cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 238 results. Next

A347348 a(n) is the rank of A008619(n) in A164912.

Original entry on oeis.org

1, 2, 3, 5, 4, 10, 8, 14, 6, 9, 7, 20, 13, 28, 11, 17, 12, 33, 18, 37, 15, 19, 16, 43, 24, 27, 22, 26, 23, 57, 31, 61, 21, 32, 25, 30, 36, 67, 29, 40, 35, 74, 41, 81, 39, 42, 45, 89, 46, 50, 34, 47, 48, 100, 49, 53, 38, 56, 52, 107, 60, 115, 51, 64, 54, 59
Offset: 1

Views

Author

Paul Curtz, Nov 21 2021

Keywords

Comments

This is a permutation of the positive integers.
1, 2, 6, 9, 15, 19, ... are in a(n) and A064664(n).

Crossrefs

Programs

  • Mathematica
    nmax = 120;
    ekg[n_] := ekg[n] = Module[{ee, k}, If[n <= 2, n, ee = Array[ekg, n - 1]; For[k = 1, True, k++, If[FreeQ[ee, k] && GCD[ekg[n - 1], k] != 1, Return[k]]]]];
    b[n_] := Quotient[ekg[n] - 1, 2] + 1;
    bb = Array[b, nmax];
    TakeWhile[Table[Position[bb, n], {n, 1, nmax}], Length[#] == 2&] // Flatten (* Jean-François Alcover, Nov 21 2021 *)

Formula

Interleave the occurrences in A164912.

A086388 Duplicate of A008619.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15
Offset: 1

Views

Author

Keywords

A165805 Integers that start a trajectory x -> A008619(x) which contains only primes until terminating at 2 or 3.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 22, 23, 46, 47, 94, 95
Offset: 1

Views

Author

Keywords

Comments

Starting from n, the trajectory of repeated application of x -> x - ceiling(x/2), as represented by A008619, is monitored until it reaches 2 or 3. If the trajectory (ignoring the initial n) contains only primes, n is added to the sequence.
We are essentially requiring a chain of safe primes A005385 down to 2 or 3, in search of reverse Cunningham chains of the first type.
There are no more terms between 95 and 10000000. - R. J. Mathar, Sep 29 2009
No more terms between 95 and 1500000000 (i.e., 1.5*10^9). - Owen Whitby, Oct 16 2009
There are no terms larger than 95, which can be seen by following the chains up from 2 and 3. The only primes that go to 2 or 3 via the map x -> x - ceiling(x/2) are 5 and 7. The only prime that goes to 5 or 7 via that map is 11. The only prime that goes to 11 is 23, the only prime that goes to 23 is 47, and no prime number maps to 47 (since 95 is not prime). Thus the only numbers that can produce prime chains in this way are numbers x such that x-ceiling(x/2) is in {1,2,3,5,7,11,23,47}. - Nathaniel Johnston, Nov 22 2010

Examples

			The trajectories of starting with numbers from 91 to 96 are
  91 -> 45 -> 22 -> 11 -> 5 -> 2
  92 -> 46 -> 23 -> 11 -> 5 -> 2
  93 -> 46 -> 23 -> 11 -> 5 -> 2
  94 -> 47 -> 23 -> 11 -> 5 -> 2
  95 -> 47 -> 23 -> 11 -> 5 -> 2
  96 -> 48 -> 24 -> 12 -> 6 -> 3
The trajectories starting at 91 to 93 and 96 contain composites 45, 46 or 48 and their initial numbers do not qualify for the sequence. The trajectories starting at 94 and 95 contain only primes (47, 23, 11, 5, 2) and their two initial integers 94 and 95 are added to the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Module[{k=n},While[k>3,k=k-Ceiling[k/2];If[ !PrimeQ[k],Break[]]]; PrimeQ[k]]; lst={};Do[If[f[n],AppendTo[lst,n]],{n,7!}];lst

Extensions

Edited by R. J. Mathar, Sep 29 2009

A180115 A109613(n)-fold concatenation of A008619(n).

Original entry on oeis.org

1, 111, 222, 22222, 33333, 3333333, 4444444, 444444444, 555555555, 55555555555, 66666666666, 6666666666666, 7777777777777, 777777777777777, 888888888888888
Offset: 1

Views

Author

Mark Dols, Aug 10 2010

Keywords

Crossrefs

Extensions

Definition rephrased, kewyord:base,less added - R. J. Mathar, Aug 19 2010

A359979 Irregular table T(n,k), n >= 0 and k >= 0, read by rows with T(n + 3*k,k) = A008619(n).

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 1, 3, 2, 4, 2, 1, 4, 3, 1, 5, 3, 2, 5, 4, 2, 1, 6, 4, 3, 1, 6, 4, 3, 2, 7, 5, 4, 2, 1, 7, 6, 4, 3, 1, 8, 6, 5, 3, 2, 8, 7, 5, 4, 2, 1, 9, 7, 6, 4, 3, 1, 9, 8, 6, 5, 3, 2, 10, 8, 7, 5, 4, 2, 1, 10, 9, 7, 6, 4, 3, 1, 11, 9, 8, 6, 5, 3, 2
Offset: 0

Views

Author

Philippe Deléham, Jan 20 2023

Keywords

Comments

A008620(n) is the length of the n-th row.

Examples

			Table: n >= 0, k >= 0.
  1;
  1;
  2;
  2, 1;
  3, 1;
  3, 2;
  4, 2, 1;
  4, 3, 1;
  5, 3, 2;
  5, 4, 2, 1;
  6, 4, 3, 1;
  6, 5, 3, 2;
  7, 5, 4, 2, 1;
  7, 6, 4, 3, 1;
  8, 6, 5, 3, 2;
  8, 7, 5, 4, 2, 1;
  9, 7, 6, 4, 3, 1;
  9, 8, 6, 5, 3, 2;
  ....
		

Crossrefs

Formula

Sum_{k >= 0} T(n,k) = A001399(n).

A374921 Irregular triangle read by rows: T(n,k), n >= 0, k >= 1, in which if n is even then row n lists the first A008619(n) even indexed terms of A027336 otherwise if n is odd then row n lists the first A008619(n) odd indexed terms of A027336.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 4, 1, 1, 3, 6, 1, 2, 4, 8, 1, 1, 3, 6, 11, 1, 2, 4, 8, 15, 1, 1, 3, 6, 11, 20, 1, 2, 4, 8, 15, 26, 1, 1, 3, 6, 11, 20, 35, 1, 2, 4, 8, 15, 26, 45, 1, 1, 3, 6, 11, 20, 35, 58, 1, 2, 4, 8, 15, 26, 45, 75, 1, 1, 3, 6, 11, 20, 35, 58, 96, 1, 2, 4, 8, 15, 26, 45, 75, 121
Offset: 0

Views

Author

Omar E. Pol, Aug 01 2024

Keywords

Comments

The sum of row n equals the number of partitions of n.

Examples

			Triangle begins:
  1;
  1;
  1, 1;
  1, 2;
  1, 1, 3;
  1, 2, 4;
  1, 1, 3, 6;
  1, 2, 4, 8;
  1, 1, 3, 6, 11;
  1, 2, 4, 8, 15;
  1, 1, 3, 6, 11, 20;
  1, 2, 4, 8, 15, 26;
  1, 1, 3, 6, 11, 20, 35;
  1, 2, 4, 8, 15, 26, 45;
  1, 1, 3, 6, 11, 20, 35, 58;
  1, 2, 4, 8, 15, 26, 45, 75;
  1, 1, 3, 6, 11, 20, 35, 58, 96;
  1, 2, 4, 8, 15, 26, 45, 75, 121;
  ...
For n = 10 the sum of the 10th row is 1 + 1 + 3 + 6 + 11 + 20 = 42, the same as the number of partitions of 10.
		

Crossrefs

Row sums give A000041.
Row lengths give A008619.
Right border gives A027336.
Columns 1..4: A000012, A000034, A010702, A010724.

A000217 Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + ... + n.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431
Offset: 0

Views

Author

Keywords

Comments

Also referred to as T(n) or C(n+1, 2) or binomial(n+1, 2) (preferred).
Also generalized hexagonal numbers: n*(2*n-1), n=0, +-1, +-2, +-3, ... Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, k >= 5. In this case k = 6. - Omar E. Pol, Sep 13 2011 and Aug 04 2012
Number of edges in complete graph of order n+1, K_{n+1}.
Number of legal ways to insert a pair of parentheses in a string of n letters. E.g., there are 6 ways for three letters: (a)bc, (ab)c, (abc), a(b)c, a(bc), ab(c). Proof: there are C(n+2,2) ways to choose where the parentheses might go, but n + 1 of them are illegal because the parentheses are adjacent. Cf. A002415.
For n >= 1, a(n) is also the genus of a nonsingular curve of degree n+2, such as the Fermat curve x^(n+2) + y^(n+2) = 1. - Ahmed Fares (ahmedfares(AT)my_deja.com), Feb 21 2001
From Harnack's theorem (1876), the number of branches of a nonsingular curve of order n is bounded by a(n-1)+1, and the bound can be achieved. See also A152947. - Benoit Cloitre, Aug 29 2002. Corrected by Robert McLachlan, Aug 19 2024
Number of tiles in the set of double-n dominoes. - Scott A. Brown, Sep 24 2002
Number of ways a chain of n non-identical links can be broken up. This is based on a similar problem in the field of proteomics: the number of ways a peptide of n amino acid residues can be broken up in a mass spectrometer. In general, each amino acid has a different mass, so AB and BC would have different masses. - James A. Raymond, Apr 08 2003
Triangular numbers - odd numbers = shifted triangular numbers; 1, 3, 6, 10, 15, 21, ... - 1, 3, 5, 7, 9, 11, ... = 0, 0, 1, 3, 6, 10, ... - Xavier Acloque, Oct 31 2003 [Corrected by Derek Orr, May 05 2015]
Centered polygonal numbers are the result of [number of sides * A000217 + 1]. E.g., centered pentagonal numbers (1,6,16,31,...) = 5 * (0,1,3,6,...) + 1. Centered heptagonal numbers (1,8,22,43,...) = 7 * (0,1,3,6,...) + 1. - Xavier Acloque, Oct 31 2003
Maximum number of lines formed by the intersection of n+1 planes. - Ron R. King, Mar 29 2004
Number of permutations of [n] which avoid the pattern 132 and have exactly 1 descent. - Mike Zabrocki, Aug 26 2004
Number of ternary words of length n-1 with subwords (0,1), (0,2) and (1,2) not allowed. - Olivier Gérard, Aug 28 2012
Number of ways two different numbers can be selected from the set {0,1,2,...,n} without repetition, or, number of ways two different numbers can be selected from the set {1,2,...,n} with repetition.
Conjecturally, 1, 6, 120 are the only numbers that are both triangular and factorial. - Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Mar 30 2005
Binomial transform is {0, 1, 5, 18, 56, 160, 432, ...}, A001793 with one leading zero. - Philippe Deléham, Aug 02 2005
Each pair of neighboring terms adds to a perfect square. - Zak Seidov, Mar 21 2006
Number of transpositions in the symmetric group of n+1 letters, i.e., the number of permutations that leave all but two elements fixed. - Geoffrey Critzer, Jun 23 2006
With rho(n):=exp(i*2*Pi/n) (an n-th root of 1) one has, for n >= 1, rho(n)^a(n) = (-1)^(n+1). Just use the triviality a(2*k+1) == 0 (mod (2*k+1)) and a(2*k) == k (mod (2*k)).
a(n) is the number of terms in the expansion of (a_1 + a_2 + a_3)^(n-1). - Sergio Falcon, Feb 12 2007
a(n+1) is the number of terms in the complete homogeneous symmetric polynomial of degree n in 2 variables. - Richard Barnes, Sep 06 2017
The number of distinct handshakes in a room with n+1 people. - Mohammad K. Azarian, Apr 12 2007 [corrected, Joerg Arndt, Jan 18 2016]
Equal to the rank (minimal cardinality of a generating set) of the semigroup PT_n\S_n, where PT_n and S_n denote the partial transformation semigroup and symmetric group on [n]. - James East, May 03 2007
a(n) gives the total number of triangles found when cevians are drawn from a single vertex on a triangle to the side opposite that vertex, where n = the number of cevians drawn+1. For instance, with 1 cevian drawn, n = 1+1 = 2 and a(n)= 2*(2+1)/2 = 3 so there is a total of 3 triangles in the figure. If 2 cevians are drawn from one point to the opposite side, then n = 1+2 = 3 and a(n) = 3*(3+1)/2 = 6 so there is a total of 6 triangles in the figure. - Noah Priluck (npriluck(AT)gmail.com), Apr 30 2007
For n >= 1, a(n) is the number of ways in which n-1 can be written as a sum of three nonnegative integers if representations differing in the order of the terms are considered to be different. In other words, for n >= 1, a(n) is the number of nonnegative integral solutions of the equation x + y + z = n-1. - Amarnath Murthy, Apr 22 2001 (edited by Robert A. Beeler)
a(n) is the number of levels with energy n + 3/2 (in units of h*f0, with Planck's constant h and the oscillator frequency f0) of the three-dimensional isotropic harmonic quantum oscillator. See the comment by A. Murthy above: n = n1 + n2 + n3 with positive integers and ordered. Proof from the o.g.f. See the A. Messiah reference. - Wolfdieter Lang, Jun 29 2007
From Hieronymus Fischer, Aug 06 2007: (Start)
Numbers m >= 0 such that round(sqrt(2m+1)) - round(sqrt(2m)) = 1.
Numbers m >= 0 such that ceiling(2*sqrt(2m+1)) - 1 = 1 + floor(2*sqrt(2m)).
Numbers m >= 0 such that fract(sqrt(2m+1)) > 1/2 and fract(sqrt(2m)) < 1/2, where fract(x) is the fractional part of x (i.e., x - floor(x), x >= 0). (End)
If Y and Z are 3-blocks of an n-set X, then, for n >= 6, a(n-1) is the number of (n-2)-subsets of X intersecting both Y and Z. - Milan Janjic, Nov 09 2007
Equals row sums of triangle A143320, n > 0. - Gary W. Adamson, Aug 07 2008
a(n) is also an even perfect number in A000396 iff n is a Mersenne prime A000668. - Omar E. Pol, Sep 05 2008. Unnecessary assumption removed and clarified by Rick L. Shepherd, Apr 14 2025
Equals row sums of triangle A152204. - Gary W. Adamson, Nov 29 2008
The number of matches played in a round robin tournament: n*(n-1)/2 gives the number of matches needed for n players. Everyone plays against everyone else exactly once. - Georg Wrede (georg(AT)iki.fi), Dec 18 2008
-a(n+1) = E(2)*binomial(n+2,2) (n >= 0) where E(n) are the Euler numbers in the enumeration A122045. Viewed this way, a(n) is the special case k=2 in the sequence of diagonals in the triangle A153641. - Peter Luschny, Jan 06 2009
Equivalent to the first differences of successive tetrahedral numbers. See A000292. - Jeremy Cahill (jcahill(AT)inbox.com), Apr 15 2009
The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) A153641 2^(-n-1)(P(n,1)-(-1)^k P(n,2k+1)). Thus a(k) = |2^(-3)(P(2,1)-(-1)^k P(2,2k+1))|. - Peter Luschny, Jul 12 2009
a(n) is the smallest number > a(n-1) such that gcd(n,a(n)) = gcd(n,a(n-1)). If n is odd this gcd is n; if n is even it is n/2. - Franklin T. Adams-Watters, Aug 06 2009
Partial sums of A001477. - Juri-Stepan Gerasimov, Jan 25 2010. [A-number corrected by Omar E. Pol, Jun 05 2012]
The numbers along the right edge of Floyd's triangle are 1, 3, 6, 10, 15, .... - Paul Muljadi, Jan 25 2010
From Charlie Marion, Dec 03 2010: (Start)
More generally, a(2k+1) == j*(2j-1) (mod 2k+2j+1) and
a(2k) == [-k + 2j*(j-1)] (mod 2k+2j).
Column sums of:
1 3 5 7 9 ...
1 3 5 ...
1 ...
...............
---------------
1 3 6 10 15 ...
Sum_{n>=1} 1/a(n)^2 = 4*Pi^2/3-12 = 12 less than the volume of a sphere with radius Pi^(1/3).
(End)
A004201(a(n)) = A000290(n); A004202(a(n)) = A002378(n). - Reinhard Zumkeller, Feb 12 2011
1/a(n+1), n >= 0, has e.g.f. -2*(1+x-exp(x))/x^2, and o.g.f. 2*(x+(1-x)*log(1-x))/x^2 (see the Stephen Crowley formula line). -1/(2*a(n+1)) is the z-sequence for the Sheffer triangle of the coefficients of the Bernoulli polynomials A196838/A196839. - Wolfdieter Lang, Oct 26 2011
From Charlie Marion, Feb 23 2012: (Start)
a(n) + a(A002315(k)*n + A001108(k+1)) = (A001653(k+1)*n + A001109(k+1))^2. For k=0 we obtain a(n) + a(n+1) = (n+1)^2 (identity added by N. J. A. Sloane on Feb 19 2004).
a(n) + a(A002315(k)*n - A055997(k+1)) = (A001653(k+1)*n - A001109(k))^2.
(End)
Plot the three points (0,0), (a(n), a(n+1)), (a(n+1), a(n+2)) to form a triangle. The area will be a(n+1)/2. - J. M. Bergot, May 04 2012
The sum of four consecutive triangular numbers, beginning with a(n)=n*(n+1)/2, minus 2 is 2*(n+2)^2. a(n)*a(n+2)/2 = a(a(n+1)-1). - J. M. Bergot, May 17 2012
(a(n)*a(n+3) - a(n+1)*a(n+2))*(a(n+1)*a(n+4) - a(n+2)*a(n+3))/8 = a((n^2+5*n+4)/2). - J. M. Bergot, May 18 2012
a(n)*a(n+1) + a(n+2)*a(n+3) + 3 = a(n^2 + 4*n + 6). - J. M. Bergot, May 22 2012
In general, a(n)*a(n+1) + a(n+k)*a(n+k+1) + a(k-1)*a(k) = a(n^2 + (k+2)*n + k*(k+1)). - Charlie Marion, Sep 11 2012
a(n)*a(n+3) + a(n+1)*a(n+2) = a(n^2 + 4*n + 2). - J. M. Bergot, May 22 2012
In general, a(n)*a(n+k) + a(n+1)*a(n+k-1) = a(n^2 + (k+1)*n + k-1). - Charlie Marion, Sep 11 2012
a(n)*a(n+2) + a(n+1)*a(n+3) = a(n^2 + 4*n + 3). - J. M. Bergot, May 22 2012
Three points (a(n),a(n+1)), (a(n+1),a(n)) and (a(n+2),a(n+3)) form a triangle with area 4*a(n+1). - J. M. Bergot, May 23 2012
a(n) + a(n+k) = (n+k)^2 - (k^2 + (2n-1)*k -2n)/2. For k=1 we obtain a(n) + a(n+1) = (n+1)^2 (see below). - Charlie Marion, Oct 02 2012
In n-space we can define a(n-1) nontrivial orthogonal projections. For example, in 3-space there are a(2)=3 (namely point onto line, point onto plane, line onto plane). - Douglas Latimer, Dec 17 2012
From James East, Jan 08 2013: (Start)
For n >= 1, a(n) is equal to the rank (minimal cardinality of a generating set) and idempotent rank (minimal cardinality of an idempotent generating set) of the semigroup P_n\S_n, where P_n and S_n denote the partition monoid and symmetric group on [n].
For n >= 3, a(n-1) is equal to the rank and idempotent rank of the semigroup T_n\S_n, where T_n and S_n denote the full transformation semigroup and symmetric group on [n].
(End)
For n >= 3, a(n) is equal to the rank and idempotent rank of the semigroup PT_n\S_n, where PT_n and S_n denote the partial transformation semigroup and symmetric group on [n]. - James East, Jan 15 2013
Conjecture: For n > 0, there is always a prime between A000217(n) and A000217(n+1). Sequence A065383 has the first 1000 of these primes. - Ivan N. Ianakiev, Mar 11 2013
The formula, a(n)*a(n+4k+2)/2 + a(k) = a(a(n+2k+1) - (k^2+(k+1)^2)), is a generalization of the formula a(n)*a(n+2)/2 = a(a(n+1)-1) in Bergot's comment dated May 17 2012. - Charlie Marion, Mar 28 2013
The series Sum_{k>=1} 1/a(k) = 2, given in a formula below by Jon Perry, Jul 13 2003, has partial sums 2*n/(n+1) (telescopic sum) = A022998(n)/A026741(n+1). - Wolfdieter Lang, Apr 09 2013
For odd m = 2k+1, we have the recurrence a(m*n + k) = m^2*a(n) + a(k). Corollary: If number T is in the sequence then so is 9*T+1. - Lekraj Beedassy, May 29 2013
Euler, in Section 87 of the Opera Postuma, shows that whenever T is a triangular number then 9*T + 1, 25*T + 3, 49*T + 6 and 81*T + 10 are also triangular numbers. In general, if T is a triangular number then (2*k + 1)^2*T + k*(k + 1)/2 is also a triangular number. - Peter Bala, Jan 05 2015
Using 1/b and 1/(b+2) will give a Pythagorean triangle with sides 2*b + 2, b^2 + 2*b, and b^2 + 2*b + 2. Set b=n-1 to give a triangle with sides of lengths 2*n,n^2-1, and n^2 + 1. One-fourth the perimeter = a(n) for n > 1. - J. M. Bergot, Jul 24 2013
a(n) = A028896(n)/6, where A028896(n) = s(n) - s(n-1) are the first differences of s(n) = n^3 + 3*n^2 + 2*n - 8. s(n) can be interpreted as the sum of the 12 edge lengths plus the sum of the 6 face areas plus the volume of an n X (n-1) X (n-2) rectangular prism. - J. M. Bergot, Aug 13 2013
Dimension of orthogonal group O(n+1). - Eric M. Schmidt, Sep 08 2013
Number of positive roots in the root system of type A_n (for n > 0). - Tom Edgar, Nov 05 2013
A formula for the r-th successive summation of k, for k = 1 to n, is binomial(n+r,r+1) [H. W. Gould]. - Gary Detlefs, Jan 02 2014
Also the alternating row sums of A095831. Also the alternating row sums of A055461, for n >= 1. - Omar E. Pol, Jan 26 2014
For n >= 3, a(n-2) is the number of permutations of 1,2,...,n with the distribution of up (1) - down (0) elements 0...011 (n-3 zeros), or, the same, a(n-2) is up-down coefficient {n,3} (see comment in A060351). - Vladimir Shevelev, Feb 14 2014
a(n) is the dimension of the vector space of symmetric n X n matrices. - Derek Orr, Mar 29 2014
Non-vanishing subdiagonal of A132440^2/2, aside from the initial zero. First subdiagonal of unsigned A238363. Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices of complete graphs. - Tom Copeland, Apr 05 2014
The number of Sidon subsets of {1,...,n+1} of size 2. - Carl Najafi, Apr 27 2014
Number of factors in the definition of the Vandermonde determinant V(x_1,x_2,...,x_n) = Product_{1 <= i < k <= n} x_i - x_k. - Tom Copeland, Apr 27 2014
Number of weak compositions of n into three parts. - Robert A. Beeler, May 20 2014
Suppose a bag contains a(n) red marbles and a(n+1) blue marbles, where a(n), a(n+1) are consecutive triangular numbers. Then, for n > 0, the probability of choosing two marbles at random and getting two red or two blue is 1/2. In general, for k > 2, let b(0) = 0, b(1) = 1 and, for n > 1, b(n) = (k-1)*b(n-1) - b(n-2) + 1. Suppose, for n > 0, a bag contains b(n) red marbles and b(n+1) blue marbles. Then the probability of choosing two marbles at random and getting two red or two blue is (k-1)/(k+1). See also A027941, A061278, A089817, A053142, A092521. - Charlie Marion, Nov 03 2014
Let O(n) be the oblong number n(n+1) = A002378 and S(n) the square number n^2 = A000290(n). Then a(4n) = O(3n) - O(n), a(4n+1) = S(3n+1) - S(n), a(4n+2) = S(3n+2) - S(n+1) and a(4n+3) = O(3n+2) - O(n). - Charlie Marion, Feb 21 2015
Consider the partition of the natural numbers into parts from the set S=(1,2,3,...,n). The length (order) of the signature of the resulting sequence is given by the triangular numbers. E.g., for n=10, the signature length is 55. - David Neil McGrath, May 05 2015
a(n) counts the partitions of (n-1) unlabeled objects into three (3) parts (labeled a,b,c), e.g., a(5)=15 for (n-1)=4. These are (aaaa),(bbbb),(cccc),(aaab),(aaac),(aabb),(aacc),(aabc),(abbc),(abcc),(abbb),(accc),(bbcc),(bccc),(bbbc). - David Neil McGrath, May 21 2015
Conjecture: the sequence is the genus/deficiency of the sinusoidal spirals of index n which are algebraic curves. The value 0 corresponds to the case of the Bernoulli Lemniscate n=2. So the formula conjectured is (n-1)(n-2)/2. - Wolfgang Tintemann, Aug 02 2015
Conjecture: Let m be any positive integer. Then, for each n = 1,2,3,... the set {Sum_{k=s..t} 1/k^m: 1 <= s <= t <= n} has cardinality a(n) = n*(n+1)/2; in other words, all the sums Sum_{k=s..t} 1/k^m with 1 <= s <= t are pairwise distinct. (I have checked this conjecture via a computer and found no counterexample.) - Zhi-Wei Sun, Sep 09 2015
The Pisano period lengths of reading the sequence modulo m seem to be A022998(m). - R. J. Mathar, Nov 29 2015
For n >= 1, a(n) is the number of compositions of n+4 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
In this sequence only 3 is prime. - Fabian Kopp, Jan 09 2016
Suppose you are playing Bulgarian Solitaire (see A242424 and Chamberland's and Gardner's books) and, for n > 0, you are starting with a single pile of a(n) cards. Then the number of operations needed to reach the fixed state {n, n-1,...,1} is a(n-1). For example, {6}->{5,1}->{4,2}->{3,2,1}. - Charlie Marion, Jan 14 2016
Numbers k such that 8k + 1 is a square. - Juri-Stepan Gerasimov, Apr 09 2016
Every perfect cube is the difference of the squares of two consecutive triangular numbers. 1^2-0^2 = 1^3, 3^2-1^2 = 2^3, 6^2-3^2 = 3^3. - Miquel Cerda, Jun 26 2016
For n > 1, a(n) = tau_n(k*) where tau_n(k) is the number of ordered n-factorizations of k and k* is the square of a prime. For example, tau_3(4) = tau_3(9) = tau_3(25) = tau_3(49) = 6 (see A007425) since the number of divisors of 4, 9, 25, and 49's divisors is 6, and a(3) = 6. - Melvin Peralta, Aug 29 2016
In an (n+1)-dimensional hypercube, number of two-dimensional faces congruent with a vertex (see also A001788). - Stanislav Sykora, Oct 23 2016
Generalizations of the familiar formulas, a(n) + a(n+1) = (n+1)^2 (Feb 19 2004) and a(n)^2 + a(n+1)^2 = a((n+1)^2) (Nov 22 2006), follow: a(n) + a(n+2k-1) + 4a(k-1) = (n+k)^2 + 6a(k-1) and a(n)^2 + a(n+2k-1)^2 + (4a(k-1))^2 + 3a(k-1) = a((n+k)^2 + 6a(k-1)). - Charlie Marion, Nov 27 2016
a(n) is also the greatest possible number of diagonals in a polyhedron with n+4 vertices. - Vladimir Letsko, Dec 19 2016
For n > 0, 2^5 * (binomial(n+1,2))^2 represents the first integer in a sum of 2*(2*n + 1)^2 consecutive integers that equals (2*n + 1)^6. - Patrick J. McNab, Dec 25 2016
Does not satisfy Benford's law (cf. Ross, 2012). - N. J. A. Sloane, Feb 12 2017
Number of ordered triples (a,b,c) of positive integers not larger than n such that a+b+c = 2n+1. - Aviel Livay, Feb 13 2017
Number of inequivalent tetrahedral face colorings using at most n colors so that no color appears only once. - David Nacin, Feb 22 2017
Also the Wiener index of the complete graph K_{n+1}. - Eric W. Weisstein, Sep 07 2017
Number of intersections between the Bernstein polynomials of degree n. - Eric Desbiaux, Apr 01 2018
a(n) is the area of a triangle with vertices at (1,1), (n+1,n+2), and ((n+1)^2, (n+2)^2). - Art Baker, Dec 06 2018
For n > 0, a(n) is the smallest k > 0 such that n divides numerator of (1/a(1) + 1/a(2) + ... + 1/a(n-1) + 1/k). It should be noted that 1/1 + 1/3 + 1/6 + ... + 2/(n(n+1)) = 2n/(n+1). - Thomas Ordowski, Aug 04 2019
Upper bound of the number of lines in an n-homogeneous supersolvable line arrangement (see Theorem 1.1 in Dimca). - Stefano Spezia, Oct 04 2019
For n > 0, a(n+1) is the number of lattice points on a triangular grid with side length n. - Wesley Ivan Hurt, Aug 12 2020
From Michael Chu, May 04 2022: (Start)
Maximum number of distinct nonempty substrings of a string of length n.
Maximum cardinality of the sumset A+A, where A is a set of n numbers. (End)
a(n) is the number of parking functions of size n avoiding the patterns 123, 132, and 312. - Lara Pudwell, Apr 10 2023
Suppose two rows, each consisting of n evenly spaced dots, are drawn in parallel. Suppose we bijectively draw lines between the dots of the two rows. For n >= 1, a(n - 1) is the maximal possible number of intersections between the lines. Equivalently, the maximal number of inversions in a permutation of [n]. - Sela Fried, Apr 18 2023
The following equation complements the generalization in Bala's Comment (Jan 05 2015). (2k + 1)^2*a(n) + a(k) = a((2k + 1)*n + k). - Charlie Marion, Aug 28 2023
a(n) + a(n+k) + a(k-1) + (k-1)*n = (n+k)^2. For k = 1, we have a(n) + a(n+1) = (n+1)^2. - Charlie Marion, Nov 17 2023
a(n+1)/3 is the expected number of steps to escape from a linear row of n positions starting at a random location and randomly performing steps -1 or +1 with equal probability. - Hugo Pfoertner, Jul 22 2025
a(n+1) is the number of nonnegative integer solutions to p + q + r = n. By Sylvester's law of inertia, it is also the number of congruence classes of real symmetric n-by-n matrices or equivalently, the number of symmetric bilinear forms on a real n-dimensional vector space. - Paawan Jethva, Jul 24 2025

Examples

			G.f.: x + 3*x^2 + 6*x^3 + 10*x^4 + 15*x^5 + 21*x^6 + 28*x^7 + 36*x^8 + 45*x^9 + ...
When n=3, a(3) = 4*3/2 = 6.
Example(a(4)=10): ABCD where A, B, C and D are different links in a chain or different amino acids in a peptide possible fragments: A, B, C, D, AB, ABC, ABCD, BC, BCD, CD = 10.
a(2): hollyhock leaves on the Tokugawa Mon, a(4): points in Pythagorean tetractys, a(5): object balls in eight-ball billiards. - _Bradley Klee_, Aug 24 2015
From _Gus Wiseman_, Oct 28 2020: (Start)
The a(1) = 1 through a(5) = 15 ordered triples of positive integers summing to n + 2 [Beeler, McGrath above] are the following. These compositions are ranked by A014311.
  (111)  (112)  (113)  (114)  (115)
         (121)  (122)  (123)  (124)
         (211)  (131)  (132)  (133)
                (212)  (141)  (142)
                (221)  (213)  (151)
                (311)  (222)  (214)
                       (231)  (223)
                       (312)  (232)
                       (321)  (241)
                       (411)  (313)
                              (322)
                              (331)
                              (412)
                              (421)
                              (511)
The unordered version is A001399(n-3) = A069905(n), with Heinz numbers A014612.
The strict case is A001399(n-6)*6, ranked by A337453.
The unordered strict case is A001399(n-6), with Heinz numbers A007304.
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See Chapter 1.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 109ff.
  • Marc Chamberland, Single Digits: In Praise of Small Numbers, Chapter 3, The Number Three, p. 72, Princeton University Press, 2015.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 33, 38, 40, 70.
  • J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 309 pp 46-196, Ellipses, Paris, 2004
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
  • Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001.
  • James Gleick, The Information: A History, A Theory, A Flood, Pantheon, 2011. [On page 82 mentions a table of the first 19999 triangular numbers published by E. de Joncort in 1762.]
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.6 Mathematical Proof and §8.6 Figurate Numbers, pp. 158-159, 289-290.
  • Cay S. Horstmann, Scala for the Impatient. Upper Saddle River, New Jersey: Addison-Wesley (2012): 171.
  • Elemer Labos, On the number of RGB-colors we can distinguish. Partition Spectra. Lecture at 7th Hungarian Conference on Biometry and Biomathematics. Budapest. Jul 06 2005.
  • A. Messiah, Quantum Mechanics, Vol.1, North Holland, Amsterdam, 1965, p. 457.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-132, 274.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 2-6, 13.
  • T. Trotter, Some Identities for the Triangular Numbers, Journal of Recreational Mathematics, Spring 1973, 6(2).
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 91-93 Penguin Books 1987.

Crossrefs

The figurate numbers, with parameter k as in the second Python program: A001477 (k=0), this sequence (k=1), A000290 (k=2), A000326 (k=3), A000384 (k=4), A000566 (k=5), A000567 (k=6), A001106 (k=7), A001107 (k=8).
a(n) = A110449(n, 0).
a(n) = A110555(n+2, 2).
A diagonal of A008291.
Column 2 of A195152.
Numbers of the form n*t(n+k,h)-(n+k)*t(n,h), where t(i,h) = i*(i+2*h+1)/2 for any h (for A000217 is k=1): A005563, A067728, A140091, A140681, A212331.
Boustrophedon transforms: A000718, A000746.
Iterations: A007501 (start=2), A013589 (start=4), A050542 (start=5), A050548 (start=7), A050536 (start=8), A050909 (start=9).
Cf. A002817 (doubly triangular numbers), A075528 (solutions of a(n)=a(m)/2).
Cf. A104712 (first column, starting with a(1)).
Some generalized k-gonal numbers are A001318 (k=5), this sequence (k=6), A085787 (k=7), etc.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A001399(n-6) = A069905(n-3) = A211540(n-1) counts 3-part strict partitions.
A011782 counts compositions of any length.
A337461 counts pairwise coprime triples, with unordered version A307719.

Programs

  • Haskell
    a000217 n = a000217_list !! n
    a000217_list = scanl1 (+) [0..] -- Reinhard Zumkeller, Sep 23 2011
    
  • J
    a000217=: *-:@>: NB. Stephen Makdisi, May 02 2018
    
  • Magma
    [n*(n+1)/2: n in [0..60]]; // Bruno Berselli, Jul 11 2014
    
  • Magma
    [n: n in [0..1500] | IsSquare(8*n+1)]; // Juri-Stepan Gerasimov, Apr 09 2016
    
  • Maple
    A000217 := proc(n) n*(n+1)/2; end;
    istriangular:=proc(n) local t1; t1:=floor(sqrt(2*n)); if n = t1*(t1+1)/2 then return true else return false; end if; end proc; # N. J. A. Sloane, May 25 2008
    ZL := [S, {S=Prod(B, B, B), B=Set(Z, 1 <= card)}, unlabeled]:
    seq(combstruct[count](ZL, size=n), n=2..55); # Zerinvary Lajos, Mar 24 2007
    isA000217 := proc(n)
        issqr(1+8*n) ;
    end proc: # R. J. Mathar, Nov 29 2015 [This is the recipe Leonhard Euler proposes in chapter VII of his "Vollständige Anleitung zur Algebra", 1765. Peter Luschny, Sep 02 2022]
  • Mathematica
    Array[ #*(# - 1)/2 &, 54] (* Zerinvary Lajos, Jul 10 2009 *)
    FoldList[#1 + #2 &, 0, Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    Accumulate[Range[0,70]] (* Harvey P. Dale, Sep 09 2012 *)
    CoefficientList[Series[x / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[n], {n, 0, 53}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    LinearRecurrence[{3, -3, 1}, {0, 1, 3}, 54] (* Robert G. Wilson v, Dec 04 2016 *)
    (* The following Mathematica program, courtesy of Steven J. Miller, is useful for testing if a sequence is Benford. To test a different sequence only one line needs to be changed. This strongly suggests that the triangular numbers are not Benford, since the second and third columns of the output disagree. - N. J. A. Sloane, Feb 12 2017 *)
    fd[x_] := Floor[10^Mod[Log[10, x], 1]]
    benfordtest[num_] := Module[{},
       For[d = 1, d <= 9, d++, digit[d] = 0];
       For[n = 1, n <= num, n++,
        {
         d = fd[n(n+1)/2];
         If[d != 0, digit[d] = digit[d] + 1];
         }];
       For[d = 1, d <= 9, d++, digit[d] = 1.0 digit[d]/num];
       For[d = 1, d <= 9, d++,
        Print[d, " ", 100.0 digit[d], " ", 100.0 Log[10, (d + 1)/d]]];
       ];
    benfordtest[20000]
    Table[Length[Join@@Permutations/@IntegerPartitions[n,{3}]],{n,0,15}] (* Gus Wiseman, Oct 28 2020 *)
  • PARI
    A000217(n) = n * (n + 1) / 2;
    
  • PARI
    is_A000217(n)=n*2==(1+n=sqrtint(2*n))*n \\ M. F. Hasler, May 24 2012
    
  • PARI
    is(n)=ispolygonal(n,3) \\ Charles R Greathouse IV, Feb 28 2014
    
  • PARI
    list(lim)=my(v=List(),n,t); while((t=n*n++/2)<=lim,listput(v,t)); Vec(v) \\ Charles R Greathouse IV, Jun 18 2021
    
  • Python
    for n in range(0,60): print(n*(n+1)//2, end=', ') # Stefano Spezia, Dec 06 2018
    
  • Python
    # Intended to compute the initial segment of the sequence, not
    # isolated terms. If in the iteration the line "x, y = x + y + 1, y + 1"
    # is replaced by "x, y = x + y + k, y + k" then the figurate numbers are obtained,
    # for k = 0 (natural A001477), k = 1 (triangular), k = 2 (squares), k = 3 (pentagonal), k = 4 (hexagonal), k = 5 (heptagonal), k = 6 (octagonal), etc.
    def aList():
        x, y = 1, 1
        yield 0
        while True:
            yield x
            x, y = x + y + 1, y + 1
    A000217 = aList()
    print([next(A000217) for i in range(54)]) # Peter Luschny, Aug 03 2019
  • SageMath
    [n*(n+1)/2 for n in (0..60)] # Bruno Berselli, Jul 11 2014
    
  • Scala
    (1 to 53).scanLeft(0)( + ) // Horstmann (2012), p. 171
    
  • Scheme
    (define (A000217 n) (/ (* n (+ n 1)) 2)) ;; Antti Karttunen, Jul 08 2017
    

Formula

G.f.: x/(1-x)^3. - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(x)*(x+x^2/2).
a(n) = a(-1-n).
a(n) + a(n-1)*a(n+1) = a(n)^2. - Terrel Trotter, Jr., Apr 08 2002
a(n) = (-1)^n*Sum_{k=1..n} (-1)^k*k^2. - Benoit Cloitre, Aug 29 2002
a(n+1) = ((n+2)/n)*a(n), Sum_{n>=1} 1/a(n) = 2. - Jon Perry, Jul 13 2003
For n > 0, a(n) = A001109(n) - Sum_{k=0..n-1} (2*k+1)*A001652(n-1-k); e.g., 10 = 204 - (1*119 + 3*20 + 5*3 + 7*0). - Charlie Marion, Jul 18 2003
With interpolated zeros, this is n*(n+2)*(1+(-1)^n)/16. - Benoit Cloitre, Aug 19 2003
a(n+1) is the determinant of the n X n symmetric Pascal matrix M_(i, j) = binomial(i+j+1, i). - Benoit Cloitre, Aug 19 2003
a(n) = ((n+1)^3 - n^3 - 1)/6. - Xavier Acloque, Oct 24 2003
a(n) = a(n-1) + (1 + sqrt(1 + 8*a(n-1)))/2. This recursive relation is inverted when taking the negative branch of the square root, i.e., a(n) is transformed into a(n-1) rather than a(n+1). - Carl R. White, Nov 04 2003
a(n) = Sum_{k=1..n} phi(k)*floor(n/k) = Sum_{k=1..n} A000010(k)*A010766(n, k) (R. Dedekind). - Vladeta Jovovic, Feb 05 2004
a(n) + a(n+1) = (n+1)^2. - N. J. A. Sloane, Feb 19 2004
a(n) = a(n-2) + 2*n - 1. - Paul Barry, Jul 17 2004
a(n) = sqrt(Sum_{i=1..n} Sum_{j=1..n} (i*j)) = sqrt(A000537(n)). - Alexander Adamchuk, Oct 24 2004
a(n) = sqrt(sqrt(Sum_{i=1..n} Sum_{j=1..n} (i*j)^3)) = (Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} (i*j*k)^3)^(1/6). - Alexander Adamchuk, Oct 26 2004
a(n) == 1 (mod n+2) if n is odd and a(n) == n/2+2 (mod n+2) if n is even. - Jon Perry, Dec 16 2004
a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) - a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(n) = a(n-1) + n. - Zak Seidov, Mar 06 2005
a(n) = A108299(n+3,4) = -A108299(n+4,5). - Reinhard Zumkeller, Jun 01 2005
a(n) = A111808(n,2) for n > 1. - Reinhard Zumkeller, Aug 17 2005
a(n)*a(n+1) = A006011(n+1) = (n+1)^2*(n^2+2)/4 = 3*A002415(n+1) = 1/2*a(n^2+2*n). a(n-1)*a(n) = (1/2)*a(n^2-1). - Alexander Adamchuk, Apr 13 2006 [Corrected and edited by Charlie Marion, Nov 26 2010]
a(n) = floor((2*n+1)^2/8). - Paul Barry, May 29 2006
For positive n, we have a(8*a(n))/a(n) = 4*(2*n+1)^2 = (4*n+2)^2, i.e., a(A033996(n))/a(n) = 4*A016754(n) = (A016825(n))^2 = A016826(n). - Lekraj Beedassy, Jul 29 2006
a(n)^2 + a(n+1)^2 = a((n+1)^2) [R B Nelsen, Math Mag 70 (2) (1997), p. 130]. - R. J. Mathar, Nov 22 2006
a(n) = A126890(n,0). - Reinhard Zumkeller, Dec 30 2006
a(n)*a(n+k)+a(n+1)*a(n+1+k) = a((n+1)*(n+1+k)). Generalizes previous formula dated Nov 22 2006 [and comments by J. M. Bergot dated May 22 2012]. - Charlie Marion, Feb 04 2011
(sqrt(8*a(n)+1)-1)/2 = n. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 26 2007
a(n) = A023896(n) + A067392(n). - Lekraj Beedassy, Mar 02 2007
Sum_{k=0..n} a(k)*A039599(n,k) = A002457(n-1), for n >= 1. - Philippe Deléham, Jun 10 2007
8*a(n)^3 + a(n)^2 = Y(n)^2, where Y(n) = n*(n+1)*(2*n+1)/2 = 3*A000330(n). - Mohamed Bouhamida, Nov 06 2007 [Edited by Derek Orr, May 05 2015]
A general formula for polygonal numbers is P(k,n) = (k-2)*(n-1)n/2 + n = n + (k-2)*A000217(n-1), for n >= 1, k >= 3. - Omar E. Pol, Apr 28 2008 and Mar 31 2013
a(3*n) = A081266(n), a(4*n) = A033585(n), a(5*n) = A144312(n), a(6*n) = A144314(n). - Reinhard Zumkeller, Sep 17 2008
a(n) = A022264(n) - A049450(n). - Reinhard Zumkeller, Oct 09 2008
If we define f(n,i,a) = Sum_{j=0..k-1} (binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = -f(n,n-1,1), for n >= 1. - Milan Janjic, Dec 20 2008
4*a(x) + 4*a(y) + 1 = (x+y+1)^2 + (x-y)^2. - Vladimir Shevelev, Jan 21 2009
a(n) = A000124(n-1) + n-1 for n >= 2. a(n) = A000124(n) - 1. - Jaroslav Krizek, Jun 16 2009
An exponential generating function for the inverse of this sequence is given by Sum_{m>=0} ((Pochhammer(1, m)*Pochhammer(1, m))*x^m/(Pochhammer(3, m)*factorial(m))) = ((2-2*x)*log(1-x)+2*x)/x^2, the n-th derivative of which has a closed form which must be evaluated by taking the limit as x->0. A000217(n+1) = (lim_{x->0} d^n/dx^n (((2-2*x)*log(1-x)+2*x)/x^2))^-1 = (lim_{x->0} (2*Gamma(n)*(-1/x)^n*(n*(x/(-1+x))^n*(-x+1+n)*LerchPhi(x/(-1+x), 1, n) + (-1+x)*(n+1)*(x/(-1+x))^n + n*(log(1-x)+log(-1/(-1+x)))*(-x+1+n))/x^2))^-1. - Stephen Crowley, Jun 28 2009
a(n) = A034856(n+1) - A005408(n) = A005843(n) + A000124(n) - A005408(n). - Jaroslav Krizek, Sep 05 2009
a(A006894(n)) = a(A072638(n-1)+1) = A072638(n) = A006894(n+1)-1 for n >= 1. For n=4, a(11) = 66. - Jaroslav Krizek, Sep 12 2009
With offset 1, a(n) = floor(n^3/(n+1))/2. - Gary Detlefs, Feb 14 2010
a(n) = 4*a(floor(n/2)) + (-1)^(n+1)*floor((n+1)/2). - Bruno Berselli, May 23 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=1. - Mark Dols, Aug 20 2010
From Charlie Marion, Oct 15 2010: (Start)
a(n) + 2*a(n-1) + a(n-2) = n^2 + (n-1)^2; and
a(n) + 3*a(n-1) + 3*a(n-2) + a(n-3) = n^2 + 2*(n-1)^2 + (n-2)^2.
In general, for n >= m > 2, Sum_{k=0..m} binomial(m,m-k)*a(n-k) = Sum_{k=0..m-1} binomial(m-1,m-1-k)*(n-k)^2.
a(n) - 2*a(n-1) + a(n-2) = 1, a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0 and a(n) - 4*a(n-1) + 6*a(n-2) - 4*(a-3) + a(n-4) = 0.
In general, for n >= m > 2, Sum_{k=0..m} (-1)^k*binomial(m,m-k)*a(n-k) = 0.
(End)
a(n) = sqrt(A000537(n)). - Zak Seidov, Dec 07 2010
For n > 0, a(n) = 1/(Integral_{x=0..Pi/2} 4*(sin(x))^(2*n-1)*(cos(x))^3). - Francesco Daddi, Aug 02 2011
a(n) = A110654(n)*A008619(n). - Reinhard Zumkeller, Aug 24 2011
a(2*k-1) = A000384(k), a(2*k) = A014105(k), k > 0. - Omar E. Pol, Sep 13 2011
a(n) = A026741(n)*A026741(n+1). - Charles R Greathouse IV, Apr 01 2012
a(n) + a(a(n)) + 1 = a(a(n)+1). - J. M. Bergot, Apr 27 2012
a(n) = -s(n+1,n), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n)*a(n+1) = a(Sum_{m=1..n} A005408(m))/2, for n >= 1. For example, if n=8, then a(8)*a(9) = a(80)/2 = 1620. - Ivan N. Ianakiev, May 27 2012
a(n) = A002378(n)/2 = (A001318(n) + A085787(n))/2. - Omar E. Pol, Jan 11 2013
G.f.: x * (1 + 3x + 6x^2 + ...) = x * Product_{j>=0} (1+x^(2^j))^3 = x * A(x) * A(x^2) * A(x^4) * ..., where A(x) = (1 + 3x + 3x^2 + x^3). - Gary W. Adamson, Jun 26 2012
G.f.: G(0) where G(k) = 1 + (2*k+3)*x/(2*k+1 - x*(k+2)*(2*k+1)/(x*(k+2) + (k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 23 2012
a(n) = A002088(n) + A063985(n). - Reinhard Zumkeller, Jan 21 2013
G.f.: x + 3*x^2/(Q(0)-3*x) where Q(k) = 1 + k*(x+1) + 3*x - x*(k+1)*(k+4)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) + a(n+1) + a(n+2) + a(n+3) + n = a(2*n+4). - Ivan N. Ianakiev, Mar 16 2013
a(n) + a(n+1) + ... + a(n+8) + 6*n = a(3*n+15). - Charlie Marion, Mar 18 2013
a(n) + a(n+1) + ... + a(n+20) + 2*n^2 + 57*n = a(5*n+55). - Charlie Marion, Mar 18 2013
3*a(n) + a(n-1) = a(2*n), for n > 0. - Ivan N. Ianakiev, Apr 05 2013
In general, a(k*n) = (2*k-1)*a(n) + a((k-1)*n-1). - Charlie Marion, Apr 20 2015
Also, a(k*n) = a(k)*a(n) + a(k-1)*a(n-1). - Robert Israel, Apr 20 2015
a(n+1) = det(binomial(i+2,j+1), 1 <= i,j <= n). - Mircea Merca, Apr 06 2013
a(n) = floor(n/2) + ceiling(n^2/2) = n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = floor((n+1)/(exp(2/(n+1))-1)). - Richard R. Forberg, Jun 22 2013
Sum_{n>=1} a(n)/n! = 3*exp(1)/2 by the e.g.f. Also see A067764 regarding ratios calculated this way for binomial coefficients in general. - Richard R. Forberg, Jul 15 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2) - 2 = 0.7725887... . - Richard R. Forberg, Aug 11 2014
2/(Sum_{n>=m} 1/a(n)) = m, for m > 0. - Richard R. Forberg, Aug 12 2014
A228474(a(n))=n; A248952(a(n))=0; A248953(a(n))=a(n); A248961(a(n))=A000330(n). - Reinhard Zumkeller, Oct 20 2014
a(a(n)-1) + a(a(n+2)-1) + 1 = A000124(n+1)^2. - Charlie Marion, Nov 04 2014
a(n) = 2*A000292(n) - A000330(n). - Luciano Ancora, Mar 14 2015
a(n) = A007494(n-1) + A099392(n) for n > 0. - Bui Quang Tuan, Mar 27 2015
Sum_{k=0..n} k*a(k+1) = a(A000096(n+1)). - Charlie Marion, Jul 15 2015
Let O(n) be the oblong number n(n+1) = A002378(n) and S(n) the square number n^2 = A000290(n). Then a(n) + a(n+2k) = O(n+k) + S(k) and a(n) + a(n+2k+1) = S(n+k+1) + O(k). - Charlie Marion, Jul 16 2015
A generalization of the Nov 22 2006 formula, a(n)^2 + a(n+1)^2 = a((n+1)^2), follows. Let T(k,n) = a(n) + k. Then for all k, T(k,n)^2 + T(k,n+1)^2 = T(k,(n+1)^2 + 2*k) - 2*k. - Charlie Marion, Dec 10 2015
a(n)^2 + a(n+1)^2 = a(a(n) + a(n+1)). Deducible from N. J. A. Sloane's a(n) + a(n+1) = (n+1)^2 and R. B. Nelson's a(n)^2 + a(n+1)^2 = a((n+1)^2). - Ben Paul Thurston, Dec 28 2015
Dirichlet g.f.: (zeta(s-2) + zeta(s-1))/2. - Ilya Gutkovskiy, Jun 26 2016
a(n)^2 - a(n-1)^2 = n^3. - Miquel Cerda, Jun 29 2016
a(n) = A080851(0,n-1). - R. J. Mathar, Jul 28 2016
a(n) = A000290(n-1) - A034856(n-4). - Peter M. Chema, Sep 25 2016
a(n)^2 + a(n+3)^2 + 19 = a(n^2 + 4*n + 10). - Charlie Marion, Nov 23 2016
2*a(n)^2 + a(n) = a(n^2+n). - Charlie Marion, Nov 29 2016
G.f.: x/(1-x)^3 = (x * r(x) * r(x^3) * r(x^9) * r(x^27) * ...), where r(x) = (1 + x + x^2)^3 = (1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 3*x^5 + x^6). - Gary W. Adamson, Dec 03 2016
a(n) = sum of the elements of inverse of matrix Q(n), where Q(n) has elements q_i,j = 1/(1-4*(i-j)^2). So if e = appropriately sized vector consisting of 1's, then a(n) = e'.Q(n)^-1.e. - Michael Yukish, Mar 20 2017
a(n) = Sum_{k=1..n} ((2*k-1)!!*(2*n-2*k-1)!!)/((2*k-2)!!*(2*n-2*k)!!). - Michael Yukish, Mar 20 2017
Sum_{i=0..k-1} a(n+i) = (3*k*n^2 + 3*n*k^2 + k^3 - k)/6. - Christopher Hohl, Feb 23 2019
a(n) = A060544(n + 1) - A016754(n). - Ralf Steiner, Nov 09 2019
a(n) == 0 (mod n) iff n is odd (see De Koninck reference). - Bernard Schott, Jan 10 2020
8*a(k)*a(n) + ((a(k)-1)*n + a(k))^2 = ((a(k)+1)*n + a(k))^2. This formula reduces to the well-known formula, 8*a(n) + 1 = (2*n+1)^2, when k = 1. - Charlie Marion, Jul 23 2020
a(k)*a(n) = Sum_{i = 0..k-1} (-1)^i*a((k-i)*(n-i)). - Charlie Marion, Dec 04 2020
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(7)*Pi/2)/(2*Pi).
Product_{n>=2} (1 - 1/a(n)) = 1/3. (End)
a(n) = Sum_{k=1..2*n-1} (-1)^(k+1)*a(k)*a(2*n-k). For example, for n = 4, 1*28 - 3*21 + 6*15 - 10*10 + 15*6 - 21*3 + 28*1 = 10. - Charlie Marion, Mar 23 2022
2*a(n) = A000384(n) - n^2 + 2*n. In general, if P(k,n) = the n-th k-gonal number, then (j+1)*a(n) = P(5 + j, n) - n^2 + (j+1)*n. More generally, (j+1)*P(k,n) = P(2*k + (k-2)*(j-1),n) - n^2 + (j+1)*n. - Charlie Marion, Mar 14 2023
a(n) = A109613(n) * A004526(n+1). - Torlach Rush, Nov 10 2023
a(n) = (1/6)* Sum_{k = 0..3*n} (-1)^(n+k+1) * k*(k + 1) * binomial(3*n+k, 2*k). - Peter Bala, Nov 03 2024
From Peter Bala, Jul 05 2025: (Start)
The following series telescope: for k >= 0,
Sum_{n >= 1} a(n)*a(n+2)*...*a(n+2*k)/(a(n+1)*a(n+3)*...*a(n+2*k+3)) = 1/(2*k + 3);
Sum_{n >= 1} a(n+1)*a(n+3)*...*a(n+2*k+1)/(a(n)*a(n+2)*...*a(n+2*k+2)) = 2/(2*k + 3) * Sum_{i = 1..2*k+3} 1/i. (End)

Extensions

Edited by Derek Orr, May 05 2015

A011782 Coefficients of expansion of (1-x)/(1-2*x) in powers of x.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Lee D. Killough (killough(AT)wagner.convex.com)

Keywords

Comments

Apart from initial term, same as A000079 (powers of 2).
Number of compositions (ordered partitions) of n. - Toby Bartels, Aug 27 2003
Number of ways of putting n unlabeled items into (any number of) labeled boxes where every box contains at least one item. Also "unimodal permutations of n items", i.e., those which rise then fall. (E.g., for three items: ABC, ACB, BCA and CBA are unimodal.) - Henry Bottomley, Jan 17 2001
Number of permutations in S_n avoiding the patterns 213 and 312. - Tuwani Albert Tshifhumulo, Apr 20 2001. More generally (see Simion and Schmidt), the number of permutations in S_n avoiding (i) the 123 and 132 patterns; (ii) the 123 and 213 patterns; (iii) the 132 and 213 patterns; (iv) the 132 and 231 patterns; (v) the 132 and 312 patterns; (vi) the 213 and 231 patterns; (vii) the 213 and 312 patterns; (viii) the 231 and 312 patterns; (ix) the 231 and 321 patterns; (x) the 312 and 321 patterns.
a(n+2) is the number of distinct Boolean functions of n variables under action of symmetric group.
Number of unlabeled (1+2)-free posets. - Detlef Pauly, May 25 2003
Image of the central binomial coefficients A000984 under the Riordan array ((1-x), x*(1-x)). - Paul Barry, Mar 18 2005
Binomial transform of (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...); inverse binomial transform of A007051. - Philippe Deléham, Jul 04 2005
Also, number of rationals in [0, 1) whose binary expansions terminate after n bits. - Brad Chalfan, May 29 2006
Equals row sums of triangle A144157. - Gary W. Adamson, Sep 12 2008
Prepend A089067 with a 1, getting (1, 1, 3, 5, 13, 23, 51, ...) as polcoeff A(x); then (1, 1, 2, 4, 8, 16, ...) = A(x)/A(x^2). - Gary W. Adamson, Feb 18 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 2, 8, 32 and 128, lead to this sequence. For the corner squares these vectors lead to the companion sequence A094373. - Johannes W. Meijer, Aug 15 2010
From Paul Curtz, Jul 20 2011: (Start)
Array T(m,n) = 2*T(m,n-1) + T(m-1,n):
1, 1, 2, 4, 8, 16, ... = a(n)
1, 3, 8, 20, 48, 112, ... = A001792,
1, 5, 18, 56, 160, 432, ... = A001793,
1, 7, 32, 120, 400, 1232, ... = A001794,
1, 9, 50, 220, 840, 2912, ... = A006974, followed with A006975, A006976, gives nonzero coefficients of Chebyshev polynomials of first kind A039991 =
1,
1, 0,
2, 0, -1,
4, 0, -3, 0,
8, 0, -8, 0, 1.
T(m,n) third vertical: 2*n^2, n positive (A001105).
Fourth vertical appears in Janet table even rows, last vertical (A168342 array, A138509, rank 3, 13, = A166911)). (End)
A131577(n) and differences are:
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16, = a(n),
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16.
Number of 2-color necklaces of length 2n equal to their complemented reversal. For length 2n+1, the number is 0. - David W. Wilson, Jan 01 2012
Edges and also central terms of triangle A198069: a(0) = A198069(0,0) and for n > 0: a(n) = A198069(n,0) = A198069(n,2^n) = A198069(n,2^(n-1)). - Reinhard Zumkeller, May 26 2013
These could be called the composition numbers (see the second comment) since the equivalent sequence for partitions is A000041, the partition numbers. - Omar E. Pol, Aug 28 2013
Number of self conjugate integer partitions with exactly n parts for n>=1. - David Christopher, Aug 18 2014
The sequence is the INVERT transform of (1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...). - Gary W. Adamson, Jul 16 2015
Number of threshold graphs on n nodes [Hougardy]. - Falk Hüffner, Dec 03 2015
Number of ternary words of length n in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
a(n) is the number of words of length n over an alphabet of two letters, of which one letter appears an even number of times (the empty word of length 0 is included). See the analogous odd number case in A131577, and the Balakrishnan reference in A006516 (the 4-letter odd case), pp. 68-69, problems 2.66, 2.67 and 2.68. - Wolfdieter Lang, Jul 17 2017
Number of D-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are D-equivalent iff the positions of pattern D are identical in these paths. - Sergey Kirgizov, Apr 08 2018
Number of color patterns (set partitions) for an oriented row of length n using two or fewer colors (subsets). Two color patterns are equivalent if we permute the colors. For a(4)=8, the 4 achiral patterns are AAAA, AABB, ABAB, and ABBA; the 4 chiral patterns are the 2 pairs AAAB-ABBB and AABA-ABAA. - Robert A. Russell, Oct 30 2018
The determinant of the symmetric n X n matrix M defined by M(i,j) = (-1)^max(i,j) for 1 <= i,j <= n is equal to a(n) * (-1)^(n*(n+1)/2). - Bernard Schott, Dec 29 2018
For n>=1, a(n) is the number of permutations of length n whose cyclic representations can be written in such a way that when the cycle parentheses are removed what remains is 1 through n in natural order. For example, a(4)=8 since there are exactly 8 permutations of this form, namely, (1 2 3 4), (1)(2 3 4), (1 2)(3 4), (1 2 3)(4), (1)(2)(3 4), (1)(2 3)(4), (1 2)(3)(4), and (1)(2)(3)(4). Our result follows readily by conditioning on k, the number of parentheses pairs of the form ")(" in the cyclic representation. Since there are C(n-1,k) ways to insert these in the cyclic representation and since k runs from 0 to n-1, we obtain a(n) = Sum_{k=0..n-1} C(n-1,k) = 2^(n-1). - Dennis P. Walsh, May 23 2020
Maximum number of preimages that a permutation of length n + 1 can have under the consecutive-231-avoiding stack-sorting map. - Colin Defant, Aug 28 2020
a(n) is the number of occurrences of the empty set {} in the von Neumann ordinals from 0 up to n. Each ordinal k is defined as the set of all smaller ordinals: 0 = {}, 1 = {0}, 2 = {0,1}, etc. Since {} is the foundational element of all ordinals, the total number of times it appears grows as powers of 2. - Kyle Wyonch, Mar 30 2025

Examples

			G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 32*x^6 + 64*x^7 + 128*x^8 + ...
    ( -1   1  -1)
det (  1   1   1)  = 4
    ( -1  -1  -1)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7
  • Xavier Merlin, Methodix Algèbre, Ellipses, 1995, p. 153.

Crossrefs

Sequences with g.f.'s of the form ((1-x)/(1-2*x))^k: this sequence (k=1), A045623 (k=2), A058396 (k=3), A062109 (k=4), A169792 (k=5), A169793 (k=6), A169794 (k=7), A169795 (k=8), A169796 (k=9), A169797 (k=10).
Cf. A005418 (unoriented), A122746(n-3) (chiral), A016116 (achiral).
Row sums of triangle A100257.
A row of A160232.
Row 2 of A278984.

Programs

  • Haskell
    a011782 n = a011782_list !! n
    a011782_list = 1 : scanl1 (+) a011782_list
    -- Reinhard Zumkeller, Jul 21 2013
    
  • Magma
    [Floor((1+2^n)/2): n in [0..35]]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    A011782:= n-> ceil(2^(n-1)): seq(A011782(n), n=0..50); # Wesley Ivan Hurt, Feb 21 2015
    with(PolynomialTools):  A011782:=seq(coeftayl((1-x)/(1-2*x), x = 0, k),k=0..10^2); # Muniru A Asiru, Sep 26 2017
  • Mathematica
    f[s_] := Append[s, Ceiling[Plus @@ s]]; Nest[f, {1}, 32] (* Robert G. Wilson v, Jul 07 2006 *)
    CoefficientList[ Series[(1-x)/(1-2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 07 2006 *)
    Table[Sum[StirlingS2[n, k], {k,0,2}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *)
    Join[{1},NestList[2#&,1,40]] (* Harvey P. Dale, Dec 06 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, 2^(n-1))};
    
  • PARI
    Vec((1-x)/(1-2*x) + O(x^30)) \\ Altug Alkan, Oct 31 2015
    
  • Python
    def A011782(n): return 1 if n == 0 else 2**(n-1) # Chai Wah Wu, May 11 2022
  • Sage
    [sum(stirling_number2(n,j) for j in (0..2)) for n in (0..35)] # G. C. Greubel, Jun 02 2020
    

Formula

a(0) = 1, a(n) = 2^(n-1).
G.f.: (1 - x) / (1 - 2*x) = 1 / (1 - x / (1 - x)). - Michael Somos, Apr 18 2012
E.g.f.: cosh(z)*exp(z) = (exp(2*z) + 1)/2.
a(0) = 1 and for n>0, a(n) = sum of all previous terms.
a(n) = Sum_{k=0..n} binomial(n, 2*k). - Paul Barry, Feb 25 2003
a(n) = Sum_{k=0..n} binomial(n,k)*(1+(-1)^k)/2. - Paul Barry, May 27 2003
a(n) = floor((1+2^n)/2). - Toby Bartels (toby+sloane(AT)math.ucr.edu), Aug 27 2003
G.f.: Sum_{i>=0} x^i/(1-x)^i. - Jon Perry, Jul 10 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k+1, n-k)*binomial(2*k, k). - Paul Barry, Mar 18 2005
a(n) = Sum_{k=0..floor(n/2)} A055830(n-k, k). - Philippe Deléham, Oct 22 2006
a(n) = Sum_{k=0..n} A098158(n,k). - Philippe Deléham, Dec 04 2006
G.f.: 1/(1 - (x + x^2 + x^3 + ...)). - Geoffrey Critzer, Aug 30 2008
a(n) = A000079(n) - A131577(n).
a(n) = A173921(A000079(n)). - Reinhard Zumkeller, Mar 04 2010
a(n) = Sum_{k=2^n..2^(n+1)-1} A093873(k)/A093875(k), sums of rows of the full tree of Kepler's harmonic fractions. - Reinhard Zumkeller, Oct 17 2010
E.g.f.: (exp(2*x)+1)/2 = (G(0) + 1)/2; G(k) = 1 + 2*x/(2*k+1 - x*(2*k+1)/(x + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2011
A051049(n) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
A008619(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
INVERT transform is A122367. MOBIUS transform is A123707. EULER transform of A059966. PSUM transform is A000079. PSUMSIGN transform is A078008. BINOMIAL transform is A007051. REVERT transform is A105523. A002866(n) = a(n)*n!. - Michael Somos, Apr 18 2012
G.f.: U(0), where U(k) = 1 + x*(k+3) - x*(k+2)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
a(n) = A000041(n) + A056823(n). - Omar E. Pol, Aug 31 2013
E.g.f.: E(0), where E(k) = 1 + x/( 2*k+1 - x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 25 2013
G.f.: 1 + x/(1 + x)*( 1 + 3*x/(1 + 3*x)*( 1 + 5*x/(1 + 5*x)*( 1 + 7*x/(1 + 7*x)*( 1 + ... )))). - Peter Bala, May 27 2017
a(n) = Sum_{k=0..2} stirling2(n, k).
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=2. - Robert A. Russell, Apr 25 2018
a(n) = A053120(n, n), n >= 0, (main diagonal of triangle of Chebyshev's T polynomials). - Wolfdieter Lang, Nov 26 2019

Extensions

Additional comments from Emeric Deutsch, May 14 2001
Typo corrected by Philippe Deléham, Oct 25 2008

A237593 Triangle read by rows in which row n lists the elements of the n-th row of A237591 followed by the same elements in reverse order.

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 7, 2, 2, 1, 1, 2, 2, 7, 7, 3, 2, 1, 1, 2, 3, 7, 8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8
Offset: 1

Views

Author

Omar E. Pol, Feb 22 2014

Keywords

Comments

Row n is a palindromic composition of 2*n.
T(n,k) is also the length of the k-th segment in a Dyck path on the first quadrant of the square grid, connecting the x-axis with the y-axis, from (n, 0) to (0, n), starting with a segment in vertical direction, see example.
Conjecture 1: the area under the n-th Dyck path equals A024916(n), the sum of all divisors of all positive integers <= n.
If the conjecture is true then the n-th Dyck path represents the boundary segments after the alternating sum of the elements of the n-th row of A236104.
Conjecture 2: two adjacent Dyck paths never cross (checked by hand up to n = 128), hence the total area between the n-th Dyck path and the (n-1)-st Dyck path is equal to sigma(n) = A000203(n), the sum of divisors of n.
The connection between A196020 and A237271 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> this sequence --> A239660 --> A237270 --> A237271.
PARI scripts area(n) and chkcross(n) have been written to check the 2 properties and have been run up to n=10000. - Michel Marcus, Mar 27 2014
Mathematica functions have been written that verified the 2 properties through n=30000. - Hartmut F. W. Hoft, Apr 07 2014
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014: (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
The symmetric representation of sigma, so defined, is row n of A237270. - Peter Munn, Jan 06 2025
It appears that, for the n-th set, the number of cells lying on the first diagonal is equal to A067742(n), the number of middle divisors of n. - Michel Marcus, Jun 21 2014
Checked Michel Marcus's conjecture with two Mathematica functions up to n=100000, for more information see A240542. - Hartmut F. W. Hoft, Jul 17 2014
A003056(n) is also the number of peaks of the Dyck path related to the n-th row of triangle. - Omar E. Pol, Nov 03 2015
The number of peaks of the Dyck path associated to the row A000396(n) of this triangle equals the n-th Mersenne prime A000668(n), hence Mersenne primes are visible in two ways at the pyramid described in A245092. - Omar E. Pol, Dec 19 2016
The limit as n approaches infinity (area under the Dyck path described in the n-th row of triangle divided by n^2) equals Pi^2/12 = zeta(2)/2. (Cf. A072691.) - Omar E. Pol, Dec 18 2021
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - Omar E. Pol, Nov 09 2022

Examples

			Triangle begins:
   n
   1 |  1, 1;
   2 |  2, 2;
   3 |  2, 1, 1, 2;
   4 |  3, 1, 1, 3;
   5 |  3, 2, 2, 3;
   6 |  4, 1, 1, 1, 1, 4;
   7 |  4, 2, 1, 1, 2, 4;
   8 |  5, 2, 1, 1, 2, 5;
   9 |  5, 2, 2, 2, 2, 5;
  10 |  6, 2, 1, 1, 1, 1, 2, 6;
  11 |  6, 3, 1, 1, 1, 1, 3, 6;
  12 |  7, 2, 2, 1, 1, 2, 2, 7;
  13 |  7, 3, 2, 1, 1, 2, 3, 7;
  14 |  8, 3, 1, 2, 2, 1, 3, 8;
  15 |  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  16 |  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  17 |  9, 4, 2, 1, 1, 1, 1, 2, 4, 9;
  18 | 10, 3, 2, 2, 1, 1, 2, 2, 3, 10;
  19 | 10, 4, 2, 2, 1, 1, 2, 2, 4, 10;
  20 | 11, 4, 2, 1, 2, 2, 1, 2, 4, 11;
  21 | 11, 4, 3, 1, 1, 1, 1, 1, 1, 3, 4, 11;
  22 | 12, 4, 2, 2, 1, 1, 1, 1, 2, 2, 4, 12;
  23 | 12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12;
  24 | 13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13;
  ...
Illustration of rows 8 and 9 interpreted as Dyck paths in the first quadrant and the illustration of the symmetric representation of sigma(9) = 5 + 3 + 5 = 13, see below:
.
y                       y
.                       .
.                       ._ _ _ _ _                _ _ _ _ _ 5
._ _ _ _ _              .         |              |_ _ _ _ _|
.         |             .         |_ _                     |_ _ 3
.         |_            .             |                    |_  |
.           |_ _        .             |_ _                   |_|_ _ 5
.               |       .                 |                      | |
.   Area = 56   |       .    Area = 69    |          Area = 13   | |
.               |       .                 |                      | |
.               |       .                 |                      | |
. . . . . . . . | . x   . . . . . . . . . | . x                  |_|
.
.    Fig. 1                    Fig. 2                  Fig. 3
.
Figure 1. For n = 8 the 8th row of triangle is [5, 2, 1, 1, 2, 5] and the area under the symmetric Dyck path is equal to A024916(8) = 56.
Figure 2. For n = 9 the 9th row of triangle is [5, 2, 2, 2, 2, 5] and the area under the symmetric Dyck path is equal to A024916(9) = 69.
Figure 3. The symmetric representation of sigma(9): between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the difference between the areas under the Dyck paths equals the sum of the parts of the symmetric representation of sigma(9) = 69 - 56 = 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
.
Illustration of initial terms as Dyck paths in the first quadrant:
(row n = 1..28)
.  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  |_ _ _ _ _ _ _ _ _ _ _ _ _  | |
  |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
  |_ _ _ _ _ _ _ _ _ _ _ _  | | |_ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _  | | |_ _  | |_
  |_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_  |_
  |_ _ _ _ _ _ _ _ _ _  | |       |_ _|   |_
  |_ _ _ _ _ _ _ _ _ _| | |_ _    |_  |_ _  |_ _
  |_ _ _ _ _ _ _ _ _  | |_ _ _|     |_  | |_ _  |
  |_ _ _ _ _ _ _ _ _| | |_ _  |_      |_|_ _  | |
  |_ _ _ _ _ _ _ _  | |_ _  |_ _|_        | | | |_ _ _ _ _
  |_ _ _ _ _ _ _ _| |     |     | |_ _    | |_|_ _ _ _ _  |
  |_ _ _ _ _ _ _  | |_ _  |_    |_  | |   |_ _ _ _ _  | | |
  |_ _ _ _ _ _ _| |_ _  |_  |_ _  | | |_ _ _ _ _  | | | | |
  |_ _ _ _ _ _  | |_  |_  |_    | |_|_ _ _ _  | | | | | | |
  |_ _ _ _ _ _| |_ _|   |_  |   |_ _ _ _  | | | | | | | | |
  |_ _ _ _ _  |     |_ _  | |_ _ _ _  | | | | | | | | | | |
  |_ _ _ _ _| |_      | |_|_ _ _  | | | | | | | | | | | | |
  |_ _ _ _  |_ _|_    |_ _ _  | | | | | | | | | | | | | | |
  |_ _ _ _| |_  | |_ _ _  | | | | | | | | | | | | | | | | |
  |_ _ _  |_  |_|_ _  | | | | | | | | | | | | | | | | | | |
  |_ _ _|   |_ _  | | | | | | | | | | | | | | | | | | | | |
  |_ _  |_ _  | | | | | | | | | | | | | | | | | | | | | | |
  |_ _|_  | | | | | | | | | | | | | | | | | | | | | | | | |
  |_  | | | | | | | | | | | | | | | | | | | | | | | | | | |
  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
n: 1 2 3 4 5 6 7 8 9 10..12..14..16..18..20..22..24..26..28
.
It appears that the total area (also the total number of cells) in the first n set of symmetric regions of the diagram is equal to A024916(n), the sum of all divisors of all positive integers <= n.
It appears that the total area (also the total number of cells) in the n-th set of symmetric regions of the diagram is equal to sigma(n) = A000203(n) (checked by hand up n = 128).
From _Omar E. Pol_, Aug 18 2015: (Start)
The above diagram is also the top view of the stepped pyramid described in A245092 and it is also the top view of the staircase described in A244580, in both cases the figure represents the first 28 levels of the structure. Note that the diagram contains (and arises from) a hidden pattern which is shown below.
.
Illustration of initial terms as an isosceles triangle:
Row                                 _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
This diagram is the simpler representation of the sequence.
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
Note that this symmetric pattern also emerges from the front view of the stepped pyramid described in A245092, which is related to sigma A000203, the sum-of-divisors function, and other related sequences. The diagram represents the first 16 levels of the pyramid. (End)
		

Crossrefs

Row n has length 2*A003056(n).
Row sums give A005843, n >= 1.
Column k starts in row A008805(k-1).
Column 1 = right border = A008619, n >= 1.
Bisections are in A259176, A259177.
For further information see A262626.

Programs

  • Mathematica
    row[n_]:=Floor[(Sqrt[8n+1]-1)/2]
    s[n_,k_]:=Ceiling[(n+1)/k-(k+1)/2]-Ceiling[(n+1)/(k+1)-(k+2)/2]
    f[n_,k_]:=If[k<=row[n],s[n,k],s[n,2 row[n]+1-k]]
    TableForm[Table[f[n,k],{n,1,50},{k,1,2 row[n]}]] (* Hartmut F. W. Hoft, Apr 08 2014 *)
  • PARI
    row(n) = {my(orow = row237591(n)); vector(2*#orow, i, if (i <= #orow, orow[i], orow[2*#orow-i+1]));}
    area(n) = {my(rown = row(n)); surf = 0; h = n; odd = 1; for (i=1, #row, if (odd, surf += h*rown[i], h -= rown[i];); odd = !odd;); surf;}
    heights(v, n) = {vh = vector(n); ivh = 1; h = n; odd = 1; for (i=1, #v, if (odd, for (j=1, v[i], vh[ivh] = h; ivh++), h -= v[i];); odd = !odd;); vh;}
    isabove(hb, ha) = {for (i=1, #hb, if (hb[i] < ha[i], return (0));); return (1);}
    chkcross(nn) = {hga = concat(heights(row(1), 1), 0); for (n=2, nn, hgb = heights(row(n), n); if (! isabove(hgb, hga), print("pb cross at n=", n)); hga = concat(hgb, 0););} \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    for n in range(1, 11): print([T(n, k) for k in range(1, 2*row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Formula

Let j(n)= floor((sqrt(8n+1)-1)/2) then T(n,k) = A237591(n,k), if k <= j(n); otherwise T(n,k) = A237591(n,2*j(n)+1-k). - Hartmut F. W. Hoft, Apr 07 2014 (corrected by Omar E. Pol, May 31 2015)

Extensions

A minor edit to the definition. - N. J. A. Sloane, Jul 31 2025

A002620 Quarter-squares: a(n) = floor(n/2)*ceiling(n/2). Equivalently, a(n) = floor(n^2/4).

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, 144, 156, 169, 182, 196, 210, 225, 240, 256, 272, 289, 306, 324, 342, 361, 380, 400, 420, 441, 462, 484, 506, 529, 552, 576, 600, 625, 650, 676, 702, 729, 756, 784, 812
Offset: 0

Views

Author

Keywords

Comments

b(n) = a(n+2) is the number of multigraphs with loops on 2 nodes with n edges [so g.f. for b(n) is 1/((1-x)^2*(1-x^2))]. Also number of 2-covers of an n-set; also number of 2 X n binary matrices with no zero columns up to row and column permutation. - Vladeta Jovovic, Jun 08 2000
a(n) is also the maximal number of edges that a triangle-free graph of n vertices can have. For n = 2m, the maximum is achieved by the bipartite graph K(m, m); for n = 2m + 1, the maximum is achieved by the bipartite graph K(m, m + 1). - Avi Peretz (njk(AT)netvision.net.il), Mar 18 2001
a(n) is the number of arithmetic progressions of 3 terms and any mean which can be extracted from the set of the first n natural numbers (starting from 1). - Santi Spadaro, Jul 13 2001
This is also the order dimension of the (strong) Bruhat order on the Coxeter group A_{n-1} (the symmetric group S_n). - Nathan Reading (reading(AT)math.umn.edu), Mar 07 2002
Let M_n denote the n X n matrix m(i,j) = 2 if i = j; m(i, j) = 1 if (i+j) is even; m(i, j) = 0 if i + j is odd, then a(n+2) = det M_n. - Benoit Cloitre, Jun 19 2002
Sums of pairs of neighboring terms are triangular numbers in increasing order. - Amarnath Murthy, Aug 19 2002
Also, from the starting position in standard chess, minimum number of captures by pawns of the same color to place n of them on the same file (column). Beyond a(6), the board and number of pieces available for capture are assumed to be extended enough to accomplish this task. - Rick L. Shepherd, Sep 17 2002
For example, a(2) = 1 and one capture can produce "doubled pawns", a(3) = 2 and two captures is sufficient to produce tripled pawns, etc. (Of course other, uncounted, non-capturing pawn moves are also necessary from the starting position in order to put three or more pawns on a given file.) - Rick L. Shepherd, Sep 17 2002
Terms are the geometric mean and arithmetic mean of their neighbors alternately. - Amarnath Murthy, Oct 17 2002
Maximum product of two integers whose sum is n. - Matthew Vandermast, Mar 04 2003
a(n+2) gives number of non-symmetric partitions of n into at most 3 parts, with zeros used as padding. E.g., a(7) = 12 because we can write 5 = 5 + 0 + 0 = 0 + 5 + 0 = 4 + 1 + 0 = 1 + 4 + 0 = 1 + 0 + 4 = 3 + 2 + 0 = 2 + 3 + 0 = 2 + 0 + 3 = 2 + 2 + 1 = 2 + 1 + 2 = 3 + 1 + 1 = 1 + 3 + 1. - Jon Perry, Jul 08 2003
a(n-1) gives number of distinct elements greater than 1 of non-symmetric partitions of n into at most 3 parts, with zeros used as padding, appear in the middle. E.g., 5 = 5 + 0 + 0 = 0 + 5 + 0 = 4 + 1 + 0 = 1 + 4 + 0 = 1 + 0 + 4 = 3 + 2 + 0 = 2 + 3 + 0 = 2 + 0 + 3 = 2 + 2 + 1 = 2 + 1 + 2 = 3 + 1 + 1 = 1 + 3 + 1. Of these, 050, 140, 320, 230, 221, 131 qualify and a(4) = 6. - Jon Perry, Jul 08 2003
Union of square numbers (A000290) and oblong numbers (A002378). - Lekraj Beedassy, Oct 02 2003
Conjectured size of the smallest critical set in a Latin square of order n (true for n <= 8). - Richard Bean, Jun 12 2003 and Nov 18 2003
a(n) gives number of maximal strokes on complete graph K_n, when edges on K_n can be assigned directions in any way. A "stroke" is a locally maximal directed path on a directed graph. Examples: n = 3, two strokes can exist, "x -> y -> z" and " x -> z", so a(3) = 2. n = 4, four maximal strokes exist, "u -> x -> z" and "u -> y" and "u -> z" and "x -> y -> z", so a(4) = 4. - Yasutoshi Kohmoto, Dec 20 2003
Number of symmetric Dyck paths of semilength n+1 and having three peaks. E.g., a(4) = 4 because we have U*DUUU*DDDU*D, UU*DUU*DDU*DD, UU*DDU*DUU*DD and UUU*DU*DU*DDD, where U = (1, 1), D = (1, -1) and * indicates a peak. - Emeric Deutsch, Jan 12 2004
Number of valid inequalities of the form j + k < n + 1, where j and k are positive integers, j <= k, n >= 0. - Rick L. Shepherd, Feb 27 2004
See A092186 for another application.
Also, the number of nonisomorphic transversal combinatorial geometries of rank 2. - Alexandr S. Radionov (rasmailru(AT)mail.ru), Jun 02 2004
a(n+1) is the transform of n under the Riordan array (1/(1-x^2), x). - Paul Barry, Apr 16 2005
1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ... specifies the largest number of copies of any of the gifts you receive on the n-th day in the "Twelve Days of Christmas" song. For example, on the fifth day of Christmas, you have 9 French hens. - Alonso del Arte, Jun 17 2005
a(n+1) is the number of noncongruent integer-sided triangles with largest side n. - David W. Wilson [Comment corrected Sep 26 2006]
A quarter-square table can be used to multiply integers since n*m = a(n+m) - a(n-m) for all integer n, m. - Michael Somos, Oct 29 2006
The sequence is the size of the smallest strong critical set in a Latin square of order n. - G.H.J. van Rees (vanrees(AT)cs.umanitoba.ca), Feb 16 2007
Maximal number of squares (maximal area) in a polyomino with perimeter 2n. - Tanya Khovanova, Jul 04 2007
For n >= 3 a(n-1) is the number of bracelets with n+3 beads, 2 of which are red, 1 of which is blue. - Washington Bomfim, Jul 26 2008
Equals row sums of triangle A122196. - Gary W. Adamson, Nov 29 2008
Also a(n) is the number of different patterns of a 2-colored 3-partition of n. - Ctibor O. Zizka, Nov 19 2014
Also a(n-1) = C(((n+(n mod 2))/2), 2) + C(((n-(n mod 2))/2), 2), so this is the second diagonal of A061857 and A061866, and each even-indexed term is the average of its two neighbors. - Antti Karttunen
Equals triangle A171608 * ( 1, 2, 3, ...). - Gary W. Adamson, Dec 12 2009
a(n) gives the number of nonisomorphic faithful representations of the Symmetric group S_3 of dimension n. Any faithful representation of S_3 must contain at least one copy of the 2-dimensional irrep, along with any combination of the two 1-dimensional irreps. - Andrew Rupinski, Jan 20 2011
a(n+2) gives the number of ways to make change for "c" cents, letting n = floor(c/5) to account for the 5-repetitive nature of the task, using only pennies, nickels and dimes (see A187243). - Adam Sasson, Mar 07 2011
a(n) belongs to the sequence if and only if a(n) = floor(sqrt(a(n))) * ceiling(sqrt(a(n))), that is, a(n) = k^2 or a(n) = k*(k+1), k >= 0. - Daniel Forgues, Apr 17 2011
a(n) is the sum of the positive integers < n that have the opposite parity as n.
Deleting the first 0 from the sequence results in a sequence b = 0, 1, 2, 4, ... such that b(n) is sum of the positive integers <= n that have the same parity as n. The sequence b(n) is the additive counterpart of the double factorial. - Peter Luschny, Jul 06 2011
Third outer diagonal of Losanitsch's Triangle, A034851. - Fred Daniel Kline, Sep 10 2011
Written as a(1) = 1, a(n) = a(n-1) + ceiling (a(n-1)) this is to ceiling as A002984 is to floor, and as A033638 is to round. - Jonathan Vos Post, Oct 08 2011
a(n-2) gives the number of distinct graphs with n vertices and n regions. - Erik Hasse, Oct 18 2011
Construct the n-th row of Pascal's triangle (A007318) from the preceding row, starting with row 0 = 1. a(n) counts the total number of additions required to compute the triangle in this way up to row n, with the restrictions that copying a term does not count as an addition, and that all additions not required by the symmetry of Pascal's triangle are replaced by copying terms. - Douglas Latimer, Mar 05 2012
a(n) is the sum of the positive differences of the parts in the partitions of n+1 into exactly 2 parts. - Wesley Ivan Hurt, Jan 27 2013
a(n) is the maximum number of covering relations possible in an n-element graded poset. For n = 2m, this bound is achieved for the poset with two sets of m elements, with each point in the "upper" set covering each point in the "lower" set. For n = 2m+1, this bound is achieved by the poset with m nodes in an upper set covering each of m+1 nodes in a lower set. - Ben Branman, Mar 26 2013
a(n+2) is the number of (integer) partitions of n into 2 sorts of 1's and 1 sort of 2's. - Joerg Arndt, May 17 2013
Alternative statement of Oppermann's conjecture: For n>2, there is at least one prime between a(n) and a(n+1). - Ivan N. Ianakiev, May 23 2013. [This conjecture was mentioned in A220492, A222030. - Omar E. Pol, Oct 25 2013]
For any given prime number, p, there are an infinite number of a(n) divisible by p, with those a(n) occurring in evenly spaced clusters of three as a(n), a(n+1), a(n+2) for a given p. The divisibility of all a(n) by p and the result are given by the following equations, where m >= 1 is the cluster number for that p: a(2m*p)/p = p*m^2 - m; a(2m*p + 1)/p = p*m^2; a(2m*p + 2)/p = p*m^2 + m. The number of a(n) instances between clusters is 2*p - 3. - Richard R. Forberg, Jun 09 2013
Apart from the initial term this is the elliptic troublemaker sequence R_n(1,2) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 08 2013
a(n) is also the total number of twin hearts patterns (6c4c) packing into (n+1) X (n+1) coins, the coins left is A042948 and the voids left is A000982. See illustration in links. - Kival Ngaokrajang, Oct 24 2013
Partitions of 2n into parts of size 1, 2 or 4 where the largest part is 4, i.e., A073463(n,2). - Henry Bottomley, Oct 28 2013
a(n+1) is the minimum length of a sequence (of not necessarily distinct terms) that guarantees the existence of a (not necessarily consecutive) subsequence of length n in which like terms appear consecutively. This is also the minimum cardinality of an ordered set S that ensures that, given any partition of S, there will be a subset T of S so that the induced subpartition on T avoids the pattern ac/b, where a < b < c. - Eric Gottlieb, Mar 05 2014
Also the number of elements of the list 1..n+1 such that for any two elements {x,y} the integer (x+y)/2 lies in the range ]x,y[. - Robert G. Wilson v, May 22 2014
Number of lattice points (x,y) inside the region of the coordinate plane bounded by x <= n, 0 < y <= x/2. For a(11)=30 there are exactly 30 lattice points in the region below:
6| .
.| . |
5| .+__+
.| . | | |
4| .+__++__+
.| . | | | | |
3| .+__++__++__+
.| . | | | | | | |
2| .+__++__++__++__+
.| . | | | | | | | | |
1| .+__++__++__++__++__+
.|. | | | | | | | | | | |
0|.+__++__++__++__++__++_________
0 1 2 3 4 5 6 7 8 9 10 11 .. n
0 0 1 2 4 6 9 12 16 20 25 30 .. a(n) - Wesley Ivan Hurt, Oct 26 2014
a(n+1) is the greatest integer k for which there exists an n x n matrix M of nonnegative integers with every row and column summing to k, such that there do not exist n entries of M, all greater than 1, and no two of these entries in the same row or column. - Richard Stanley, Nov 19 2014
In a tiling of the triangular shape T_N with row length k for row k = 1, 2, ..., N >= 1 (or, alternatively row length N = 1-k for row k) with rectangular tiles, there can appear rectangles (i, j), N >= i >= j >= 1, of a(N+1) types (and their transposed shapes obtained by interchanging i and j). See the Feb 27 2004 comment above from Rick L. Shepherd. The motivation to look into this came from a proposal of Kival Ngaokrajang in A247139. - Wolfdieter Lang, Dec 09 2014
Every positive integer is a sum of at most four distinct quarter-squares; see A257018. - Clark Kimberling, Apr 15 2015
a(n+1) gives the maximal number of distinct elements of an n X n matrix which is symmetric (w.r.t. the main diagonal) and symmetric w.r.t. the main antidiagonal. Such matrices are called bisymmetric. See the Wikipedia link. - Wolfdieter Lang, Jul 07 2015
For 2^a(n+1), n >= 1, the number of binary bisymmetric n X n matrices, see A060656(n+1) and the comment and link by Dennis P. Walsh. - Wolfdieter Lang, Aug 16 2015
a(n) is the number of partitions of 2n+1 of length three with exactly two even entries (see below example). - John M. Campbell, Jan 29 2016
a(n) is the sum of the asymmetry degrees of all 01-avoiding binary words of length n. The asymmetry degree of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. a(6) = 9 because the 01-avoiding binary words of length 6 are 000000, 100000, 110000, 111000, 111100, 111110, and 111111, and the sum of their asymmetry degrees is 0 + 1 + 2 + 3 + 2 + 1 + 0 = 9. Equivalently, a(n) = Sum_{k>=0} k*A275437(n,k). - Emeric Deutsch, Aug 15 2016
a(n) is the number of ways to represent all the integers in the interval [3,n+1] as the sum of two distinct natural numbers. E.g., a(7)=12 as there are 12 different ways to represent all the numbers in the interval [3,8] as the sum of two distinct parts: 1+2=3, 1+3=4, 1+4=5, 1+5=6, 1+6=7, 1+7=8, 2+3=5, 2+4=6, 2+5=7, 2+6=8, 3+4=7, 3+5=8. - Anton Zakharov, Aug 24 2016
a(n+2) is the number of conjugacy classes of involutions (considering the identity as an involution) in the hyperoctahedral group C_2 wreath S_n. - Mark Wildon, Apr 22 2017
a(n+2) is the maximum number of pieces of a pizza that can be made with n cuts that are parallel or perpendicular to each other. - Anton Zakharov, May 11 2017
Also the matching number of the n X n black bishop graph. - Eric W. Weisstein, Jun 26 2017
The answer to a question posed by W. Mantel: a(n) is the maximum number of edges in an n-vertex triangle-free graph. Also solved by H. Gouwentak, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff. - Charles R Greathouse IV, Feb 01 2018
Number of nonisomorphic outer planar graphs of order n >= 3, size n+2, and maximum degree 4. - Christian Barrientos and Sarah Minion, Feb 27 2018
Maximum area of a rectangle with perimeter 2n and sides of integer length. - André Engels, Jul 29 2018
Also the crossing number of the complete bipartite graph K_{3,n+1}. - Eric W. Weisstein, Sep 11 2018
a(n+2) is the number of distinct genotype frequency vectors possible for a sample of n diploid individuals at a biallelic genetic locus with a specified major allele. Such vectors are the lists of nonnegative genotype frequencies (n_AA, n_AB, n_BB) with n_AA + n_AB + n_BB = n and n_AA >= n_BB. - Noah A Rosenberg, Feb 05 2019
a(n+2) is the number of distinct real spectra (eigenvalues repeated according to their multiplicity) for an orthogonal n X n matrix. The case of an empty spectrum list is logically counted as one of those possibilities, when it exists. Thus a(n+2) is the number of distinct reduced forms (on the real field, in orthonormal basis) for elements in O(n). - Christian Devanz, Feb 13 2019
a(n) is the number of non-isomorphic asymmetric graphs that can be created by adding a single edge to a path on n+4 vertices. - Emma Farnsworth, Natalie Gomez, Herlandt Lino, and Darren Narayan, Jul 03 2019
a(n+1) is the number of integer triangles with largest side n. - James East, Oct 30 2019
a(n) is the number of nonempty subsets of {1,2,...,n} that contain exactly one odd and one even number. For example, for n=7, a(7)=12 and the 12 subsets are {1,2}, {1,4}, {1,6}, {2,3}, {2,5}, {2,7}, {3,4}, {3,6}, {4,5}, {4,7}, {5,6}, {6,7}. - Enrique Navarrete, Dec 16 2019
Aside from the first two terms, a(n) enumerates the number of distinct normal ordered terms in the expansion of the differential operator (x + d/dx)^m associated to the Hermite polynomials and the Heisenberg-Weyl algebra. It also enumerates the number of distinct monomials in the bivariate polynomials corresponding to the partial sums of the series for cos(x+y) and sin(x+y). Cf. A344678. - Tom Copeland, May 27 2021
a(n) is the maximal number of negative products a_i * a_j (1 <= i <= j <= n), where all a_i are real numbers. - Logan Pipes, Jul 08 2021
From Allan Bickle, Dec 20 2021: (Start)
a(n) is the maximum product of the chromatic numbers of a graph of order n-1 and its complement. The extremal graphs are characterized in the papers of Finck (1968) and Bickle (2023).
a(n) is the maximum product of the degeneracies of a graph of order n+1 and its complement. The extremal graphs are characterized in the paper of Bickle (2012). (End)
a(n) is the maximum number m such that m white rooks and m black rooks can coexist on an n-1 X n-1 chessboard without attacking each other. - Aaron Khan, Jul 13 2022
Partial sums of A004526. - Bernard Schott, Jan 06 2023
a(n) is the number of 231-avoiding odd Grassmannian permutations of size n. - Juan B. Gil, Mar 10 2023
a(n) is the number of integer tuples (x,y) satisfying n + x + y >= 0, 25*n + x - 11*y >=0, 25*n - 11*x + y >=0, n + x + y == 0 (mod 12) , 25*n + x - 11*y == 0 (mod 5), 25*n - 11*x + y == 0 (mod 5) . For n=2, the sole solution is (x,y) = (0,0) and so a(2) = 1. For n = 3, the a(3) = 2 solutions are (-3, 2) and (2, -3). - Jeffery Opoku, Feb 16 2024
Let us consider triangles whose vertices are the centers of three squares constructed on the sides of a right triangle. a(n) is the integer part of the area of these triangles, taken without repetitions and in ascending order. See the illustration in the links. - Nicolay Avilov, Aug 05 2024
For n>=2, a(n) is the indendence number of the 2-token graph F_2(P_n) of the path graph P_n on n vertices. (Alternatively, as noted by Peter Munn, F_2(P_n) is the nXn square lattice, or grid, graph diminished by a cut across the diagonal.) - Miquel A. Fiol, Oct 05 2024
For n >= 1, also the lower matching number of the n-triangular honeycomb rook graph. - Eric W. Weisstein, Dec 14 2024
a(n-1) is also the minimal number of edges that a graph of n vertices must have such that any 3 vertices share at least one edge. - Ruediger Jehn, May 20 2025
a(n) is the number of edges of the antiregular graph A_n. This is the unique connected graph with n vertices and degrees 1 to n-1 (floor(n/2) repeated). - Allan Bickle, Jun 15 2025

Examples

			a(3) = 2, floor(3/2)*ceiling(3/2) = 2.
[ n] a(n)
---------
[ 2] 1
[ 3] 2
[ 4] 1 + 3
[ 5] 2 + 4
[ 6] 1 + 3 + 5
[ 7] 2 + 4 + 6
[ 8] 1 + 3 + 5 + 7
[ 9] 2 + 4 + 6 + 8
From _Wolfdieter Lang_, Dec 09 2014: (Start)
Tiling of a triangular shape T_N, N >= 1 with rectangles:
N=5, n=6: a(6) = 9 because all the rectangles (i, j) (modulo transposition, i.e., interchange of i and j) which are of use are:
  (5, 1)                ;  (1, 1)
  (4, 2), (4, 1)        ;  (2, 2), (2, 1)
                        ;  (3, 3), (3, 2), (3, 1)
That is (1+1) + (2+2) + 3 = 9 = a(6). Partial sums of 1, 1, 2, 2, 3, ... (A004526). (End)
Bisymmetric matrices B: 2 X 2, a(3) = 2 from B[1,1] and B[1,2]. 3 X 3, a(4) = 4 from B[1,1], B[1,2], B[1,3], and B[2,2]. - _Wolfdieter Lang_, Jul 07 2015
From _John M. Campbell_, Jan 29 2016: (Start)
Letting n=5, there are a(n)=a(5)=6 partitions of 2n+1=11 of length three with exactly two even entries:
(8,2,1) |- 2n+1
(7,2,2) |- 2n+1
(6,4,1) |- 2n+1
(6,3,2) |- 2n+1
(5,4,2) |- 2n+1
(4,4,3) |- 2n+1
(End)
From _Aaron Khan_, Jul 13 2022: (Start)
Examples of the sequence when used for rooks on a chessboard:
.
A solution illustrating a(5)=4:
  +---------+
  | B B . . |
  | B B . . |
  | . . W W |
  | . . W W |
  +---------+
.
A solution illustrating a(6)=6:
  +-----------+
  | B B . . . |
  | B B . . . |
  | B B . . . |
  | . . W W W |
  | . . W W W |
  +-----------+
(End)
		

References

  • Sergei Abramovich, Combinatorics of the Triangle Inequality: From Straws to Experimental Mathematics for Teachers, Spreadsheets in Education (eJSiE), Vol. 9, Issue 1, Article 1, 2016. See Fig. 3.
  • G. L. Alexanderson et al., The William Powell Putnam Mathematical Competition - Problems and Solutions: 1965-1984, M.A.A., 1985; see Problem A-1 of 27th Competition.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 25.
  • Michael Doob, The Canadian Mathematical Olympiad -- L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society -- Société Mathématique du Canada, Problème 9, 1970, pp 22-23, 1993.
  • H. J. Finck, On the chromatic numbers of a graph and its complement. Theory of Graphs (Proc. Colloq., Tihany, 1966) Academic Press, New York (1968), 99-113.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 99.
  • D. E. Knuth, The art of programming, Vol. 1, 3rd Edition, Addison-Wesley, 1997, Ex. 36 of section 1.2.4.
  • J. Nelder, Critical sets in Latin squares, CSIRO Division of Math. and Stats. Newsletter, Vol. 38 (1977), p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A087811 is another version of this sequence.
Differences of A002623. Complement of A049068.
a(n) = A014616(n-2) + 2 = A033638(n) - 1 = A078126(n) + 1. Cf. A055802, A055803.
Antidiagonal sums of array A003983.
Cf. A033436 - A033444. - Reinhard Zumkeller, Nov 30 2009
Elliptic troublemaker sequences: A000212 (= R_n(1,3) = R_n(2,3)), A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A184535 (= R_n(2,5) = R_n(3,5)).
Cf. A077043, A060656 (2^a(n)), A344678.
Cf. A250000 (queens on a chessboard), A176222 (kings on a chessboard), A355509 (knights on a chessboard).
Maximal product of k positive integers with sum n, for k = 2..10: this sequence (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).

Programs

  • GAP
    # using the formula by Paul Barry
    A002620 := List([1..10^4], n-> (2*n^2 - 1 + (-1)^n)/8); # Muniru A Asiru, Feb 01 2018
    
  • Haskell
    a002620 = (`div` 4) . (^ 2) -- Reinhard Zumkeller, Feb 24 2012
    
  • Magma
    [ Floor(n/2)*Ceiling(n/2) : n in [0..40]];
    
  • Maple
    A002620 := n->floor(n^2/4); G002620 := series(x^2/((1-x)^2*(1-x^2)),x,60);
    with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card=1)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m),m=0..57) ; # Zerinvary Lajos, Mar 09 2007
  • Mathematica
    Table[Ceiling[n/2] Floor[n/2], {n, 0, 56}] (* Robert G. Wilson v, Jun 18 2005 *)
    LinearRecurrence[{2, 0, -2, 1}, {0, 0, 1, 2}, 60] (* Harvey P. Dale, Oct 05 2012 *)
    Table[Floor[n^2/4], {n, 0, 20}] (* Eric W. Weisstein, Sep 11 2018 *)
    Floor[Range[0, 20]^2/4] (* Eric W. Weisstein, Sep 11 2018 *)
    CoefficientList[Series[-(x^2/((-1 + x)^3 (1 + x))), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 11 2018 *)
    Table[Floor[n^2/2]/2, {n, 0, 56}] (* Clark Kimberling, Dec 05 2021 *)
  • Maxima
    makelist(floor(n^2/4),n,0,50); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    a(n)=n^2\4
    
  • PARI
    (t(n)=n*(n+1)/2);for(i=1,50,print1(",",(-1)^i*sum(k=1,i,(-1)^k*t(k))))
    
  • PARI
    a(n)=n^2>>2 \\ Charles R Greathouse IV, Nov 11 2009
    
  • PARI
    x='x+O('x^100); concat([0, 0], Vec(x^2/((1-x)^2*(1-x^2)))) \\ Altug Alkan, Oct 15 2015
    
  • Python
    def A002620(n): return (n**2)>>2 # Chai Wah Wu, Jul 07 2022
  • Sage
    def A002620():
         x, y = 0, 1
         yield x
         while true:
             yield x
             x, y = x + y, x//y + 1
    a = A002620(); print([next(a) for i in range(58)]) # Peter Luschny, Dec 17 2015
    

Formula

a(n) = (2*n^2-1+(-1)^n)/8. - Paul Barry, May 27 2003
G.f.: x^2/((1-x)^2*(1-x^2)) = x^2 / ( (1+x)*(1-x)^3 ). - Simon Plouffe in his 1992 dissertation, leading zeros dropped
E.g.f.: exp(x)*(2*x^2+2*x-1)/8 + exp(-x)/8.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Jaume Oliver Lafont, Dec 05 2008
a(-n) = a(n) for all n in Z.
a(n) = a(n-1) + floor(n/2), n > 0. Partial sums of A004526. - Adam Kertesz, Sep 20 2000
a(n) = a(n-1) + a(n-2) - a(n-3) + 1 [with a(-1) = a(0) = a(1) = 0], a(2k) = k^2, a(2k-1) = k(k-1). - Henry Bottomley, Mar 08 2000
0*0, 0*1, 1*1, 1*2, 2*2, 2*3, 3*3, 3*4, ... with an obvious pattern.
a(n) = Sum_{k=1..n} floor(k/2). - Yong Kong (ykong(AT)curagen.com), Mar 10 2001
a(n) = n*floor((n-1)/2) - floor((n-1)/2)*(floor((n-1)/2)+ 1); a(n) = a(n-2) + n-2 with a(1) = 0, a(2) = 0. - Santi Spadaro, Jul 13 2001
Also: a(n) = binomial(n, 2) - a(n-1) = A000217(n-1) - a(n-1) with a(0) = 0. - Labos Elemer, Apr 26 2003
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k, 2). - Paul Barry, Jul 01 2003
a(n) = (-1)^n * partial sum of alternating triangular numbers. - Jon Perry, Dec 30 2003
a(n) = A024206(n+1) - n. - Philippe Deléham, Feb 27 2004
a(n) = a(n-2) + n - 1, n > 1. - Paul Barry, Jul 14 2004
a(n+1) = Sum_{i=0..n} min(i, n-i). - Marc LeBrun, Feb 15 2005
a(n+1) = Sum_{k = 0..floor((n-1)/2)} n-2k; a(n+1) = Sum_{k=0..n} k*(1-(-1)^(n+k-1))/2. - Paul Barry, Apr 16 2005
a(n) = A108561(n+1,n-2) for n > 2. - Reinhard Zumkeller, Jun 10 2005
1 + 1/(1 + 2/(1 + 4/(1 + 6/(1 + 9/(1 + 12/(1 + 16/(1 + ...))))))) = 6/(Pi^2 - 6) = 1.550546096730... - Philippe Deléham, Jun 20 2005
a(n) = Sum_{k=0..n} Min_{k, n-k}, sums of rows of the triangle in A004197. - Reinhard Zumkeller, Jul 27 2005
For n > 2 a(n) = a(n-1) + ceiling(sqrt(a(n-1))). - Jonathan Vos Post, Jan 19 2006
Sequence starting (2, 2, 4, 6, 9, ...) = A128174 (as an infinite lower triangular matrix) * vector [1, 2, 3, ...]; where A128174 = (1; 0,1; 1,0,1; 0,1,0,1; ...). - Gary W. Adamson, Jul 27 2007
a(n) = Sum_{i=k..n} P(i, k) where P(i, k) is the number of partitions of i into k parts. - Thomas Wieder, Sep 01 2007
a(n) = sum of row (n-2) of triangle A115514. - Gary W. Adamson, Oct 25 2007
For n > 1: gcd(a(n+1), a(n)) = a(n+1) - a(n). - Reinhard Zumkeller, Apr 06 2008
a(n+3) = a(n) + A000027(n) + A008619(n+1) = a(n) + A001651(n+1) with a(1) = 0, a(2) = 0, a(3) = 1. - Yosu Yurramendi, Aug 10 2008
a(2n) = A000290(n). a(2n+1) = A002378(n). - Gary W. Adamson, Nov 29 2008
a(n+1) = a(n) + A110654(n). - Reinhard Zumkeller, Aug 06 2009
a(n) = Sum_{k=0..n} (k mod 2)*(n-k); Cf. A000035, A001477. - Reinhard Zumkeller, Nov 05 2009
a(n-1) = (n*n - 2*n + n mod 2)/4. - Ctibor O. Zizka, Nov 23 2009
a(n) = round((2*n^2-1)/8) = round(n^2/4) = ceiling((n^2-1)/4). - Mircea Merca, Nov 29 2010
n*a(n+2) = 2*a(n+1) + (n+2)*a(n). Holonomic Ansatz with smallest order of recurrence. - Thotsaporn Thanatipanonda, Dec 12 2010
a(n+1) = (n*(2+n) + n mod 2)/4. - Fred Daniel Kline, Sep 11 2011
a(n) = A199332(n, floor((n+1)/2)). - Reinhard Zumkeller, Nov 23 2011
a(n) = floor(b(n)) with b(n) = b(n-1) + n/(1+e^(1/n)) and b(0)= 0. - Richard R. Forberg, Jun 08 2013
a(n) = Sum_{i=1..floor((n+1)/2)} (n+1)-2i. - Wesley Ivan Hurt, Jun 09 2013
a(n) = floor((n+2)/2 - 1)*(floor((n+2)/2)-1 + (n+2) mod 2). - Wesley Ivan Hurt, Jun 09 2013
Sum_{n>=2} 1/a(n) = 1 + zeta(2) = 1+A013661. - Enrique Pérez Herrero, Jun 30 2013
Empirical: a(n-1) = floor(n/(e^(4/n)-1)). - Richard R. Forberg, Jul 24 2013
a(n) = A007590(n)/2. - Wesley Ivan Hurt, Mar 08 2014
A237347(a(n)) = 3; A235711(n) = A003415(a(n)). - Reinhard Zumkeller, Mar 18 2014
A240025(a(n)) = 1. - Reinhard Zumkeller, Jul 05 2014
0 = a(n)*a(n+2) + a(n+1)*(-2*a(n+2) + a(n+3)) for all integers n. - Michael Somos, Nov 22 2014
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n-1)/2). - Wesley Ivan Hurt, Mar 12 2015
a(4n+1) = A002943(n) for all n>=0. - M. F. Hasler, Oct 11 2015
a(n+2)-a(n-2) = A004275(n+1). - Anton Zakharov, May 11 2017
a(n) = floor(n/2)*floor((n+1)/2). - Bruno Berselli, Jun 08 2017
a(n) = a(n-3) + floor(3*n/2) - 2. - Yuchun Ji, Aug 14 2020
a(n)+a(n+1) = A000217(n). - R. J. Mathar, Mar 13 2021
a(n) = A004247(n,floor(n/2)). - Logan Pipes, Jul 08 2021
a(n) = floor(n^2/2)/2. - Clark Kimberling, Dec 05 2021
Sum_{n>=2} (-1)^n/a(n) = Pi^2/6 - 1. - Amiram Eldar, Mar 10 2022
Previous Showing 11-20 of 238 results. Next