for the definition of viabin number see comment in A290253). Example: a(4) = 85 = 1010101_2; consequently, the southeast border of the Ferrers board of the corresponding integer partition is ENENENEN, where E = (1, 0), N = (0, 1); this leads to the integer partition [4, 3, 2, 1]. - Emeric Deutsch, Aug 30 2017
Numbers whose binary and Gray-code representations are both palindromes (i.e., intersection of A006995 and A281379). - Amiram Eldar, May 17 2021
Starting with n = 1 the sequence satisfies {a(n) mod 6} = repeat{1, 5, 3}. - Wolfdieter Lang, Jan 14 2022
Terms >= 5 are those q for which the multiplicative order of 2 mod q is floor(log_2(q)) + 2 (and which is 1 more than the smallest possible order for any q). - Tim Seuré, Mar 09 2024
The order of 2 modulo a(n) is 2*n for n >= 2. - Joerg Arndt, Mar 09 2024

Examples

			Apply Collatz iteration to 9: 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1.
Apply Collatz iteration to 27: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1. [Corrected by _Sean A. Irvine_ at the suggestion of Stephen Cornelius, Mar 04 2024]
a(5) = (4^5 - 1)/3 = 341 = 11111_4 = {(2^5 - 1) * (2^5 + 1)}/3 = 31 * 33/3 = 31 * 11. - _Bernard Schott_, Apr 29 2017
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of powers of 4, A000302.
When converted to binary, this gives A094028.
Subsequence of A003714.
Primitive factors: A129735.

Programs

  • GAP
    List([0..25], n -> (4^n-1)/3); # Muniru A Asiru, Feb 18 2018
    
  • Haskell
    a002450 = (`div` 3) . a024036
    a002450_list = iterate ((+ 1) . (* 4)) 0
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Magma
    [ (4^n-1)/3: n in [0..25] ]; // Klaus Brockhaus, Oct 28 2008
    
  • Magma
    [n le 2 select n-1 else 5*Self(n-1)-4*Self(n-2): n in [1..70]]; // Vincenzo Librandi, Jun 13 2015
    
  • Maple
    [seq((4^n-1)/3,n=0..40)];
    A002450:=1/(4*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
  • Mathematica
    Table[(4^n - 1)/3, {n, 0, 127}] (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *)
    LinearRecurrence[{5, -4}, {0, 1}, 30] (* Harvey P. Dale, Jun 23 2013 *)
  • Maxima
    makelist((4^n-1)/3, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n) = (4^n-1)/3;
    
  • PARI
    my(z='z+O('z^40)); Vec(z/((1-z)*(1-4*z))) \\ Altug Alkan, Oct 11 2015
    
  • Python
    def A002450(n): return ((1<<(n<<1))-1)//3 # Chai Wah Wu, Jan 29 2023
  • Scala
    ((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * )).scanLeft(0: BigInt)( + ) // Alonso del Arte, Sep 17 2019
    

Formula

From Wolfdieter Lang, Apr 24 2001: (Start)
a(n+1) = Sum_{m = 0..n} A060921(n, m).
G.f.: x/((1-x)*(1-4*x)). (End)
a(n) = Sum_{k = 0..n-1} 4^k; a(n) = A001045(2*n). - Paul Barry, Mar 17 2003
E.g.f.: (exp(4*x) - exp(x))/3. - Paul Barry, Mar 28 2003
a(n) = (A007583(n) - 1)/2. - N. J. A. Sloane, May 16 2003
a(n) = A000975(2*n)/2. - N. J. A. Sloane, Sep 13 2003
a(n) = A084160(n)/2. - N. J. A. Sloane, Sep 13 2003
a(n+1) = 4*a(n) + 1, with a(0) = 0. - Philippe Deléham, Feb 25 2004
a(n) = Sum_{i = 0..n-1} C(2*n - 1 - i, i)*2^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n+1) = Sum_{k = 0..n} binomial(n+1, k+1)*3^k. - Paul Barry, Aug 20 2004
a(n) = center term in M^n * [1 0 0], where M is the 3 X 3 matrix [1 1 1 / 1 3 1 / 1 1 1]. M^n * [1 0 0] = [A007583(n-1) a(n) A007583(n-1)]. E.g., a(4) = 85 since M^4 * [1 0 0] = [43 85 43] = [A007583(3) a(4) A007583(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = Sum_{k = 0..n, j = 0..n} C(n, j)*C(j, k)*A001045(j - k). - Paul Barry, Feb 15 2005
a(n) = Sum_{k = 0..n} C(n, k)*A001045(n-k)*2^k = Sum_{k = 0..n} C(n, k)*A001045(k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A125118(n, 3) for n > 2. - Reinhard Zumkeller, Nov 21 2006
a(n) = Sum_{k = 0..n} 2^(n - k)*A128908(n, k), n >= 1. - Philippe Deléham, Oct 19 2008
a(n) = Sum_{k = 0..n} A106566(n, k)*A100335(k). - Philippe Deléham, Oct 30 2008
If we define f(m, j, x) = Sum_{k = j..m} binomial(m, k)*stirling2(k, j)*x^(m - k) then a(n-1) = f(2*n, 4, -2), n >= 2. - Milan Janjic, Apr 26 2009
a(n) = A014551(n) * A001045(n). - R. J. Mathar, Jul 08 2009
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3) = 5*a(n-1) - 4*a(n-2), a(0) = 0, a(1) = 1, a(2) = 5. - Wolfdieter Lang, Oct 18 2010
a(0) = 0, a(n+1) = a(n) + 2^(2*n). - Washington Bomfim, Jan 21 2011
A036555(a(n)) = 2*n. - Reinhard Zumkeller, Jan 28 2011
a(n) = Sum_{k = 1..floor((n+2)/3)} C(2*n + 1, n + 2 - 3*k). - Mircea Merca, Jun 25 2011
a(n) = Sum_{i = 1..n} binomial(2*n + 1, 2*i)/3. - Wesley Ivan Hurt, Mar 14 2015
a(n+1) = 2^(2*n) + a(n), a(0) = 0. - Ben Paul Thurston, Dec 27 2015
a(k*n)/a(n) = 1 + 4^n + ... + 4^((k-1)*n). - Gregory L. Simay, Jun 09 2016
Dirichlet g.f.: (PolyLog(s, 4) - zeta(s))/3. - Ilya Gutkovskiy, Jun 26 2016
A000120(a(n)) = n. - André Dalwigk, Mar 26 2018
a(m) divides a(m*n), in particular: a(2*n) == 0 (mod 5), a(3*n) == 0 (mod 3*7), a(5*n) == 0 (mod 11*31), etc. - M. F. Hasler, Oct 19 2018
a(n) = 4^(n-1) + a(n-1). - Bob Selcoe, Jan 01 2020
a(n) = A178415(1, n) = A347834(1, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021
a(n) = A000225(2*n)/3. - John Keith, Jan 22 2022
a(n) = A080674(n) + 1 = A047849(n) - 1 = A163834(n) - 2 = A155701(n) - 3 = A163868(n) - 4 = A156605(n) - 7. - Ray Chandler, Jun 16 2023
From Peter Bala, Jul 23 2025: (Start)
The following are examples of telescoping products. Cf. A016153:
Product_{k = 1..2*n} 1 + 2^k/a(k+1) = a(n+1)/A007583(n) = (4^(n+1) - 1)/(2*4^n + 1).
Hence, Product_{k >= 1} 1 + 2^k/a(k+1) = 2.
Product_{k >= 1} 1 - 2^k/a(k+1) = 2/5, since 1 - 2^n/a(n+1) = b(n)/b(n-1), where b(n) = 2 - 3/(1 - 2^(n+1)).
Product_{k >= 1} 1 + (-2)^k/a(k+1) = 2/3, since 1 + (-2)^n/a(n+1) = c(n)/c(n-1), where c(n) = 2 - 1/(1 + (-2)^(n+1)).
Product_{k >= 1} 1 - (-2)^k/a(k+1) = 6/5, since 1 - (-2)^n/a(n+1) = d(n)/d(n-1), where d(n) = 2 - 1/(1 - (-2)^(n+1)). (End)

A003462 a(n) = (3^n - 1)/2.

Original entry on oeis.org

0, 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484, 7174453, 21523360, 64570081, 193710244, 581130733, 1743392200, 5230176601, 15690529804, 47071589413, 141214768240, 423644304721, 1270932914164
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A000244. Values of base 3 strings of 1's.
a(n) = (3^n-1)/2 is also the number of different nonparallel lines determined by pair of vertices in the n dimensional hypercube. Example: when n = 2 the square has 4 vertices and then the relevant lines are: x = 0, y = 0, x = 1, y = 1, y = x, y = 1-x and when we identify parallel lines only 4 remain: x = 0, y = 0, y = x, y = 1 - x so a(2) = 4. - Noam Katz (noamkj(AT)hotmail.com), Feb 11 2001
Also number of 3-block bicoverings of an n-set (if offset is 1, cf. A059443). - Vladeta Jovovic, Feb 14 2001
3^a(n) is the highest power of 3 dividing (3^n)!. - Benoit Cloitre, Feb 04 2002
Apart from the a(0) and a(1) terms, maximum number of coins among which a lighter or heavier counterfeit coin can be identified (but not necessarily labeled as heavier or lighter) by n weighings. - Tom Verhoeff, Jun 22 2002, updated Mar 23 2017
n such that A001764(n) is not divisible by 3. - Benoit Cloitre, Jan 14 2003
Consider the mapping f(a/b) = (a + 2b)/(2a + b). Taking a = 1, b = 2 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the sequence 1/2, 4/5, 13/14, 40/41, ... converging to 1. Sequence contains the numerators = (3^n-1)/2. The same mapping for N, i.e., f(a/b) = (a + Nb)/(a+b) gives fractions converging to N^(1/2). - Amarnath Murthy, Mar 22 2003
Binomial transform of A000079 (with leading zero). - Paul Barry, Apr 11 2003
With leading zero, inverse binomial transform of A006095. - Paul Barry, Aug 19 2003
Number of walks of length 2*n + 2 in the path graph P_5 from one end to the other one. Example: a(2) = 4 because in the path ABCDE we have ABABCDE, ABCBCDE, ABCDCDE and ABCDEDE. - Emeric Deutsch, Apr 02 2004
The number of triangles of all sizes (not counting holes) in Sierpiński's triangle after n inscriptions. - Lee Reeves (leereeves(AT)fastmail.fm), May 10 2004
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2*n + 1, s(0) = 1, s(2n+1) = 4. - Herbert Kociemba, Jun 10 2004
Number of non-degenerate right-angled incongruent integer-edged Heron triangles whose circumdiameter is the product of n distinct primes of shape 4k + 1. - Alex Fink and R. K. Guy, Aug 18 2005
Also numerator of the sum of the reciprocals of the first n powers of 3, with A000244 being the sequence of denominators. With the exception of n < 2, the base 10 digital root of a(n) is always 4. In base 3 the digital root of a(n) is the same as the digital root of n. - Alonso del Arte, Jan 24 2006
The sequence 3*a(n), n >= 1, gives the number of edges of the Hanoi graph H_3^{n} with 3 pegs and n >= 1 discs. - Daniele Parisse, Jul 28 2006
Numbers n such that a(n) is prime are listed in A028491 = {3, 7, 13, 71, 103, 541, 1091, ...}. 2^(m+1) divides a(2^m*k) for m > 0. 5 divides a(4k). 5^2 divides a(20k). 7 divides a(6k). 7^2 divides a(42k). 11^2 divides a(5k). 13 divides a(3k). 17 divides a(16k). 19 divides a(18k). 1093 divides a(7k). 41 divides a(8k). p divides a((p-1)/5) for prime p = {41, 431, 491, 661, 761, 1021, 1051, 1091, 1171, ...}. p divides a((p-1)/4) for prime p = {13, 109, 181, 193, 229, 277, 313, 421, 433, 541, ...}. p divides a((p-1)/3) for prime p = {61, 67, 73, 103, 151, 193, 271, 307, 367, ...} = A014753, 3 and -3 are both cubes (one implies other) mod these primes p = 1 mod 6. p divides a((p-1)/2) for prime p = {11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, ...} = A097933(n). p divides a(p-1) for prime p > 7. p^2 divides a(p*(p-1)k) for all prime p except p = 3. p^3 divides a(p*(p-1)*(p-2)k) for prime p = 11. - Alexander Adamchuk, Jan 22 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the number of [unordered] pairs of elements {x,y} of P(A) for which x and y are disjoint [and both nonempty]. Wieder calls these "disjoint usual 2-combinations". - Ross La Haye, Jan 10 2008 [This is because each of the elements of {1, 2, ..., n} can be in the first subset, in the second or in neither. Because there are three options for each, the total number of options is 3^n. However, since the sets being empty is not an option we subtract 1 and since the subsets are unordered we then divide by 2! (The number of ways two objects can be arranged.) Thus we obtain (3^n-1)/2 = a(n). - Chayim Lowen, Mar 03 2015]
Also, still with P(A) being the power set of a n-element set A, a(n) is the number of 2-element subsets {x,y} of P(A) such that the union of x and y is equal to A. Cf. A341590. - Fabio Visonà, Feb 20 2021
Starting with offset 1 = binomial transform of A003945: (1, 3, 6, 12, 24, ...) and double bt of (1, 2, 1, 2, 1, 2, ...); equals polcoeff inverse of (1, -4, 3, 0, 0, 0, ...). - Gary W. Adamson, May 28 2009
Also the constant of the polynomials C(x) = 3x + 1 that form a sequence by performing this operation repeatedly and taking the result at each step as the input at the next. - Nishant Shukla (n.shukla722(AT)gmail.com), Jul 11 2009
It appears that this is A120444(3^n-1) = A004125(3^n) - A004125(3^n-1), where A004125 is the sum of remainders of n mod k for k = 1, 2, 3, ..., n. - John W. Layman, Jul 29 2009
Subsequence of A134025; A171960(a(n)) = a(n). - Reinhard Zumkeller, Jan 20 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = 1, A[i, i] := 3, (i > 1), A[i, i-1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, Jan 27 2010
This is the sequence A(0, 1; 2, 3; 2) = A(0, 1; 4, -3; 0) of the family of sequences [a, b:c, d:k] considered by Gary Detlefs, and treated as A(a, b; c, d; k) in the Wolfdieter Lang link given below. - Wolfdieter Lang, Oct 18 2010
It appears that if s(n) is a first order rational sequence of the form s(0) = 0, s(n) = (2*s(n-1)+1)/(s(n-1)+2), n > 0, then s(n)= a(n)/(a(n)+1). - Gary Detlefs, Nov 16 2010
This sequence also describes the total number of moves to solve the [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Towers of Hanoi puzzle (cf. A183111 - A183125).
From Adi Dani, Jun 08 2011: (Start)
a(n) is number of compositions of odd numbers into n parts less than 3. For example, a(3) = 13 and there are 13 compositions odd numbers into 3 parts < 3:
1: (0, 0, 1), (0, 1, 0), (1, 0, 0);
3: (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0), (1, 1, 1);
5: (1, 2, 2), (2, 1, 2), (2, 2, 1).
(End)
Pisano period lengths: 1, 2, 1, 2, 4, 2, 6, 4, 1, 4, 5, 2, 3, 6, 4, 8, 16, 2, 18, 4, ... . - R. J. Mathar, Aug 10 2012
a(n) is the total number of holes (triangles removed) after the n-th step of a Sierpiński triangle production. - Ivan N. Ianakiev, Oct 29 2013
a(n) solves Sum_{j = a(n) + 1 .. a(n+1)} j = k^2 for some integer k, given a(0) = 0 and requiring smallest a(n+1) > a(n). Corresponding k = 3^n. - Richard R. Forberg, Mar 11 2015
a(n+1) equals the number of words of length n over {0, 1, 2, 3} avoiding 01, 02 and 03. - Milan Janjic, Dec 17 2015
For n >= 1, a(n) is also the total number of words of length n, over an alphabet of three letters, such that one of the letters appears an odd number of times (See A006516 for 4 letter words, and the Balakrishnan reference there). - Wolfdieter Lang, Jul 16 2017
Also, the number of maximal cliques, maximum cliques, and cliques of size 4 in the n-Apollonian network. - Andrew Howroyd, Sep 02 2017
For n > 1, the number of triangles (cliques of size 3) in the (n-1)-Apollonian network. - Andrew Howroyd, Sep 02 2017
a(n) is the largest number that can be represented with n trits in balanced ternary. Correspondingly, -a(n) is the smallest number that can be represented with n trits in balanced ternary. - Thomas König, Apr 26 2020
These form Sierpinski nesting-stars, which alternate pattern on 3^n+1/2 star numbers A003154, based on the square configurations of 9^n. The partial sums of 3^n are delineated according to the geometry of a hexagram, see illustrations in links. (3*a(n-1) + 1) create Sierpinski-anti-triangles, representing the number of holes in a (n+1) Sierpinski triangle (see illustrations). - John Elias, Oct 18 2021
For n > 1, a(n) is the number of iterations necessary to calculate the hyperbolic functions with CORDIC. - Mathias Zechmeister, Jul 26 2022
a(n) is the least number k such that A065363(k) = n. - Amiram Eldar, Sep 03 2022
For all n >= 0, Sum_{k=a(n)+1..a(n+1)} 1/k < Sum_{j=a(n+1)+1..a(n+2)} 1/j. These are the minimal points which partition the infinite harmonic series into a monotonically increasing sequence. Each partition approximates log(3) from below as n tends to infinity. - Joseph Wheat, Apr 15 2023
a(n) is also the number of 3-cycles in the n-Dorogovtsev-Goltsev-Mendes graph (using the convention the 0-Dorogovtsev-Goltsev-Mendes graph is P_2). - Eric W. Weisstein, Dec 06 2023

Examples

			There are 4 3-block bicoverings of a 3-set: {{1, 2, 3}, {1, 2}, {3}}, {{1, 2, 3}, {1, 3}, {2}}, {{1, 2, 3}, {1}, {2, 3}} and {{1, 2}, {1, 3}, {2, 3}}.
Ternary........Decimal
0.................0
1.................1
11................4
111..............13
1111.............40 etc. - _Zerinvary Lajos_, Jan 14 2007
There are altogether a(3) = 13 three letter words over {A,B,C} with say, A, appearing an odd number of times: AAA; ABC, ACB, ABB, ACC; BAC, CAB, BAB, CAC; BCA, CBA, BBA, CCA. - _Wolfdieter Lang_, Jul 16 2017
		

References

  • J. G. Mauldon, Strong solutions for the counterfeit coin problem, IBM Research Report RC 7476 (#31437) 9/15/78, IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, N. Y. 10598.
  • Paulo Ribenboim, The Book of Prime Number Records, Springer-Verlag, NY, 2nd ed., 1989, p. 60.
  • Paulo Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 53.
  • Amir Sapir, The Tower of Hanoi with Forbidden Moves, The Computer J. 47 (1) (2004) 20, case three-in-a row, sequence a(n).
  • Robert Sedgewick, Algorithms, 1992, pp. 109.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences used for Shell sort: A033622, A003462, A036562, A036564, A036569, A055875.
Cf. A179526 (repeats), A113047 (characteristic function).
Cf. A000225, A000392, A004125, A014753, A028491 (indices of primes), A059443 (column k = 3), A065363, A097933, A120444, A321872 (sum reciprocals).
Cf. A064099 (minimal number of weightings to detect lighter or heavier coin among n coins).
Cf. A039755 (column k = 1).
Cf. A006516 (binomial transform, and special 4 letter words).
Cf. A341590.
Cf. A003462(n) (3-cycles), A367967(n) (5-cycles), A367968(n) (6-cycles).

Programs

Formula

G.f.: x/((1-x)*(1-3*x)).
a(n) = 4*a(n-1) - 3*a(n-2), n > 1. a(0) = 0, a(1) = 1.
a(n) = 3*a(n-1) + 1, a(0) = 0.
E.g.f.: (exp(3*x) - exp(x))/2. - Paul Barry, Apr 11 2003
a(n+1) = Sum_{k = 0..n} binomial(n+1, k+1)*2^k. - Paul Barry, Aug 20 2004
a(n) = Sum_{i = 0..n-1} 3^i, for n > 0; a(0) = 0.
a(n) = A125118(n, 2) for n > 1. - Reinhard Zumkeller, Nov 21 2006
a(n) = StirlingS2(n+1, 3) + StirlingS2(n+1, 2). - Ross La Haye, Jan 10 2008
a(n) = Sum_{k = 0..n} A106566(n, k)*A106233(k). - Philippe Deléham, Oct 30 2008
a(n) = 2*a(n-1) + 3*a(n-2) + 2, n > 1. - Gary Detlefs, Jun 21 2010
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3), a(0) = 0, a(1) = 1, a(2) = 4. Observation by G. Detlefs. See the W. Lang comment and link. - Wolfdieter Lang, Oct 18 2010
A008344(a(n)) = 0, for n > 1. - Reinhard Zumkeller, May 09 2012
A085059(a(n)) = 1 for n > 0. - Reinhard Zumkeller, Jan 31 2013
G.f.: Q(0)/2 where Q(k) = 1 - 1/(9^k - 3*x*81^k/(3*x*9^k - 1/(1 - 1/(3*9^k - 27*x*81^k/(9*x*9^k - 1/Q(k+1)))))); (continued fraction ). - Sergei N. Gladkovskii, Apr 12 2013
a(n) = A001065(3^n) where A001065(m) is the sum of the proper divisors of m for positive integer m. - Chayim Lowen, Mar 03 2015
a(n) = A000244(n) - A007051(n) = A007051(n)-1. - Yuchun Ji, Oct 23 2018
Sum_{n>=1} 1/a(n) = A321872. - Amiram Eldar, Nov 18 2020

Extensions

More terms from Michael Somos
Corrected my comment of Jan 10 2008. - Ross La Haye, Oct 29 2008
Removed comment that duplicated a formula. - Joerg Arndt, Mar 11 2010

A007283 a(n) = 3*2^n.

Original entry on oeis.org

3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(3, 6), L(3, 6), P(3, 6), T(3, 6). See A008776 for definitions of Pisot sequences.
Numbers k such that A006530(A000010(k)) = A000010(A006530(k)) = 2. - Labos Elemer, May 07 2002
Also least number m such that 2^n is the smallest proper divisor of m which is also a suffix of m in binary representation, see A080940. - Reinhard Zumkeller, Feb 25 2003
Length of the period of the sequence Fibonacci(k) (mod 2^(n+1)). - Benoit Cloitre, Mar 12 2003
The sequence of first differences is this sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
Subsequence of A122132. - Reinhard Zumkeller, Aug 21 2006
Apart from the first term, a subsequence of A124509. - Reinhard Zumkeller, Nov 04 2006
Total number of Latin n-dimensional hypercubes (Latin polyhedra) of order 3. - Kenji Ohkuma (k-ookuma(AT)ipa.go.jp), Jan 10 2007
Number of different ternary hypercubes of dimension n. - Edwin Soedarmadji (edwin(AT)systems.caltech.edu), Dec 10 2005
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n + 1} -> {1, 2, 3} such that for fixed, different x_1, x_2,...,x_n in {1, 2, ..., n + 1} and fixed y_1, y_2,...,y_n in {1, 2, 3} we have f(x_i) <> y_i, (i = 1,2,...,n). - Milan Janjic, May 10 2007
a(n) written in base 2: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, n times 0 (see A003953). - Jaroslav Krizek, Aug 17 2009
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
Numbers containing the number 3 in their Collatz trajectories. - Reinhard Zumkeller, Feb 20 2012
a(n-1) gives the number of ternary numbers with n digits with no two adjacent digits in common; e.g., for n=3 we have 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210 and 212. - Jon Perry, Oct 10 2012
If n > 1, then a(n) is a solution for the equation sigma(x) + phi(x) = 3x-4. This equation also has solutions 84, 3348, 1450092, ... which are not of the form 3*2^n. - Farideh Firoozbakht, Nov 30 2013
a(n) is the upper bound for the "X-ray number" of any convex body in E^(n + 2), conjectured by Bezdek and Zamfirescu, and proved in the plane E^2 (see the paper by Bezdek and Zamfirescu). - L. Edson Jeffery, Jan 11 2014
If T is a topology on a set V of size n and T is not the discrete topology, then T has at most 3 * 2^(n-2) many open sets. See Brown and Stephen references. - Ross La Haye, Jan 19 2014
Comment from Charles Fefferman, courtesy of Doron Zeilberger, Dec 02 2014: (Start)
Fix a dimension n. For a real-valued function f defined on a finite set E in R^n, let Norm(f, E) denote the inf of the C^2 norms of all functions F on R^n that agree with f on E. Then there exist constants k and C depending only on the dimension n such that Norm(f, E) <= C*max{ Norm(f, S) }, where the max is taken over all k-point subsets S in E. Moreover, the best possible k is 3 * 2^(n-1).
The analogous result, with the same k, holds when the C^2 norm is replaced, e.g., by the C^1, alpha norm (0 < alpha <= 1). However, the optimal analogous k, e.g., for the C^3 norm is unknown.
For the above results, see Y. Brudnyi and P. Shvartsman (1994). (End)
Also, coordination sequence for (infinity, infinity, infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The average of consecutive powers of 2 beginning with 2^1. - Melvin Peralta and Miriam Ong Ante, May 14 2016
For n > 1, a(n) is the smallest Zumkeller number with n divisors that are also Zumkeller numbers (A083207). - Ivan N. Ianakiev, Dec 09 2016
Also, for n >= 2, the number of length-n strings over the alphabet {0,1,2,3} having only the single letters as nonempty palindromic subwords. (Corollary 21 in Fleischer and Shallit) - Jeffrey Shallit, Dec 02 2019
Also, a(n) is the minimum link-length of any covering trail, circuit, path, and cycle for the set of the 2^(n+2) vertices of an (n+2)-dimensional hypercube. - Marco Ripà, Aug 22 2022
The known fixed points of maps n -> A163511(n) and n -> A243071(n). [See comments in A163511]. - Antti Karttunen, Sep 06 2023
The finite subsequence a(3), a(4), a(5), a(6) = 24, 48, 96, 192 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A000244 (see comment there). - Felix Huber, Feb 15 2024
A level 1 Sierpiński triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. For n>2, a(n-3) is the radius of the level n Sierpiński triangle graph. - Allan Bickle, Aug 03 2024

References

  • Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
  • T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
  • Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of the following sequences: A029744, A029747, A029748, A029750, A362804 (after 3), A364494, A364496, A364289, A364291, A364292, A364295, A364497, A364964, A365422.
Essentially same as A003945 and A042950.
Row sums of (5, 1)-Pascal triangle A093562 and of (1, 5) Pascal triangle A096940.
Cf. Latin squares: A000315, A002860, A003090, A040082, A003191; Latin cubes: A098843, A098846, A098679, A099321.

Programs

Formula

G.f.: 3/(1-2*x).
a(n) = 2*a(n - 1), n > 0; a(0) = 3.
a(n) = Sum_{k = 0..n} (-1)^(k reduced (mod 3))*binomial(n, k). - Benoit Cloitre, Aug 20 2002
a(n) = A118416(n + 1, 2) for n > 1. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n) + A000079(n + 1). - Zerinvary Lajos, May 12 2007
a(n) = A000079(n)*3. - Omar E. Pol, Dec 16 2008
From Paul Curtz, Feb 05 2009: (Start)
a(n) = b(n) + b(n+3) for b = A001045, A078008, A154879.
a(n) = abs(b(n) - b(n+3)) with b(n) = (-1)^n*A084247(n). (End)
a(n) = 2^n + 2^(n + 1). - Jaroslav Krizek, Aug 17 2009
a(n) = A173786(n + 1, n) = A173787(n + 2, n). - Reinhard Zumkeller, Feb 28 2010
A216022(a(n)) = 6 and A216059(a(n)) = 7, for n > 0. - Reinhard Zumkeller, Sep 01 2012
a(n) = (A000225(n) + 1)*3. - Martin Ettl, Nov 11 2012
E.g.f.: 3*exp(2*x). - Ilya Gutkovskiy, May 15 2016
A020651(a(n)) = 2. - Yosu Yurramendi, Jun 01 2016
a(n) = sqrt(A014551(n + 1)*A014551(n + 2) + A014551(n)^2). - Ezhilarasu Velayutham, Sep 01 2019
a(A048672(n)) = A225546(A133466(n)). - Michel Marcus and Peter Munn, Nov 29 2019
Sum_{n>=1} 1/a(n) = 2/3. - Amiram Eldar, Oct 28 2020

A001792 a(n) = (n+2)*2^(n-1).

Original entry on oeis.org

1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816, 6144, 13312, 28672, 61440, 131072, 278528, 589824, 1245184, 2621440, 5505024, 11534336, 24117248, 50331648, 104857600, 218103808, 452984832, 939524096, 1946157056, 4026531840, 8321499136, 17179869184, 35433480192
Offset: 0

Views

Author

Keywords

Comments

Number of parts in all compositions (ordered partitions) of n + 1. For example, a(2) = 8 because in 3 = 2 + 1 = 1 + 2 = 1 + 1 + 1 we have 8 parts. Also number of compositions (ordered partitions) of 2n + 1 with exactly 1 odd part. For example, a(2) = 8 because the only compositions of 5 with exactly 1 odd part are 5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1 = 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1. - Emeric Deutsch, May 10 2001
Binomial transform of natural numbers [1, 2, 3, 4, ...].
For n >= 1 a(n) is also the determinant of the n X n matrix with 3's on the diagonal and 1's elsewhere. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001
The arithmetic mean of first n terms of the sequence is 2^(n-1). - Amarnath Murthy, Dec 25 2001, corrected by M. F. Hasler, Dec 17 2016
Also the number of "winning paths" of length n across an n X n Hex board. Satisfies the recursion a(n) = 2a(n-1) + 2^(n-2). - David Molnar (molnar(AT)stolaf.edu), Apr 10 2002
Diagonal in A053218. - Benoit Cloitre, May 08 2002
Let M_n be the n X n matrix m_(i, j) = 1 + abs(i-j) then det(M_n) = (-1)^(n-1)*a(n-1). - Benoit Cloitre, May 28 2002
Absolute value of determinant of n X n matrix of form: [1 2 3 4 5 / 2 1 2 3 4 / 3 2 1 2 3 / 4 3 2 1 2 / 5 4 3 2 1]. - Benoit Cloitre, Jun 20 2002
Number of ones in all (n+1)-bit integers (cf. A000120). - Ralf Stephan, Aug 02 2003
This sequence also emerges as a floretion force transform of powers of 2 (see program code). Define a(-1) = 0 (as the sequence is returned by FAMP). Then a(n-1) + A098156(n+1) = 2*a(n) (conjecture). - Creighton Dement, Mar 14 2005
This sequence gives the absolute value of the determinant of the Toeplitz matrix with first row containing the first n integers. - Paul Max Payton, May 23 2006
Equals sums of rows right of left edge of A102363 divided by three, + 2^K. - David G. Williams (davidwilliams(AT)paxway.com), Oct 08 2007
If X_1, X_2, ..., X_n are 2-blocks of a (2n+1)-set X then, for n >= 1, a(n) is the number of (n+1)-subsets of X intersecting each X_i, (i = 1, 2, ..., n). - Milan Janjic, Nov 18 2007
Also, a(n-1) is the determinant of the n X n matrix with A[i, j] = n - |i-j|. - M. F. Hasler, Dec 17 2008
1/2 the number of permutations of 1 .. (n+2) arranged in a circle with exactly one local maximum. - R. H. Hardin, Apr 19 2009
The first corrector line for transforming 2^n offset 0 with a leading 1 into the Fibonacci sequence. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
a(n) is the number of runs of consecutive 1's in all binary sequences of length (n+1). - Geoffrey Critzer, Jul 02 2009
Let X_j (0 < j <= 2^n) all the subsets of N_n; m(i, j) := if {i} in X_j then 1 else 0. Let A = transpose(M).M; Then a(i, j) = (number of elements)|X_i intersect X_j|. Determinant(X*I-A) = (X-(n+1)*2^(n-2))*(X-2^(n-2))^(n-1)*X^(2^n-n).
Eigenvector for (n+1)*2^(n-2) is V_i=|X_i|.
Sum_{k=1..2^n} |X_i intersect X_k|*|X_k| = (n+1)*2^(n-2)*|X_i|.
Eigenvectors for 2^(n-2) are {line(M)[i] - line(M)[j], 1 <= i, j <= n}. - CLARISSE Philippe (clarissephilippe(AT)yahoo.fr), Mar 24 2010
The sequence b(n) = 2*A001792(n), for n >= 1 with b(0) = 1, is an elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 187, 190, 250 and 442, lead to the b(n) sequence. For the corner squares these vectors lead to the companion sequence A134401. - Johannes W. Meijer, Aug 15 2010
Equals partial sums of A045623: (1, 2, 5, 12, 28, ...); where A045623 = the convolution square of (1, 1, 2, 4, 8, 16, 32, ...). - Gary W. Adamson, Oct 26 2010
Equals (1, 2, 4, 8, 16, ...) convolved with (1, 1, 2, 4, 8, 16, ...); e.g., a(3) = 20 = (1, 1, 2, 4) dot (8, 4, 2, 1) = (8 + 4 + 4 + 4). - Gary W. Adamson, Oct 26 2010
This sequence seems to give the first x+1 nonzero terms in the sequence derived by subtracting the m-th term in the x_binacci sequence (where the first term is one and the y-th term is the sum of x terms immediately preceding it) from 2^(m-2). - Dylan Hamilton, Nov 03 2010
Recursive formulas for a(n) are in many cases derivable from its property wherein delta^k(a(n)) - a(n) = k*2^n where delta^k(a(n)) represents the k-th forward difference of a(n). Provable with a difference table and a little induction. - Ethan Beihl, May 02 2011
Let f(n,k) be the sum of numbers in the subsets of size k of {1, 2, ..., n}. Then a(n-1) is the average of the numbers f(n, 0), ... f(n, n). Example: (f(3, 1), f(3, 2), f(3, 3)) = (6, 12, 6), with average (6+12+6)/3. - Clark Kimberling, Feb 24 2012
a(n) is the number of length-2n binary sequences that contain a subsequence of ones with length n or more. To derive this result, note that there are 2^n sequences where the initial one of the subsequence occurs at entry one. If the initial one of the subsequence occurs at entry 2, 3, ..., or n + 1, there are 2^(n-1) sequences since a zero must precede the initial one. Hence a(n) = 2^n + n*2^(n-1)=(n+2)2^(n-1). An example is given in the example section below. - Dennis P. Walsh, Oct 25 2012
As the total number of parts in all compositions of n+1 (see the first line in Comments) the equivalent sequence for partitions is A006128. On the other hand, as the first differences of A001787 (see the first line in Crossrefs) the equivalent sequence for partitions is A138879. - Omar E. Pol, Aug 28 2013
a(n) is the number of spanning trees of the complete tripartite graph K_{n,1,1}. - James Mahoney, Oct 24 2013
a(n-1) = denominator of the mean (2n/(n+1), after reduction), of the compositions of n; numerator is given by A022998(n). - Clark Kimberling, Mar 11 2014
From Tom Copeland, Nov 09 2014: (Start)
The shifted array belongs to an interpolated family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the interpolating o.g.f. (1-sqrt(1-4x/(1+(1-t)x)))/2 and inverse x(1-x)/(1+(t-1)x(1-x)). See A091867 for more info on this family. Here the interpolation is t=-3 (mod signs in the results).
Let C(x) = (1 - sqrt(1-4x))/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1+t*x) with inverse P(x,-t).
Shifted o.g.f: G(x) = x*(1-x)/(1 - 4x*(1-x)) = P[Cinv(x),-4].
Inverse o.g.f: Ginv(x) = [1 - sqrt(1 - 4*x/(1+4x))]/2 = C[P(x, 4)] (signed shifted A001700). Cf. A030528. (End)
For n > 0, element a(n) of the sequence is equal to the gradients of the (n-1)-th row of Pascal triangle multiplied with the square of the integers from n+1,...,1. I.e., row 3 of Pascal's triangle 1,3,3,1 has gradients 1,2,0,-2,-1, so a(4) = 1*(5^2) + 2*(4^2) + 0*(3^2) - 2*(2^2) - 1*(1^2) = 48. - Jens Martin Carlsson, May 18 2017
Number of self-avoiding paths connecting all the vertices of a convex (n+2)-gon. - Ivaylo Kortezov, Jan 19 2020
a(n-1) is the total number of elements of subsets of {1,2,..,n} that contain n. For example, for n = 3, a(2) = 8, and the subsets of {1,2,3} that contain 3 are {3}, {1,3}, {2,3}, {1,2,3}, with a total of 8 elements. - Enrique Navarrete, Aug 01 2020

Examples

			a(0) = 1, a(1) = 2*1 + 1 = 3, a(2) = 2*3 + 2 = 8, a(3) = 2*8 + 4 = 20, a(4) = 2*20 + 8 = 48, a(5) = 2*48 + 16 = 112, a(6) = 2*112 + 32 = 256, ... - _Philippe Deléham_, Apr 19 2009
a(2) = 8 since there are 8 length-4 binary sequences with a subsequence of ones of length 2 or more, namely, 1111, 1110, 1101, 1011, 0111, 1100, 0110, and 0011. - _Dennis P. Walsh_, Oct 25 2012
G.f. = 1 + 3*x + 8*x^2 + 20*x^3 + 48*x^4 + 112*x^5 + 256*x^6 + 576*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. M. Stepin and A. T. Tagi-Zade, Words with restrictions, pp. 67-74 of Kvant Selecta: Combinatorics I, Amer. Math. Soc., 2001 (G_n on p. 70).

Crossrefs

First differences of A001787.
a(n) = A049600(n, 1), a(n) = A030523(n + 1, 1).
Cf. A053113.
Row sums of triangles A008949 and A055248.
a(n) = -A039991(n+2, 2).
If the exponent E in a(n) = Sum_{m=0..n} (Sum_{k=0..m} C(n,k))^E is 1, 2, 3, 4, 5 we get A001792, A003583, A007403, A294435, A294436 respectively.

Programs

  • GAP
    List([0..35],n->(n+2)*2^(n-1)); # Muniru A Asiru, Sep 25 2018
    
  • Haskell
    a001792 n = a001792_list !! n
    a001792_list = scanl1 (+) a045623_list
    -- Reinhard Zumkeller, Jul 21 2013
    
  • Magma
    [(n+2)*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Nov 10 2014
    
  • Maple
    A001792 := n-> (n+2)*2^(n-1);
    spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/4, n=2..30); # Zerinvary Lajos, Oct 09 2006
    A001792:=-(-3+4*z)/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, which gives the sequence without the initial 1
    G(x):=1/exp(2*x)*(1-x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(abs(f[n]),n=0..28 ); # Zerinvary Lajos, Apr 17 2009
    a := n -> hypergeom([-n, 2], [1], -1);
    seq(round(evalf(a(n),32)), n=0..31); # Peter Luschny, Aug 02 2014
  • Mathematica
    matrix[n_Integer /; n >= 1] := Table[Abs[p - q] + 1, {q, n}, {p, n}]; a[n_Integer /; n >= 1] := Abs[Det[matrix[n]]] (* Josh Locker (joshlocker(AT)macfora.com), Apr 29 2004 *)
    g[n_,m_,r_] := Binomial[n - 1, r - 1] Binomial[m + 1, r] r; Table[1 + Sum[g[n, k - n, r], {r, 1, k}, {n, 1, k - 1}], {k, 1, 29}] (* Geoffrey Critzer, Jul 02 2009 *)
    a[n_] := (n + 2)*2^(n - 1); a[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
    LinearRecurrence[{4, -4}, {1, 3}, 40] (* Harvey P. Dale, Aug 29 2011 *)
    CoefficientList[Series[(1 - x) / (1 - 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
    b[i_]:=i; a[n_]:=Abs[Det[ToeplitzMatrix[Array[b, n], Array[b, n]]]]; Array[a, 40] (* Stefano Spezia, Sep 25 2018 *)
    a[n_]:=Hypergeometric2F1[2,-n+1,1,-1];Array[a,32] (* Giorgos Kalogeropoulos, Jan 04 2022 *)
  • PARI
    A001792(n)=(n+2)<<(n-1) \\ M. F. Hasler, Dec 17 2008
    
  • Python
    for n in range(0,40): print(int((n+2)*2**(n-1)), end=' ') # Stefano Spezia, Oct 16 2018

Formula

a(n) = (n+2)*2^(n-1).
G.f.: (1 - x)/(1 - 2*x)^2 = 2F1(1,3;2;2x).
a(n) = 4*a(n-1) - 4*a(n-2).
G.f. (-1 + (1-2*x)^(-2))/(x*2^2). - Wolfdieter Lang
a(n) = A018804(2^n). - Matthew Vandermast, Mar 01 2003
a(n) = Sum_{k=0..n+2} binomial(n+2, 2k)*k. - Paul Barry, Mar 06 2003
a(n) = (1/4)*A001787(n+2). - Emeric Deutsch, May 24 2003
With a leading 0, this is ((n+1)2^n - 0^n)/4 = Sum_{m=0..n} binomial(n - 1, m - 1)*m, the binomial transform of A004526(n+1). - Paul Barry, Jun 05 2003
a(n) = Sum_{k=0..n} binomial(n, k)*(k + 1). - Lekraj Beedassy, Jun 24 2004
a(n) = A000244(n) - A066810(n). - Ross La Haye, Apr 29 2006
Row sums of triangle A130585. - Gary W. Adamson, Jun 06 2007
Equals A125092 * [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, Nov 16 2007
a(n) = (n+1)*2^n - n*2^(n-1). Equals A128064 * A000079. - Gary W. Adamson, Dec 28 2007
G.f.: F(3, 1; 2; 2x). - Paul Barry, Sep 03 2008
a(n) = 1 + Sum_{k=1..n} (n - k + 4)2^(n - k - 1). This follows from the result that the number of parts equal to k in all compositions of n is (n - k + 3)2^(n - k - 2) for 0 < k < n. - Geoffrey Critzer, Sep 21 2008
a(n) = 2^(n-1) + 2 a(n-1) ; a(n-1) = det(n - |i - j|){i, j = 1..n}. - _M. F. Hasler, Dec 17 2008
a(n) = 2*a(n-1) + 2^(n-1). - Philippe Deléham, Apr 19 2009
a(n) = A164910(2^n). - Gary W. Adamson, Aug 30 2009
a(n) = Sum_{i=1..2^n} gcd(i, 2^n) = A018804(2^n). So we have: 2^0 * phi(2^n) + ... + 2^n * phi(2^0) = (n + 2)*2^(n-1), where phi is the Euler totient function. - Jeffrey R. Goodwin, Nov 11 2011
a(n) = Sum_{j=0..n} Sum_{i=0..n} binomial(n, i + j). - Yalcin Aktar, Jan 17 2012
Eigensequence of an infinite lower triangular matrix with 2^n as the left border and the rest 1's. - Gary W. Adamson, Jan 30 2012
G.f.: 1 + 2*x*U(0) where U(k) = 1 + (k + 1)/(2 - 8*x/(4*x + (k + 1)/U(k + 1))); (continued fraction, 3 - step). - Sergei N. Gladkovskii, Oct 19 2012
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n,j). - Peter Luschny, Dec 03 2013
a(n) = Hyper2F1([-n, 2], [1], -1). - Peter Luschny, Aug 02 2014
G.f.: 1 / (1 - 3*x / (1 + x / (3 - 4*x))). - Michael Somos, Aug 26 2015
a(n) = -A053120(2+n, n), n >= 0, the negative of the third (sub)diagonal of the triangle of Chebyshev's T polynomials. - Wolfdieter Lang, Nov 26 2019
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=0} 1/a(n) = 8*log(2) - 4.
Sum_{n>=0} (-1)^n/a(n) = 4 - 8*log(3/2). (End)
E.g.f.: exp(2*x)*(1 + x). - Stefano Spezia, Jun 11 2021

A008776 Pisot sequences E(2,6), L(2,6), P(2,6), T(2,6).

Original entry on oeis.org

2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974
Offset: 0

Views

Author

Keywords

Comments

Definitions of Pisot and related sequences:
Pisot sequence E(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2) + 1/2) = nearest integer to a(n-1)^2/a(n-2), with 0 < x < y.
Pisot sequence L(x, y): a(0) = x, a(1) = y, a(n) = ceiling(a(n-1)^2/a(n-2)).
Pisot sequence P(x, y): a(0) = x, a(1) = y, a(n) = ceiling(a(n-1)^2/a(n-2) - 1/2).
Pisot sequence T(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2)).
Pisot/Shallit sequence S(x, y): a(0) = x, a(1) = y, a(n) = floor(a(n-1)^2/a(n-2)+1).
A025192 is the main entry for the sequence of numbers 2*3^n.
Number of tilings of a 4 X (4n+4) rectangle into T tetrominoes.
Numbers n such that 3^n = n/2 mod n. Cf. A066601 3^n mod n. - Zak Seidov, Aug 26 2006, Nov 20 2008
For n >= 1, a(n) is equal to the number of functions f:{1,2...,n}->{1,2,3} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
a(n+1) is the number of compositions of n when there are 2 types of each natural number. - Milan Janjic, Aug 13 2010
2*Sum_{n>=2} 1/A083667(n) = 2*Sum_{n>=2} 2^(-n)*3^(-((n*(n-1))/2)) = Sum_{n>=1} 1/Product_{k=1..n} A008776(k) = Sum_{n>=1} 1/Product_{k=1..n} 2*3^k = 0.17609845431233461692099660022134... . - Alexander R. Povolotsky, Aug 08 2011
Number of monic squarefree polynomials over F_3 of degree n+1. - Charles R Greathouse IV, Feb 07 2012
a(n) is the sum of the elements of the n-th power of the matrix {{1, 2}, {2, 1}}. - Griffin N. Macris, Mar 25 2016
Let D(m) denote the set of divisors of a number m, and consider s1(m) and s2(m) the sums of those divisors that are congruent to 1 and 2 (mod 3) respectively. This sequence lists the numbers m such that s1(m) = 1 and s2(m) = 2. - Michel Lagneau, Feb 09 2017
a(n) is the multiplicative order of k modulo 3^(n+1), where k is any number congruent to 2 or 5 modulo 9. Note that for n > 0, k is a primitive root modulo 3^(n+1) if and only if k == 2, 5 (mod 9). - Jianing Song, Apr 20 2021

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 203).

Crossrefs

Apart from initial term, same as A025192.
Cf. A080643.
Cf. A000244.

Programs

  • GAP
    List([0..30], n-> 2*3^n); # G. C. Greubel, Sep 11 2019
    
  • Haskell
    a008776 = (* 2) . (3 ^)
    a008776_list = iterate (* 3) 2  -- Reinhard Zumkeller, Oct 19 2015
    
  • Magma
    [2*3^n: n in [0..30]]; // G. C. Greubel, Sep 11 2019
    
  • Maple
    # E(x,y) is f(n,x,y,1/2), T(x,y) is f(n,x,y,0), and S(x,y) is f(n,x,y,1).
    f:=proc(n,x,y,r) option remember;
    if n=0 then x
    elif n=1 then y
    else floor(f(n-1,x,y,r)^2/f(n-2,x,y,r) + r); fi; end;
    [seq(f(n,2,6,1/2),n=0..30)];
    # N. J. A. Sloane, Jul 30 2016
  • Mathematica
    Table[EulerPhi[3^n], {n, 0, 100}] (* Artur Jasinski, Nov 19 2008 *)
    Table[MatrixPower[{{1,2},{1,2}},n][[1]][[2]],{n,0,44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    NestList[3#&,2,50] (* Harvey P. Dale, Nov 28 2022 *)
  • PARI
    a(n)=3^n<<1 \\ corrected by Michel Marcus, Aug 03 2015
    
  • Python
    def A008776(n): return 3**n<<1 # Chai Wah Wu, Apr 02 2025
  • Sage
    [2*3^n for n in (0..30)] # G. C. Greubel, Sep 11 2019
    

Formula

a(n) = 2*3^n.
a(n) = 3*a(n-1).
G.f.: 2/(1-3*x). - Philippe Deléham, Oct 08 2007
a(n-1) = phi(3^n). - Artur Jasinski, Nov 19 2008
E.g.f.: 2*exp(3*x). - Mohammad K. Azarian, Jan 15 2009
From Paul Curtz, Jan 20 2009: (Start)
a(n) = A048473(n) + 1.
a(n) = A052919(n+1)-1.
a(n) = A115099(n) - 2.
a(n) = A100774(n) + 2. (End)
If p[i]=2, (i >= 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1)=det A. - Milan Janjic, Apr 29 2010
G.f.: ((1/2)/G(0)-1)/x^2 where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
G.f.: -G(0)/x where G(k) = 1 - 1/(1-2*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 25 2013
G.f.: (1 - 1/Q(0))/x where Q(k) = 1 - x*(2*k-2)/(1 - x*(2*k+5)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: W(0), where W(k) = 1 + 1/(1 - x*(2*k+3)/(x*(2*k+4) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013

Extensions

Jasinski formula corrected by Charles R Greathouse IV, Feb 18 2011

A000420 Powers of 7: a(n) = 7^n.

Original entry on oeis.org

1, 7, 49, 343, 2401, 16807, 117649, 823543, 5764801, 40353607, 282475249, 1977326743, 13841287201, 96889010407, 678223072849, 4747561509943, 33232930569601, 232630513987207, 1628413597910449, 11398895185373143, 79792266297612001, 558545864083284007
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 7), L(1, 7), P(1, 7), T(1, 7). Essentially same as Pisot sequences E(7, 49), L(7, 49), P(7, 49), T(7, 49). See A008776 for definitions of Pisot sequences.
Sum of coefficients of expansion of (1+x+x^2+x^3+x^4+x^5+x^6)^n.
a(n) is number of compositions of natural numbers into n parts < 7.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 7-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(7n) = 7n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
Number of ways to assign truth values to n ternary disjunctions connected by conjunctions such that the proposition is true. For example, a(2) = 49, since for the proposition '(a v b v c) & (d v e v f)' there are 49 assignments that make the proposition true. - Ori Milstein, Dec 31 2022
Equivalently, the number of length-n words over an alphabet with seven letters. - Joerg Arndt, Jan 01 2023

Examples

			a(2)=49 there are 49 compositions of natural numbers into 2 parts < 7.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49).

Programs

Formula

a(n) = 7^n.
a(0) = 1; a(n) = 7*a(n-1).
G.f.: 1/(1-7*x).
E.g.f.: exp(7*x).
4/7 - 5/7^2 + 4/7^3 - 5/7^4 + ... = 23/48. [Jolley, Summation of Series, Dover, 1961]

A027907 Triangle of trinomial coefficients T(n,k) (n >= 0, 0 <= k <= 2*n), read by rows: n-th row is obtained by expanding (1 + x + x^2)^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1, 1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1, 1, 7, 28, 77, 161, 266, 357, 393, 357, 266, 161, 77, 28, 7, 1, 1, 8, 36, 112, 266
Offset: 0

Views

Author

Keywords

Comments

When the rows are centered about their midpoints, each term is the sum of the three terms directly above it (assuming the undefined terms in the previous row are zeros). - N. J. A. Sloane, Dec 23 2021
T(n,k) = number of integer strings s(0),...,s(n) such that s(0)=0, s(n)=k, s(i) = s(i-1) + c, where c is 0, 1 or 2. Columns of T include A002426, A005717 and A014531.
Also number of ordered trees having n+1 leaves, all at level three and n+k+3 edges. Example: T(3,5)=3 because we have three ordered trees with 4 leaves, all at level three and 11 edges: the root r has three children; from one of these children two paths of length two are hanging (i.e., 3 possibilities) while from each of the other two children one path of length two is hanging. Diagonal sums are the tribonacci numbers; more precisely: Sum_{i=0..floor(2*n/3)} T(n-i,i) = A000073(n+2). - Emeric Deutsch, Jan 03 2004
T(n,k) = A111808(n,k) for 0 <= k <= n and T(n, 2*n-k) = A111808(n,k) for 0 <= k < n. - Reinhard Zumkeller, Aug 17 2005
The trinomial coefficients, T(n,i), are the absolute value of the coefficients of the chromatic polynomial of P_2 X P_n factored with x*(x-1)^i terms. Example: The chromatic polynomial of P_2 X P_2 is: x*(x-1) - 2*x*(x-1)^2 + x*(x-1)^3 and so T(1,0)=1, T(1,1)=2 and T(1,1) = 1. - Thomas J. Pfaff (tpfaff(AT)ithaca.edu), Oct 02 2006
T(n,k) is the number of distinct ways in which k unlabeled objects can be distributed in n labeled urns allowing at most 2 objects to fall into each urn. - N-E. Fahssi, Mar 16 2008
T(n,k) is the number of compositions of k into n parts p, each part 0 <= p <= 2. Adding 1 to each part, as a corollary, T(n,k) is the number of compositions of n+k into n parts p where 1 <= p <= 3. E.g., T(2,3)=2 since 5 = 3+2 = 2+3. - Steffen Eger, Jun 10 2011
Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (1,2). - Joerg Arndt, Jul 05 2011
Number of lattice paths from (0,0) to (2*n-k,k) using steps (2,0), (1,1), (0,2). - Werner Schulte, Jan 25 2017
T(n,k) is number of distinct ways to sum the integers -1, 0 , and 1 n times to obtain n-k, where T(n,0) = T(n,2*n+1) = 1. - William Boyles, Apr 23 2017
T(n-1,k-1) is the number of 2-compositions of n with 0's having k parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020
T(n,k) is the number of ways to obtain a sum of n+k when throwing a 3-sided die n times. Follows from the "T(n,k) is the number of compositions of n+k into n parts p where 1 <= p <= 3" comment above. - Feryal Alayont, Dec 30 2024

Examples

			The triangle T(n, k) begins:
  n\k 0   1   2   3   4   5   6   7   8   9 10 11 12
  0:  1
  1:  1   1   1
  2:  1   2   3   2   1
  3:  1   3   6   7   6   3   1
  4:  1   4  10  16  19  16  10   4   1
  5:  1   5  15  30  45  51  45  30  15   5  1
  6:  1   6  21  50  90 126 141 126  90  50 21  6  1
Concatenated rows:
G.f. = 1 + (x^2+x+1)*x + (x^2+x+1)^2*x^4 + (x^2+x+1)^3*x^9 + ...
     = 1 + (x + x^2 + x^3) + (x^4 + 2*x^5 + 3*x^6 + 2*x^7 + x^8) +
  (x^9 + 3*x^10 + 6*x^11 + 7*x^12 + 6*x^13 + 3*x^14 + x^15) + ... .
As a centered triangle, this begins:
           1
        1  1  1
     1  2  3  2  1
  1  3  6  7  6  3  1
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer).
  • L. Kleinrock, Uniform permutation of sequences, JPL Space Programs Summary, Vol. 37-64-III, Apr 30, 1970, pp. 32-43.

Crossrefs

Columns of T include A002426, A005717, A014531, A005581, A005712, etc. See also A035000, A008287.
First differences are in A025177. Pairwise sums are in A025564.

Programs

  • Haskell
    a027907 n k = a027907_tabf !! n !! k
    a027907_row n = a027907_tabf !! n
    a027907_tabf = [1] : iterate f [1, 1, 1] where
       f row = zipWith3 (((+) .) . (+))
                        (row ++ [0, 0]) ([0] ++ row ++ [0]) ([0, 0] ++ row)
    a027907_list = concat a027907_tabf
    -- Reinhard Zumkeller, Jul 06 2014, Jan 22 2013, Apr 02 2011
  • Maple
    A027907 := proc(n,k) expand((1+x+x^2)^n) ; coeftayl(%,x=0,k) ; end proc:
    seq(seq(A027907(n,k),k=0..2*n),n=0..5) ; # R. J. Mathar, Jun 13 2011
    T := (n,k) -> simplify(GegenbauerC(`if`(kPeter Luschny, May 08 2016
  • Mathematica
    Table[CoefficientList[Series[(Sum[x^i, {i, 0, 2}])^n, {x, 0, 2 n}], x], {n, 0, 10}] // Grid (* Geoffrey Critzer, Mar 31 2010 *)
    Table[Sum[Binomial[n, i]Binomial[n - i, k - 2i], {i, 0, n}], {n, 0, 10}, {k, 0, 2n}] (* Adi Dani, May 07 2011 *)
    T[ n_, k_] := If[ n < 0, 0, Coefficient[ (1 + x + x^2)^n, x, k]]; (* Michael Somos, Nov 08 2016 *)
    Flatten[DeleteCases[#,0]&/@CellularAutomaton[{Total[#] &, {}, 1}, {{1}, 0}, 8] ] (* Giorgos Kalogeropoulos, Nov 09 2021 *)
  • Maxima
    trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k);
    create_list(trinomial(n,k),n,0,8,k,0,2*n); /* Emanuele Munarini, Mar 15 2011 */
    
  • Maxima
    create_list(ultraspherical(k,-n,-1/2),n,0,6,k,0,2*n); /* Emanuele Munarini, Oct 18 2016 */
    
  • PARI
    {T(n, k) = if( n<0, 0, polcoeff( (1 + x + x^2)^n, k))}; /* Michael Somos, Jun 27 2003 */
    

Formula

G.f.: 1/(1-z*(1+w+w^2)).
T(n,k) = Sum_{r=0..floor(k/3)} (-1)^r*binomial(n, r)*binomial(k-3*r+n-1, n-1).
Recurrence: T(0,0) = 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k-0), with T(n,k) = 0 if k < 0 or k > 2*n:
T(i,0) = T(i, 2*i) = 1 for i >= 0, T(i, 1) = T(i, 2*i-1) = i for i >= 1 and for i >= 2 and 2 <= j <= i-2, T(i, j) = T(i-1, j-2) + T(i-1, j-1) + T(i-1, j).
The row sums are powers of 3 (A000244). - Gerald McGarvey, Aug 14 2004
T(n,k) = Sum_{i=0..floor(k/2)} binomial(n, 2*i+n-k) * binomial(2*i+n-k, i). - Ralf Stephan, Jan 26 2005
T(n,k) = Sum_{j=0..n} binomial(n, j) * binomial(j, k-j). - Paul Barry, May 21 2005
T(n,k) = Sum_{j=0..n} binomial(k-j, j) * binomial(n, k-j). - Paul Barry, Nov 04 2005
From Loic Turban (turban(AT)lpm.u-nancy.fr), Aug 31 2006: (Start)
T(n,k) = Sum_{j=0..n} (-1)^j * binomial(n,j) * binomial(2*n-2*j, k-j); (G. E. Andrews (1990)) obtained by expanding ((1+x)^2 - x)^n.
T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(n-j, k-2*j); obtained by expanding ((1+x) + x^2)^n.
T(n,k) = (-1)^k*Sum_{j=0..n} (-3)^j * binomial(n,j) * binomial(2*n-2*j, k-j); obtained by expanding ((1-x)^2 + 3*x)^n.
T(n,k) = (1/2)^k * Sum_{j=0..n} 3^j * binomial(n,j) * binomial(2*n-2*j, k-2*j); obtained by expanding ((1+x/2)^2 + (3/4)*x^2)^n.
T(n,k) = (2^k/4^n) * Sum_{j=0..n} 3^j * binomial(n,j) * binomial(2*n-2*j, k); obtained by expanding ((1/2+x)^2 + 3/4)^n using T(n,k) = T(2*n-k). (End)
From Paul D. Hanna, Apr 18 2012: (Start)
Let A(x) be the g.f. of the flattened sequence, then:
G.f.: A(x) = Sum_{n>=0} x^(n^2) * (1+x+x^2)^n.
G.f.: A(x) = Sum_{n>=0} x^n*(1+x+x^2)^n * Product_{k=1..n} (1 - (1+x+x^2) * x^(4*k-3)) / (1 - (1+x+x^2)*x^(4*k-1)).
G.f.: A(x) = 1/(1 - x*(1+x+x^2)/(1 + x*(1-x^2)*(1+x+x^2)/(1 - x^5*(1+x+x^2)/(1 + x^3*(1-x^4)*(1+x+x^2)/(1 - x^9*(1+x+x^2)/(1 + x^5*(1-x^6)*(1+x+x^2)/(1 - x^13* (1+x+x^2)/(1 + x^7*(1-x^8)*(1+x+x^2)/(1 - ...))))))))), a continued fraction.
(End)
Triangle: G.f. = Sum_{n>=0} (1+x+x^2)^n * x^(n^2) * y^n. - Daniel Forgues, Mar 16 2015
From Peter Luschny, May 08 2016: (Start)
T(n+1,n)/(n+1) = A001006(n) (Motzkin) for n>=0.
T(n,k) = H(n, k) if k < n else H(n, 2*n-k) where H(n,k) = binomial(n,k)*hypergeom([(1-k)/2, -k/2], [n-k+1], 4).
T(n,k) = GegenbauerC(m, -n, -1/2) where m=k if k < n else 2*n-k. (End)
T(n,k) = (-1)^k * C(2*n,k) * hypergeom([-k, -(2*n-k)], [-n+1/2], 3/4), for all k with 0 <= k <= 2n. - Robert S. Maier, Jun 13 2023
T(n,n) = Sum_{k=0..2*n} (-1)^k*(T(n,k))^2 and T(2*n,2*n) = Sum_{k=0..2*n} (T(n,k))^2 for n >= 0. - Werner Schulte, Nov 08 2016
T(n,n) = A002426(n), central trinomial coefficients. - M. F. Hasler, Nov 02 2019
Sum_{k=0..n-1} T(n, 2*k) = (3^n-1)/2. - Tony Foster III, Oct 06 2020
Previous Showing 21-30 of 880 results. Next