A007318 Pascal's triangle read by rows: C(n,k) = binomial(n,k) = n!/(k!*(n-k)!), 0 <= k <= n.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
Examples
Triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 ... 0 1 1 1 1 2 1 2 1 3 1 3 3 1 4 1 4 6 4 1 5 1 5 10 10 5 1 6 1 6 15 20 15 6 1 7 1 7 21 35 35 21 7 1 8 1 8 28 56 70 56 28 8 1 9 1 9 36 84 126 126 84 36 9 1 10 1 10 45 120 210 252 210 120 45 10 1 11 1 11 55 165 330 462 462 330 165 55 11 1 ... There are C(4,2)=6 ways to distribute 5 balls BBBBB, among 3 different urns, < > ( ) [ ], so that each urn gets at least one ball, namely, <BBB>(B)[B], <B>(BBB)[B], <B>(B)[BBB], <BB>(BB)[B], <BB>(B)[BB], and <B>(BB)[BB]. There are C(4,2)=6 increasing functions from {1,2} to {1,2,3,4}, namely, {(1,1),(2,2)},{(1,1),(2,3)}, {(1,1),(2,4)}, {(1,2),(2,3)}, {(1,2),(2,4)}, and {(1,3),(2,4)}. - _Dennis P. Walsh_, Apr 07 2011 There are C(4,2)=6 subsets of {1,2,3,4,5} with median element 3, namely, {3}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, and {1,2,3,4,5}. - _Dennis P. Walsh_, Dec 15 2011 The successive k-iterations of {A(0)} = E are E;E;E;...; the corresponding number of elements are 1,1,1,... The successive k-iterations of {A(1)} = {a} are (omitting brackets) a;a,E; a,E,E;...; the corresponding number of elements are 1,2,3,... The successive k-iterations of {A(2)} = {a,a} are aa; aa,a,E; aa, a, E and a,E and E;...; the corresponding number of elements are 1,3,6,... - _Gregory L. Simay_, Aug 06 2018 Boas-Buck type recurrence for column k = 4: T(8, 4) = (5/4)*(1 + 5 + 15 + 35) = 70. See the Boas-Buck comment above. - _Wolfdieter Lang_, Nov 12 2018
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Amulya Kumar Bag, Binomial theorem in ancient India, Indian Journal of History of Science, vol. 1 (1966), pp. 68-74.
- Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 63ff.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 306.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 68-74.
- Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
- A. W. F. Edwards, Pascal's Arithmetical Triangle, 2002.
- William Feller, An Introduction to Probability Theory and Its Application, Vol. 1, 2nd ed. New York: Wiley, p. 36, 1968.
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 155.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, pp. 140-141.
- David Hök, Parvisa mönster i permutationer [Swedish], 2007.
- Donald E. Knuth, The Art of Computer Programming, Vol. 1, 2nd ed., p. 52.
- Sergei K. Lando, Lecture on Generating Functions, Amer. Math. Soc., Providence, R.I., 2003, pp. 60-61.
- Blaise Pascal, Traité du triangle arithmétique, avec quelques autres petits traitez sur la mesme matière, Desprez, Paris, 1665.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 271-275.
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 6.
- John Riordan, Combinatorial Identities, Wiley, 1968, p. 2.
- Robert Sedgewick and Philippe Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996, p. 143.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, pages 43-52.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 13, 30-33.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 115-118.
- Douglas B. West, Combinatorial Mathematics, Cambridge, 2021, p. 25.
Links
- N. J. A. Sloane, First 141 rows of Pascal's triangle, formatted as a simple linear sequence: (n, a(n)), n=0..10152.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Tewodros Amdeberhan, Moa Apagodu, and Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.
- Said Amrouche and Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020.
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Vol. 332, No. 6 (2014), pp. 45-54.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38 (2012), pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42 (2012), pp. 2053-2059.
- Amulya Kumar Bag, Binomial theorem in ancient India, Indian Journal of History of Science, Vol. 1 (1966), pp. 68-74.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics, Vol. 67 (2018), pp. 71-77.
- Peter Bala, A combinatorial interpretation for the binomial coefficients, 2013.
- Cyril Banderier and Donatella Merlini, Lattice paths with an infinite set of jumps, Proceedings of the 14th International Conference on Formal Power Series and Algebraic Combinatorics, Melbourne, Australia. 2002.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays , JIS, Vol. 12 (2009) Article 09.8.6.
- Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, arXiv:1105.3043 [math.CO], 2011.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv:1105.3044 [math.CO], 2011.
- Paul Barry, On the Central Coefficients of Bell Matrices, J. Int. Seq., Vol. 14 (2011) Article 11.4.3, example 2.
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.2.
- Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.1.
- Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.4.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.6.
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Vol. 2013 (2013), Article ID 657806, 10 pages.
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.6.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, Vol. 491 (2016), pp. 343-385.
- Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Paul Barry, On the halves of a Riordan array and their antecedents, arXiv:1906.06373 [math.CO], 2019.
- Paul Barry, On the r-shifted central triangles of a Riordan array, arXiv:1906.01328 [math.CO], 2019.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Paul Barry, Extensions of Riordan Arrays and Their Applications, Mathematics (2025) Vol. 13, No. 2, 242. See p. 13.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See p. 2.
- Paul Barry and Aoife Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.2.
- Jonathan W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977v1 [math.NT], J. London Math. Soc. (2), Vol. 79 (2009), pp. 422-444.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 4.
- Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- Douglas Butler, Pascal's Triangle.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- Dario T. de Castro, p-adic Order of Positive Integers via Binomial Coefficients, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 22, Paper A61, 2022.
- Ji Young Choi, Digit Sums Generalizing Binomial Coefficients, J. Int. Seq., Vol. 22 (2019), Article 19.8.3.
- Cristian Cobeli and Alexandru Zaharescu, Promenade around Pascal Triangle - Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104) No. 1 (2013), pp. 73-98.
- CombOS - Combinatorial Object Server, Generate combinations.
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A, Vo. 453, No. 1966 (1997), pp. 2369-2389.
- Tom Copeland, Infinigens, the Pascal Triangle, and the Witt and Virasoro Algebras.
- Persi Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probability, Vol. 5 (1977), pp. 72-81.
- Karl Dilcher and Kenneth B. Stolarsky, A Pascal-Type Triangle Characterizing Twin Primes, The American Mathematical Monthly, Vol. 112, No. 8 (Oct 2005), pp. 673-681.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math., Vol. 308, No. 11 (2008), pp. 2182-2212. MR2404544 (2009j:05019).
- Steffen Eger, Some Elementary Congruences for the Number of Weighted Integer Compositions, J. Int. Seq., Vol. 18 (2015), Article 15.4.1.
- Leonhard Euler, On the expansion of the power of any polynomial (1+x+x^2+x^3+x^4+etc.)^n, arXiv:math/0505425 [math.HO], 2005. See also The Euler Archive, item E709.
- Jackson Evoniuk, Steven Klee, and Van Magnan, Enumerating Minimal Length Lattice Paths, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.
- A. Farina, S. Giompapa, A. Graziano, A. Liburdi, M. Ravanelli, and F. Zirilli, Tartaglia-Pascal's triangle: a historical perspective with applications, Signal, Image and Video Processing, Vol. 7, No. 1 (January 2013), pp. 173-188.
- Steven Finch, Pascal Sebah, and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
- David Fowler, The binomial coefficient function, Amer. Math. Monthly, Vol. 103, No. 1 (1996), pp. 1-17.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Tom Halverson and Theodore N. Jacobson, Set-partition tableaux and representations of diagram algebras, arXiv:1808.08118 [math.RT], 2018.
- T. Han and S. Kitaev, Joint distributions of statistics over permutations avoiding two patterns of length 3, arXiv:2311.02974 [math.CO], 2023
- Brady Haran and Casandra Monroe, Pascal's Triangle, Numberphile video (2017).
- Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math., Vol. 309, No. 12 (2009), pp. 3962-3974.
- Nick Hobson, Python program for A007318.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., Vol. 14, No. 5 (1976), pp. 395-405.
- Matthew Hubbard and Tom Roby, Pascal's Triangle From Top to Bottom. [archived page]
- Charles Jordan, Calculus of Finite Differences (p. 65).
- Subhash Kak, The golden mean and the physics of aesthetics, in: B. Yadav and M. Mohan (eds.), Ancient Indian Leaps into Mathematics, Birkhäuser, Boston, MA, 2009, pp. 111-119; arXiv preprint, arXiv:physics/0411195 [physics.hist-ph], 2004.
- Petro Kolosov, Polynomial identities involving Pascal's triangle rows, 2022.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq., Vol. 3 (2000), Article 00.2.4.
- Eitan Y. Levine, GCD formula proof.
- Meng Li and Ron Goldman, Limits of sums for binomial and Eulerian numbers and their associated distributions, Discrete mathematics, Vol. 343, No. 7 (2020), 111870.
- P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, Vol. 184 (1893), pp. 835-901.
- Mathforum, Pascal's Triangle
- Carl McTague, On the Greatest Common Divisor of C(q*n,n), C(q*n,2*n), ...C(q*n,q*n-q), arXiv:1510.06696 [math.CO], 2015.
- D. Merlini, R. Sprugnoli, and M. C. Verri, An algebra for proper generating trees, in: D. Gardy and A. Mokkadem (eds.), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 127-139; alternative link.
- Donatella Merlini, Francesca Uncini, and M. Cecilia Verri, A unified approach to the study of general and palindromic compositions, Integers, Vol. 4 (2004), A23, 26 pp.
- Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
- Pierre Remond de Montmort, Essay d'analyse sur les jeux de hazard, Paris: Chez Jacque Quillau, 1708, p. 80.
- Yossi Moshe, The density of 0's in recurrence double sequences, J. Number Theory, Vol. 103 (2003), pp. 109-121.
- Lili Mu and Sai-nan Zheng, On the Total Positivity of Delannoy-Like Triangles, Journal of Integer Sequences, Vol. 20 (2017), Article 17.1.6.
- Abdelkader Necer, Séries formelles et produit de Hadamard, Journal de théorie des nombres de Bordeaux, Vol. 9, No. 2 (1997), pp. 319-335.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3.
- Asamoah Nkwanta and Akalu Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.5.
- Mustafa A. A. Obaid, S. Khalid Nauman, Wafaa M. Fakieh, and Claus Michael Ringel, The numbers of support-tilting modules for a Dynkin algebra, 2014.
- OEIS Wiki, Binomial coefficients
- Richard L. Ollerton and Anthony G. Shannon, Some properties of generalized Pascal squares and triangles, Fib. Q., Vol. 36, No. 2 (1998), pp. 98-109.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003. [Cached copy, with permission (pdf only)]
- Balak Ram, Common factors of n!/(m!(n-m)!), (m = 1, 2, ... n-1), Journal of the Indian Mathematical Club (Madras) 1 (1909), pp. 39-43.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
- Thomas M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
- Yuriy Shablya, Dmitry Kruchinin, and Vladimir Kruchinin, Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application, Mathematics, Vol. 8, No. 6 (2020), 962.
- Louis W. Shapiro, Seyoum Getu, Wen-Jin Woan, and Leon C. Woodson, The Riordan group, Discrete Applied Math., Vol. 34 (1991), pp. 229-239.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Triangle showing silhouette of first 30 rows of Pascal's triangle (after Cobeli and Zaharescu)
- N. J. A. Sloane, The OEIS: A Fingerprint File for Mathematics, arXiv:2105.05111 [math.HO], 2021.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
- Hermann Stamm-Wilbrandt, Compute C(n+m,...) based on C(n,...) and C(m,...) values animation.
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
- Christopher Stover and Eric W. Weisstein, Composition. From MathWorld - A Wolfram Web Resource.
- Gérard Villemin's Almanach of Numbers, Triangle de Pascal.
- Eric Weisstein's World of Mathematics, Pascal's Triangle.
- Wikipedia, Pascal's triangle.
- Herbert S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, pp. 12ff.
- Ken Williams, Mathforum, Interactive Pascal's Triangle.
- Doron Zeilberger, The Combinatorial Astrology of Rabbi Abraham Ibn Ezra, arXiv:math/9809136 [math.CO], 1998.
- Chris Zheng and Jeffrey Zheng, Triangular Numbers and Their Inherent Properties, Variant Construction from Theoretical Foundation to Applications, Springer, Singapore, 51-65.
- Index entries for triangles and arrays related to Pascal's triangle.
- Index entries for "core" sequences.
- Index entries for sequences related to Benford's law.
Crossrefs
Equals differences between consecutive terms of A102363. - David G. Williams (davidwilliams(AT)Paxway.com), Jan 23 2006
Row sums give A000079 (powers of 2).
Partial sums of rows give triangle A008949.
The triangle of the antidiagonals is A011973.
Another version: A108044.
Cf. A008277, A132311, A132312, A052216, A052217, A052218, A052219, A052220, A052221, A052222, A052223, A144225, A202750, A211226, A047999, A026729, A052553, A051920, A193242.
Triangle sums (see the comments): A000079 (Row1); A000007 (Row2); A000045 (Kn11 & Kn21); A000071 (Kn12 & Kn22); A001924 (Kn13 & Kn23); A014162 (Kn14 & Kn24); A014166 (Kn15 & Kn25); A053739 (Kn16 & Kn26); A053295 (Kn17 & Kn27); A053296 (Kn18 & Kn28); A053308 (Kn19 & Kn29); A053309 (Kn110 & Kn210); A001519 (Kn3 & Kn4); A011782 (Fi1 & Fi2); A000930 (Ca1 & Ca2); A052544 (Ca3 & Ca4); A003269 (Gi1 & Gi2); A055988 (Gi3 & Gi4); A034943 (Ze1 & Ze2); A005251 (Ze3 & Ze4). - Johannes W. Meijer, Sep 22 2010
Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074, A228196, A228576.
Cf. A115940 (pandigital binomial coefficients C(m,k) with k>1).
Programs
-
Axiom
-- (start) )set expose add constructor OutputForm pascal(0,n) == 1 pascal(n,n) == 1 pascal(i,j | 0 < i and i < j) == pascal(i-1,j-1) + pascal(i,j-1) pascalRow(n) == [pascal(i,n) for i in 0..n] displayRow(n) == output center blankSeparate pascalRow(n) for i in 0..20 repeat displayRow i -- (end)
-
GAP
Flat(List([0..12],n->List([0..n],k->Binomial(n,k)))); # Stefano Spezia, Dec 22 2018
-
Haskell
a007318 n k = a007318_tabl !! n !! k a007318_row n = a007318_tabl !! n a007318_list = concat a007318_tabl a007318_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1] -- Cf. http://www.haskell.org/haskellwiki/Blow_your_mind#Mathematical_sequences -- Reinhard Zumkeller, Nov 09 2011, Oct 22 2010
-
Magma
/* As triangle: */ [[Binomial(n, k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jul 29 2015
-
Maple
A007318 := (n,k)->binomial(n,k);
-
Mathematica
Flatten[Table[Binomial[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 19 2004 *) Flatten[CoefficientList[CoefficientList[Series[1/(1 - x - x*y), {x, 0, 12}], x], y]] (* Mats Granvik, Jul 08 2014 *)
-
Maxima
create_list(binomial(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
PARI
C(n,k)=binomial(n,k) \\ Charles R Greathouse IV, Jun 08 2011
-
Python
# See Hobson link. Further programs: from math import prod,factorial def C(n,k): return prod(range(n,n-k,-1))//factorial(k) # M. F. Hasler, Dec 13 2019, updated Apr 29 2022, Feb 17 2023
-
Python
from math import comb, isqrt def A007318(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2)) # Chai Wah Wu, Nov 11 2024
-
Sage
def C(n,k): return Subsets(range(n), k).cardinality() # Ralf Stephan, Jan 21 2014
Formula
a(n, k) = C(n,k) = binomial(n, k).
C(n, k) = C(n-1, k) + C(n-1, k-1).
The triangle is symmetric: C(n,k) = C(n,n-k).
a(n+1, m) = a(n, m) + a(n, m-1), a(n, -1) := 0, a(n, m) := 0, n
C(n, k) = n!/(k!(n-k)!) if 0<=k<=n, otherwise 0.
C(n, k) = ((n-k+1)/k) * C(n, k-1) with C(n, 0) = 1. - Michael B. Porter, Mar 23 2025
G.f.: 1/(1-y-x*y) = Sum_(C(n, k)*x^k*y^n, n, k>=0)
G.f.: 1/(1-x-y) = Sum_(C(n+k, k)*x^k*y^n, n, k>=0).
G.f. for row n: (1+x)^n = Sum_{k=0..n} C(n, k)*x^k.
G.f. for column k: x^k/(1-x)^(k+1); [corrected by Werner Schulte, Jun 15 2022].
E.g.f.: A(x, y) = exp(x+x*y).
E.g.f. for column n: x^n*exp(x)/n!.
In general the m-th power of A007318 is given by: T(0, 0) = 1, T(n, k) = T(n-1, k-1) + m*T(n-1, k), where n is the row-index and k is the column; also T(n, k) = m^(n-k)*C(n, k).
Triangle T(n, k) read by rows; given by A000007 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
Let P(n+1) = the number of integer partitions of (n+1); let p(i) = the number of parts of the i-th partition of (n+1); let d(i) = the number of different parts of the i-th partition of (n+1); let m(i, j) = multiplicity of the j-th part of the i-th partition of (n+1). Define the operator Sum_{i=1..P(n+1), p(i)=k+1} as the sum running from i=1 to i=P(n+1) but taking only partitions with p(i)=(k+1) parts into account. Define the operator Product_{j=1..d(i)} = product running from j=1 to j=d(i). Then C(n, k) = Sum_{p(i)=(k+1), i=1..P(n+1)} p(i)! / [Product_{j=1..d(i)} m(i, j)!]. E.g., C(5, 3) = 10 because n=6 has the following partitions with m=3 parts: (114), (123), (222). For their multiplicities one has: (114): 3!/(2!*1!) = 3; (123): 3!/(1!*1!*1!) = 6; (222): 3!/3! = 1. The sum is 3 + 6 + 1 = 10 = C(5, 3). - Thomas Wieder, Jun 03 2005
C(n, k) = Sum_{j=0..k} (-1)^j*C(n+1+j, k-j)*A000108(j). - Philippe Deléham, Oct 10 2005
G.f.: 1 + x*(1 + x) + x^3*(1 + x)^2 + x^6*(1 + x)^3 + ... . - Michael Somos, Sep 16 2006
Sum_{k=0..floor(n/2)} x^(n-k)*T(n-k,k) = A000007(n), A000045(n+1), A002605(n), A030195(n+1), A057087(n), A057088(n), A057089(n), A057090(n), A057091(n), A057092(n), A057093(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. Sum_{k=0..floor(n/2)} (-1)^k*x^(n-k)*T(n-k,k) = A000007(n), A010892(n), A009545(n+1), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n+1), A057086(n), A084329(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, respectively. - Philippe Deléham, Sep 16 2006
C(n,k) <= A062758(n) for n > 1. - Reinhard Zumkeller, Mar 04 2008
C(t+p-1, t) = Sum_{i=0..t} C(i+p-2, i) = Sum_{i=1..p} C(i+t-2, t-1). A binomial number is the sum of its left parent and all its right ancestors, which equals the sum of its right parent and all its left ancestors. - Lee Naish (lee(AT)cs.mu.oz.au), Mar 07 2008
From Paul D. Hanna, Mar 24 2011: (Start)
Let A(x) = Sum_{n>=0} x^(n*(n+1)/2)*(1+x)^n be the g.f. of the flattened triangle:
A(x) = 1 + (x + x^2) + (x^3 + 2*x^4 + x^5) + (x^6 + 3*x^7 + 3*x^8 + x^9) + ...
then A(x) equals the series Sum_{n>=0} (1+x)^n*x^n*Product_{k=1..n} (1-(1+x)*x^(2*k-1))/(1-(1+x)*x^(2*k));
also, A(x) equals the continued fraction 1/(1- x*(1+x)/(1+ x*(1-x)*(1+x)/(1- x^3*(1+x)/(1+ x^2*(1-x^2)*(1+x)/(1- x^5*(1+x)/(1+ x^3*(1-x^3)*(1+x)/(1- x^7*(1+x)/(1+ x^4*(1-x^4)*(1+x)/(1- ...))))))))).
These formulas are due to (1) a q-series identity and (2) a partial elliptic theta function expression. (End)
Row n of the triangle is the result of applying the ConvOffs transform to the first n terms of the natural numbers (1, 2, 3, ..., n). See A001263 or A214281 for a definition of this transformation. - Gary W. Adamson, Jul 12 2012
From L. Edson Jeffery, Aug 02 2012: (Start)
Row n (n >= 0) of the triangle is given by the n-th antidiagonal of the infinite matrix P^n, where P = (p_{i,j}), i,j >= 0, is the production matrix
0, 1,
1, 0, 1,
0, 1, 0, 1,
0, 0, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 1, 0, 1,
... (End)
Row n of the triangle is also given by the n+1 coefficients of the polynomial P_n(x) defined by the recurrence P_0(x) = 1, P_1(x) = x + 1, P_n(x) = x*P_{n-1}(x) + P_{n-2}(x), n > 1. - L. Edson Jeffery, Aug 12 2013
For a closed-form formula for arbitrary left and right borders of Pascal-like triangles see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013
(1+x)^n = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*Sum_{i=0..k} k^(n-i)*binomial(k,i)*x^(n-i)/(n-i)!. - Vladimir Kruchinin, Oct 21 2013
E.g.f.: A(x,y) = exp(x+x*y) = 1 + (x+y*x)/( E(0)-(x+y*x)), where E(k) = 1 + (x+y*x)/(1 + (k+1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 08 2013
E.g.f.: E(0) -1, where E(k) = 2 + x*(1+y)/(2*k+1 - x*(1+y)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
G.f.: 1 + x*(1+x)*(1+x^2*(1+x)/(W(0)-x^2-x^3)), where W(k) = 1 + (1+x)*x^(k+2) - (1+x)*x^(k+3)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
Sum_{n>=0} C(n,k)/n! = e/k!, where e = exp(1), while allowing n < k where C(n,k) = 0. Also Sum_{n>=0} C(n+k-1,k)/n! = e * A000262(k)/k!, and for k>=1 equals e * A067764(k)/A067653(k). - Richard R. Forberg, Jan 01 2014
Sum_{n>=k} 1/C(n,k) = k/(k-1) for k>=1. - Richard R. Forberg, Feb 10 2014
From Tom Copeland, Apr 26 2014: (Start)
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result by A007318(x) = P(x). Then with :xD:^n = x^n*(d/dx)^n and B(n,x), the Bell polynomials (A008277),
A) P(x)= exp(x*dP) = exp[x*(e^M-I)] = exp[M*B(.,x)] = (I+dP)^B(.,x)
B) P(:xD:) = exp(dP:xD:) = exp[(e^M-I):xD:] = exp[M*B(.,:xD:)] = exp[M*xD] = (I+dP)^(xD) with action P(:xD:)g(x) = exp(dP:xD:)g(x) = g[(I+dP)*x] (cf. also A238363).
C) P(x)^y = P(y*x). P(2x) = A038207(x) = exp[M*B(.,2x)], the face vectors of the n-dim hypercubes.
D) P(x) = [St2]*exp(x*M)*[St1] = [St2]*(I+dP)^x*[St1]
E) = [St1]^(-1)*(I+dP)^x*[St1] = [St2]*(I+dP)^x*[St2]^(-1)
where [St1]=padded A008275 just as [St2]=A048993=padded A008277 and exp(x*M) = (I+dP)^x = Sum_{k>=0} C(x,k) dP^k. (End)
From Peter Bala, Dec 21 2014: (Start)
Recurrence equation: T(n,k) = T(n-1,k)*(n + k)/(n - k) - T(n-1,k-1) for n >= 2 and 1 <= k < n, with boundary conditions T(n,0) = T(n,n) = 1. Note, changing the minus sign in the recurrence to a plus sign gives a recurrence for the square of the binomial coefficients - see A008459.
There is a relation between the e.g.f.'s of the rows and the diagonals of the triangle, namely, exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + 3*x + 3*x^2/2! + x^3/3!) = 1 + 4*x + 10*x^2/2! + 20*x^3/3! + 35*x^4/4! + .... This property holds more generally for the Riordan arrays of the form ( f(x), x/(1 - x) ), where f(x) is an o.g.f. of the form 1 + f_1*x + f_2*x^2 + .... See, for example, A055248 and A106516.
Let P denote the present triangle. For k = 0,1,2,... define P(k) to be the lower unit triangular block array
/I_k 0\
\ 0 P/ having the k X k identity matrix I_k as the upper left block; in particular, P(0) = P. The infinite product P(0)*P(1)*P(2)*..., which is clearly well-defined, is equal to the triangle of Stirling numbers of the second kind A008277. The infinite product in the reverse order, that is, ...*P(2)*P(1)*P(0), is equal to the triangle of Stirling cycle numbers A130534. (End)
C(a+b,c) = Sum_{k=0..a} C(a,k)*C(b,b-c+k). This is a generalization of equation 1 from section 4.2.5 of the Prudnikov et al. reference, for a=b=c=n: C(2*n,n) = Sum_{k=0..n} C(n,k)^2. See Links section for animation of new formula. - Hermann Stamm-Wilbrandt, Aug 26 2015
The row polynomials of the Pascal matrix P(n,x) = (1+x)^n are related to the Bernoulli polynomials Br(n,x) and their umbral compositional inverses Bv(n,x) by the umbral relation P(n,x) = (-Br(.,-Bv(.,x)))^n = (-1)^n Br(n,-Bv(.,x)), which translates into the matrix relation P = M * Br * M * Bv, where P is the Pascal matrix, M is the diagonal matrix diag(1,-1,1,-1,...), Br is the matrix for the coefficients of the Bernoulli polynomials, and Bv that for the umbral inverse polynomials defined umbrally by Br(n,Bv(.,x)) = x^n = Bv(n,Br(.,x)). Note M = M^(-1). - Tom Copeland, Sep 05 2015
1/(1-x)^k = (r(x) * r(x^2) * r(x^4) * ...) where r(x) = (1+x)^k. - Gary W. Adamson, Oct 17 2016
Boas-Buck type recurrence for column k for Riordan arrays (see the Aug 10 2017 remark in A046521, also for the reference) with the Boas-Buck sequence b(n) = {repeat(1)}. T(n, k) = ((k+1)/(n-k))*Sum_{j=k..n-1} T(j, k), for n >= 1, with T(n, n) = 1. This reduces, with T(n, k) = binomial(n, k), to a known binomial identity (e.g, Graham et al. p. 161). - Wolfdieter Lang, Nov 12 2018
C((p-1)/a, b) == (-1)^b * fact_a(a*b-a+1)/fact_a(a*b) (mod p), where fact_n denotes the n-th multifactorial, a divides p-1, and the denominator of the fraction on the right side of the equation represents the modular inverse. - Isaac Saffold, Jan 07 2019
C(n,k-1) = A325002(n,k) - [k==n+1] = (A325002(n,k) + A325003(n,k)) / 2 = [k==n+1] + A325003(n,k). - Robert A. Russell, Oct 20 2020
From Hermann Stamm-Wilbrandt, May 13 2021: (Start)
Binomial sums are Fibonacci numbers A000045:
Sum_{k=0..n} C(n + k, 2*k + 1) = F(2*n).
Sum_{k=0..n} C(n + k, 2*k) = F(2*n + 1). (End)
C(n,k) = Sum_{i=0..k} A000108(i) * C(n-2i-1, k-i), for 0 <= k <= floor(n/2)-1. - Tushar Bansal, May 17 2025
Extensions
Checked all links, deleted 8 that seemed lost forever and were probably not of great importance. - N. J. A. Sloane, May 08 2018
A000244 Powers of 3: a(n) = 3^n.
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987
Offset: 0
Comments
Same as Pisot sequences E(1, 3), L(1, 3), P(1, 3), T(1, 3). Essentially same as Pisot sequences E(3, 9), L(3, 9), P(3, 9), T(3, 9). See A008776 for definitions of Pisot sequences.
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2n + 2, s(0) = 1, s(2n+2) = 3. - Herbert Kociemba, Jun 10 2004
a(1) = 1, a(n+1) is the least number such that there are a(n) even numbers between a(n) and a(n+1). Generalization for the sequence of powers of k: 1, k, k^2, k^3, k^4, ... There are a(n) multiples of k-1 between a(n) and a(n+1). - Amarnath Murthy, Nov 28 2004
a(n) = sum of (n+1)-th row in Triangle A105728. - Reinhard Zumkeller, Apr 18 2005
With p(n) being the number of integer partitions of n, p(i) being the number of parts of the i-th partition of n, d(i) being the number of different parts of the i-th partition of n, m(i, j) being the multiplicity of the j-th part of the i-th partition of n, Sum_{i = 1..p(n)} being the sum over i and Product_{j = 1..d(i)} being the product over j, one has: a(n) = Sum_{i = 1..p(n)} (p(i)!/(Product_{j = 1..d(i)} m(i, j)!))*2^(p(i) - 1). - Thomas Wieder, May 18 2005
For any k > 1 in the sequence, k is the first prime power appearing in the prime decomposition of repunit R_k, i.e., of A002275(k). - Lekraj Beedassy, Apr 24 2006
a(n-1) is the number of compositions of compositions. In general, (k+1)^(n-1) is the number of k-levels nested compositions (e.g., 4^(n-1) is the number of compositions of compositions of compositions, etc.). Each of the n - 1 spaces between elements can be a break for one of the k levels, or not a break at all. - Franklin T. Adams-Watters, Dec 06 2006
Let S be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xSy if x is a subset of y. Then a(n) = |S|. - Ross La Haye, Dec 22 2006
From Manfred Boergens, Mar 28 2023: (Start)
With regard to the comment by Ross La Haye:
Cf. A001047 if either nonempty subsets are considered or x is a proper subset of y.
Cf. a(n+1) in A028243 if nonempty subsets are considered and x is a proper subset of y. (End)
If X_1, X_2, ..., X_n is a partition of the set {1, 2, ..., 2*n} into blocks of size 2 then, for n >= 1, a(n) is equal to the number of functions f : {1, 2, ..., 2*n} -> {1, 2} such that for fixed y_1, y_2, ..., y_n in {1, 2} we have f(X_i) <> {y_i}, (i = 1, 2, ..., n). - Milan Janjic, May 24 2007
This is a general comment on all sequences of the form a(n) = [(2^k)-1]^n for all positive integers k. Example 1.1.16 of Stanley's "Enumerative Combinatorics" offers a slightly different version. a(n) in the number of functions f:[n] into P([k]) - {}. a(n) is also the number of functions f:[k] into P([n]) such that the generalized intersection of f(i) for all i in [k] is the empty set. Where [n] = {1, 2, ..., n}, P([n]) is the power set of [n] and {} is the empty set. - Geoffrey Critzer, Feb 28 2009
3^(n+1) = (1, 2, 2, 2, ...) dot (1, 1, 3, 9, ..., 3^n); e.g., 3^3 = 27 = (1, 2, 2, 2) dot (1, 1, 3, 9) = (1 + 2 + 6 + 18). - Gary W. Adamson, May 17 2010
a(n) is the number of generalized compositions of n when there are 3*2^i different types of i, (i = 1, 2, ...). - Milan Janjic, Sep 24 2010
For n >= 1, a(n-1) is the number of generalized compositions of n when there are 2^(i-1) different types of i, (i = 1, 2, ...). - Milan Janjic, Sep 24 2010
The sequence in question ("Powers of 3") also describes the number of moves of the k-th disk solving the [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle (cf. A183111 - A183125).
Positions of records in the number of odd prime factors, A087436. - Juri-Stepan Gerasimov, Mar 17 2011
Sum of coefficients of the expansion of (1+x+x^2)^n. - Adi Dani, Jun 21 2011
a(n) is the number of compositions of n elements among {0, 1, 2}; e.g., a(2) = 9 since there are the 9 compositions 0 + 0, 0 + 1, 1 + 0, 0 + 2, 1 + 1, 2 + 0, 1 + 2, 2 + 1, and 2 + 2. [From Adi Dani, Jun 21 2011; modified by editors.]
Except the first two terms, these are odd numbers n such that no x with 2 <= x <= n - 2 satisfy x^(n-1) == 1 (mod n). - Arkadiusz Wesolowski, Jul 03 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 3-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Explanation from David Applegate, Feb 20 2017: (Start)
Since the preceding comment appears in a large number of sequences, it might be worth adding a proof.
The number of compositions of n into exactly k parts is binomial(n-1,k-1).
For a p-colored composition of n such that no adjacent parts have the same color, there are exactly p choices for the color of the first part, and p-1 choices for the color of each additional part (any color other than the color of the previous one). So, for a partition into k parts, there are p (p-1)^(k-1) valid colorings.
Thus the number of p-colored compositions of n into exactly k parts such that no adjacent parts have the same color is binomial(n-1,k-1) p (p-1)^(k-1).
The total number of p-colored compositions of n such that no adjacent parts have the same color is then
Sum_{k=1..n} binomial(n-1,k-1) * p * (p-1)^(k-1) = p^n.
To see this, note that the binomial expansion of ((p - 1) + 1)^(n - 1) = Sum_{k = 0..n - 1} binomial(n - 1, k) (p - 1)^k 1^(n - 1 - k) = Sum_{k = 1..n} binomial(n - 1, k - 1) (p - 1)^(k - 1).
(End)
Also, first and least element of the matrix [1, sqrt(2); sqrt(2), 2]^(n+1). - M. F. Hasler, Nov 25 2011
One-half of the row sums of the triangular version of A035002. - J. M. Bergot, Jun 10 2013
Form an array with m(0,n) = m(n,0) = 2^n; m(i,j) equals the sum of the terms to the left of m(i,j) and the sum of the terms above m(i,j), which is m(i,j) = Sum_{k=0..j-1} m(i,k) + Sum_{k=0..i-1} m(k,j). The sum of the terms in antidiagonal(n+1) = 4*a(n). - J. M. Bergot, Jul 10 2013
a(n) = A007051(n+1) - A007051(n), and A007051 are the antidiagonal sums of an array defined by m(0,k) = 1 and m(n,k) = Sum_{c = 0..k - 1} m(n, c) + Sum_{r = 0..n - 1} m(r, k), which is the sum of the terms to left of m(n, k) plus those above m(n, k). m(1, k) = A000079(k); m(2, k) = A045623(k + 1); m(k + 1, k) = A084771(k). - J. M. Bergot, Jul 16 2013
Define an array to have m(0,k) = 2^k and m(n,k) = Sum_{c = 0..k - 1} m(n, c) + Sum_{r = 0..n - 1} m(r, k), which is the sum of the terms to the left of m(n, k) plus those above m(n, k). Row n = 0 of the array comprises A000079, column k = 0 comprises A011782, row n = 1 comprises A001792. Antidiagonal sums of the array are a(n): 1 = 3^0, 1 + 2 = 3^1, 2 + 3 + 4 = 3^2, 4 + 7 + 8 + 8 = 3^3. - J. M. Bergot, Aug 02 2013
The sequence with interspersed zeros and o.g.f. x/(1 - 3*x^2), A(2*k) = 0, A(2*k + 1) = 3^k = a(k), k >= 0, can be called hexagon numbers. This is because the algebraic number rho(6) = 2*cos(Pi/6) = sqrt(3) of degree 2, with minimal polynomial C(6, x) = x^2 - 3 (see A187360, n = 6), is the length ratio of the smaller diagonal and the side in the hexagon. Hence rho(6)^n = A(n-1)*1 + A(n)*rho(6), in the power basis of the quadratic number field Q(rho(6)). One needs also A(-1) = 1. See also a Dec 02 2010 comment and the P. Steinbach reference given in A049310. - Wolfdieter Lang, Oct 02 2013
Numbers k such that sigma(3k) = 3k + sigma(k). - Jahangeer Kholdi, Nov 23 2013
All powers of 3 are perfect totient numbers (A082897), since phi(3^n) = 2 * 3^(n - 1) for n > 0, and thus Sum_{i = 0..n} phi(3^i) = 3^n. - Alonso del Arte, Apr 20 2014
The least number k > 0 such that 3^k ends in n consecutive decreasing digits is a 3-term sequence given by {1, 13, 93}. The consecutive increasing digits are {3, 23, 123}. There are 100 different 3-digit endings for 3^k. There are no k-values such that 3^k ends in '012', '234', '345', '456', '567', '678', or '789'. The k-values for which 3^k ends in '123' are given by 93 mod 100. For k = 93 + 100*x, the digit immediately before the run of '123' is {9, 5, 1, 7, 3, 9, 5, 1, 3, 7, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}, respectively. Thus we see the digit before '123' will never be a 0. So there are no further terms. - Derek Orr, Jul 03 2014
All elements of A^n where A = (1, 1, 1; 1, 1, 1; 1, 1, 1). - David Neil McGrath, Jul 23 2014
Counts all walks of length n (open or closed) on the vertices of a triangle containing a loop at each vertex starting from any given vertex. - David Neil McGrath, Oct 03 2014
a(n) counts walks (closed) on the graph G(1-vertex;1-loop,1-loop,1-loop). - David Neil McGrath, Dec 11 2014
2*a(n-2) counts all permutations of a solitary closed walk of length (n) from the vertex of a triangle that contains 2 loops on each of the remaining vertices. In addition, C(m,k)=2*(2^m)*B(m+k-2,m) counts permutations of walks that contain (m) loops and (k) arcs. - David Neil McGrath, Dec 11 2014
a(n) is the sum of the coefficients of the n-th layer of Pascal's pyramid (a.k.a., Pascal's tetrahedron - see A046816). - Bob Selcoe, Apr 02 2016
Numbers n such that the trinomial x^(2*n) + x^n + 1 is irreducible over GF(2). Of these only the trinomial for n=1 is primitive. - Joerg Arndt, May 16 2016
Satisfies Benford's law [Berger-Hill, 2011]. - N. J. A. Sloane, Feb 08 2017
a(n-1) is also the number of compositions of n if the parts can be runs of any length from 1 to n, and can contain any integers from 1 to n. - Gregory L. Simay, May 26 2017
Also the number of independent vertex sets and vertex covers in the n-ladder rung graph n P_2. - Eric W. Weisstein, Sep 21 2017
Also the number of (not necessarily maximal) cliques in the n-cocktail party graph. - Eric W. Weisstein, Nov 29 2017
a(n-1) is the number of 2-compositions of n; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020
a(n) is the number of faces of any dimension (vertices, edges, square faces, etc.) of the n-dimensional hypercube. For example, the 0-dimensional hypercube is a point, and its only face is itself. The 1-dimensional hypercube is a line, which has two vertices and an edge. The 2-dimensional hypercube is a square, which has four vertices, four edges, and a square face. - Kevin Long, Mar 14 2023
Number of pairs (A,B) of subsets of M={1,2,...,n} with union(A,B)=M. For nonempty subsets cf. A058481. - Manfred Boergens, Mar 28 2023
From Jianing Song, Sep 27 2023: (Start)
a(n) is the number of disjunctive clauses of n variables up to equivalence. A disjunctive clause is a propositional formula of the form l_1 OR ... OR l_m, where l_1, ..., l_m are distinct elements in {x_1, ..., x_n, NOT x_1, ..., NOT x_n} for n variables x_1, ... x_n, and no x_i and NOT x_i appear at the same time. For each 1 <= i <= n, we can have neither of x_i or NOT x_i, only x_i or only NOT x_i appearing in a disjunctive clause, so the number of such clauses is 3^n. Viewing the propositional formulas of n variables as functions {0,1}^n -> {0,1}, a disjunctive clause corresponds to a function f such that the inverse image of 0 is of the form A_1 X ... X A_n, where A_i is nonempty for all 1 <= i <= n. Since each A_i has 3 choices ({0}, {1} or {0,1}), we also find that the number of disjunctive clauses of n variables is 3^n.
Equivalently, a(n) is the number of conjunctive clauses of n variables. (End)
The finite subsequence a(2), a(3), a(4), a(5) = 9, 27, 81, 243 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A007283 (see comment there). - Felix Huber, Feb 15 2024
Examples
G.f. = 1 + 3*x + 9*x^2 + 27*x^3 + 81*x^4 + 243*x^5 + 729*x^6 + 2187*x^7 + ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- T. Banchoff, Counting the Faces of Higher-Dimensional Cubes, Beyond the Third Dimension: Geometry, computer graphics and higher dimensions, Scientific American Library, 1996.
- Arno Berger and Theodore P. Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, The Mathematical Intelligencer 33.1 (2011): 85-91.
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, Mar 28 2013.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 7
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 268
- Milan Janjic, Enumerative Formulae for Some Functions on Finite Sets
- Tanya Khovanova, Recursive Sequences
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Clique.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Hanoi Graph.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Ladder Rung Graph.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Doron Zeilberger, The Amazing 3^n Theorem and its even more Amazing Proof [Discovered by Xavier G. Viennot and his École Bordelaise gang], arXiv:1208.2258, 2012.
- Index entries for "core" sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (3).
- Index entries for sequences related to Benford's law
Crossrefs
Cf. A008776 (2*a(n), and first differences).
a(n) = A092477(n, 2) for n > 0.
a(n) = A217764(0, n).
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Programs
-
Haskell
a000244 = (3 ^) -- Reinhard Zumkeller, Nov 14 2011 a000244_list = iterate (* 3) 1 -- Reinhard Zumkeller, Apr 04 2012
-
Magma
[ 3^n : n in [0..30] ]; // Wesley Ivan Hurt, Jul 04 2014
-
Maple
A000244 := n->3^n; [ seq(3^n, n=0..50) ]; A000244:=-1/(-1+3*z); # Simon Plouffe in his 1992 dissertation.
-
Mathematica
Table[3^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *) 3^Range[0, 30] (* Wesley Ivan Hurt, Jul 04 2014 *) LinearRecurrence[{3}, {1}, 20] (* Eric W. Weisstein, Sep 21 2017 *) CoefficientList[Series[1/(1 - 3 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *) NestList[3#&,1,30] (* Harvey P. Dale, Feb 20 2020 *)
-
Maxima
makelist(3^n, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
-
PARI
A000244(n) = 3^n \\ Michael B. Porter, Nov 03 2009
-
Python
def A000244(n): return 3**n # Chai Wah Wu, Nov 10 2022
-
Scala
val powersOf3: LazyList[BigInt] = LazyList.iterate(1: BigInt)(_ * 3) (0 to 26).map(powersOf3()) // _Alonso del Arte, May 03 2020
Formula
a(n) = 3^n.
a(0) = 1; a(n) = 3*a(n-1).
G.f.: 1/(1-3*x).
E.g.f.: exp(3*x).
a(n) = n!*Sum_{i + j + k = n, i, j, k >= 0} 1/(i!*j!*k!). - Benoit Cloitre, Nov 01 2002
a(n) = Sum_{k = 0..n} 2^k*binomial(n, k), binomial transform of A000079.
a(n) = A090888(n, 2). - Ross La Haye, Sep 21 2004
a(n) = 2^(2n) - A005061(n). - Ross La Haye, Sep 10 2005
a(n) = A112626(n, 0). - Ross La Haye, Jan 11 2006
Hankel transform of A007854. - Philippe Deléham, Nov 26 2006
a(n) = 2*StirlingS2(n+1,3) + StirlingS2(n+2,2) = 2*(StirlingS2(n+1,3) + StirlingS2(n+1,2)) + 1. - Ross La Haye, Jun 26 2008
a(n) = 2*StirlingS2(n+1, 3) + StirlingS2(n+2, 2) = 2*(StirlingS2(n+1, 3) + StirlingS2(n+1, 2)) + 1. - Ross La Haye, Jun 09 2008
Sum_{n >= 0} 1/a(n) = 3/2. - Gary W. Adamson, Aug 29 2008
If p(i) = Fibonacci(2i-2) and if A is the Hessenberg matrix of order n defined by A(i, j) = p(j-i+1), (i <= j), A(i, j) = -1, (i = j+1), and A(i, j) = 0 otherwise, then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 08 2010
G.f. A(x) = M(x)/(1-M(x))^2, M(x) - o.g.f for Motzkin numbers (A001006). - Vladimir Kruchinin, Aug 18 2010
a(n) = A133494(n+1). - Arkadiusz Wesolowski, Jul 27 2011
2/3 + 3/3^2 + 2/3^3 + 3/3^4 + 2/3^5 + ... = 9/8. [Jolley, Summation of Series, Dover, 1961]
a(n) = Sum_{k=0..n} A207543(n,k)*4^(n-k). - Philippe Deléham, Feb 25 2012
a(n) = Sum_{k=0..n} A125185(n,k). - Philippe Deléham, Feb 26 2012
Sum_{n > 0} Mobius(n)/a(n) = 0.181995386702633887827... (see A238271). - Alonso del Arte, Aug 09 2012. See also the sodium 3s orbital energy in table V of J. Chem. Phys. 53 (1970) 348.
a(n) = (tan(Pi/3))^(2*n). - Bernard Schott, May 06 2022
a(n-1) = binomial(2*n-1, n) + Sum_{k >= 1} binomial(2*n, n+3*k)*(-1)^k. - Greg Dresden, Oct 14 2022
G.f.: Sum_{k >= 0} x^k/(1-2*x)^(k+1). - Kevin Long, Mar 14 2023
A000670 Fubini numbers: number of preferential arrangements of n labeled elements; or number of weak orders on n labeled elements; or number of ordered partitions of [n].
1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, 1622632573, 28091567595, 526858348381, 10641342970443, 230283190977853, 5315654681981355, 130370767029135901, 3385534663256845323, 92801587319328411133, 2677687796244384203115, 81124824998504073881821
Offset: 0
Comments
Number of ways n competitors can rank in a competition, allowing for the possibility of ties.
Also number of asymmetric generalized weak orders on n points.
Also called the ordered Bell numbers.
A weak order is a relation that is transitive and complete.
Called Fubini numbers by Comtet: counts formulas in Fubini theorem when switching the order of summation in multiple sums. - Olivier Gérard, Sep 30 2002 [Named after the Italian mathematician Guido Fubini (1879-1943). - Amiram Eldar, Jun 17 2021]
If the points are unlabeled then the answer is a(0) = 1, a(n) = 2^(n-1) (cf. A011782).
For n>0, a(n) is the number of elements in the Coxeter complex of type A_{n-1}. The corresponding sequence for type B is A080253 and there one can find a worked example as well as a geometric interpretation. - Tim Honeywill and Paul Boddington, Feb 10 2003
Also number of labeled (1+2)-free posets. - Detlef Pauly, May 25 2003
Also the number of chains of subsets starting with the empty set and ending with a set of n distinct objects. - Andrew Niedermaier, Feb 20 2004
From Michael Somos, Mar 04 2004: (Start)
Stirling transform of A007680(n) = [3,10,42,216,...] gives [3,13,75,541,...].
Stirling transform of a(n) = [1,3,13,75,...] is A083355(n) = [1,4,23,175,...].
Stirling transform of A000142(n) = [1,2,6,24,120,...] is a(n) = [1,3,13,75,...].
Stirling transform of A005359(n-1) = [1,0,2,0,24,0,...] is a(n-1) = [1,1,3,13,75,...].
Stirling transform of A005212(n-1) = [0,1,0,6,0,120,0,...] is a(n-1) = [0,1,3,13,75,...].
(End)
Unreduced denominators in convergent to log(2) = lim_{n->infinity} n*a(n-1)/a(n).
a(n) is congruent to a(n+(p-1)p^(h-1)) (mod p^h) for n >= h (see Barsky).
Stirling-Bernoulli transform of 1/(1-x^2). - Paul Barry, Apr 20 2005
This is the sequence of moments of the probability distribution of the number of tails before the first head in a sequence of fair coin tosses. The sequence of cumulants of the same probability distribution is A000629. That sequence is twice the result of deletion of the first term of this sequence. - Michael Hardy (hardy(AT)math.umn.edu), May 01 2005
With p(n) = the number of integer partitions of n, p(i) = the number of parts of the i-th partition of n, d(i) = the number of different parts of the i-th partition of n, p(j,i) = the j-th part of the i-th partition of n, m(i,j) = multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i=1..p(n)} (n!/(Product_{j=1..p(i)} p(i,j)!)) * (p(i)!/(Product_{j=1..d(i)} m(i,j)!)). - Thomas Wieder, May 18 2005
The number of chains among subsets of [n]. The summed term in the new formula is the number of such chains of length k. - Micha Hofri (hofri(AT)wpi.edu), Jul 01 2006
Occurs also as first column of a matrix-inversion occurring in a sum-of-like-powers problem. Consider the problem for any fixed natural number m>2 of finding solutions to the equation Sum_{k=1..n} k^m = (k+1)^m. Erdős conjectured that there are no solutions for n, m > 2. Let D be the matrix of differences of D[m,n] := Sum_{k=1..n} k^m - (k+1)^m. Then the generating functions for the rows of this matrix D constitute a set of polynomials in n (for varying n along columns) and the m-th polynomial defining the m-th row. Let GF_D be the matrix of the coefficients of this set of polynomials. Then the present sequence is the (unsigned) first column of GF_D^-1. - Gottfried Helms, Apr 01 2007
Assuming A = log(2), D is d/dx and f(x) = x/(exp(x)-1), we have a(n) = (n!/2*A^(n+1)) Sum_{k=0..n} (A^k/k!) D^n f(-A) which gives Wilf's asymptotic value when n tends to infinity. Equivalently, D^n f(-a) = 2*( A*a(n) - 2*a(n-1) ). - Martin Kochanski (mjk(AT)cardbox.com), May 10 2007
List partition transform (see A133314) of (1,-1,-1,-1,...). - Tom Copeland, Oct 24 2007
First column of A154921. - Mats Granvik, Jan 17 2009
A slightly more transparent interpretation of a(n) is as the number of 'factor sequences' of N for the case in which N is a product of n distinct primes. A factor sequence of N of length k is of the form 1 = x(1), x(2), ..., x(k) = N, where {x(i)} is an increasing sequence such that x(i) divides x(i+1), i=1,2,...,k-1. For example, N=70 has the 13 factor sequences {1,70}, {1,2,70}, {1,5,70}, {1,7,70}, {1,10,70}, {1,14,70}, {1,35,70}, {1,2,10,70}, {1,2,14,70}, {1,5,10,70}, {1,5,35,70}, {1,7,14,70}, {1,7,35,70}. - Martin Griffiths, Mar 25 2009
Starting (1, 3, 13, 75, ...) = row sums of triangle A163204. - Gary W. Adamson, Jul 23 2009
Equals double inverse binomial transform of A007047: (1, 3, 11, 51, ...). - Gary W. Adamson, Aug 04 2009
If f(x) = Sum_{n>=0} c(n)*x^n converges for every x, then Sum_{n>=0} f(n*x)/2^(n+1) = Sum_{n>=0} c(n)*a(n)*x^n. Example: Sum_{n>=0} exp(n*x)/2^(n+1) = Sum_{n>=0} a(n)*x^n/n! = 1/(2-exp(x)) = e.g.f. - Miklos Kristof, Nov 02 2009
Hankel transform is A091804. - Paul Barry, Mar 30 2010
It appears that the prime numbers greater than 3 in this sequence (13, 541, 47293, ...) are of the form 4n+1. - Paul Muljadi, Jan 28 2011
The Fi1 and Fi2 triangle sums of A028246 are given by the terms of this sequence. For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 20 2011
The modified generating function A(x) = 1/(2-exp(x))-1 = x + 3*x^2/2! + 13*x^3/3! + ... satisfies the autonomous differential equation A' = 1 + 3*A + 2*A^2 with initial condition A(0) = 0. Applying [Bergeron et al., Theorem 1] leads to two combinatorial interpretations for this sequence: (A) a(n) gives the number of plane-increasing 0-1-2 trees on n vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 2 colors. (B) a(n) gives the number of non-plane-increasing 0-1-2 trees on n vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 4 colors. Examples are given below. - Peter Bala, Aug 31 2011
Starting with offset 1 = the eigensequence of A074909 (the beheaded Pascal's triangle), and row sums of triangle A208744. - Gary W. Adamson, Mar 05 2012
a(n) = number of words of length n on the alphabet of positive integers for which the letters appearing in the word form an initial segment of the positive integers. Example: a(2) = 3 counts 11, 12, 21. The map "record position of block containing i, 1<=i<=n" is a bijection from lists of sets on [n] to these words. (The lists of sets on [2] are 12, 1/2, 2/1.) - David Callan, Jun 24 2013
This sequence was the subject of one of the earliest uses of the database. Don Knuth, who had a computer printout of the database prior to the publication of the 1973 Handbook, wrote to N. J. A. Sloane on May 18, 1970, saying: "I have just had my first real 'success' using your index of sequences, finding a sequence treated by Cayley that turns out to be identical to another (a priori quite different) sequence that came up in connection with computer sorting." A000670 is discussed in Exercise 3 of Section 5.3.1 of The Art of Computer Programming, Vol. 3, 1973. - N. J. A. Sloane, Aug 21 2014
Ramanujan gives a method of finding a continued fraction of the solution x of an equation 1 = x + a2*x^2 + ... and uses log(2) as the solution of 1 = x + x^2/2 + x^3/6 + ... as an example giving the sequence of simplified convergents as 0/1, 1/1, 2/3, 9/13, 52/75, 375/541, ... of which the sequence of denominators is this sequence, while A052882 is the numerators. - Michael Somos, Jun 19 2015
For n>=1, a(n) is the number of Dyck paths (A000108) with (i) n+1 peaks (UD's), (ii) no UUDD's, and (iii) at least one valley vertex at every nonnegative height less than the height of the path. For example, a(2)=3 counts UDUDUD (of height 1 with 2 valley vertices at height 0), UDUUDUDD, UUDUDDUD. These paths correspond, under the "glove" or "accordion" bijection, to the ordered trees counted by Cayley in the 1859 reference, after a harmless pruning of the "long branches to a leaf" in Cayley's trees. (Cayley left the reader to infer the trees he was talking about from examples for small n and perhaps from his proof.) - David Callan, Jun 23 2015
From David L. Harden, Apr 09 2017: (Start)
Fix a set X and define two distance functions d,D on X to be metrically equivalent when d(x_1,y_1) <= d(x_2,y_2) iff D(x_1,y_1) <= D(x_2,y_2) for all x_1, y_1, x_2, y_2 in X.
Now suppose that we fix a function f from unordered pairs of distinct elements of X to {1,...,n}. Then choose positive real numbers d_1 <= ... <= d_n such that d(x,y) = d_{f(x,y)}; the set of all possible choices of the d_i's makes this an n-parameter family of distance functions on X. (The simplest example of such a family occurs when n is a triangular number: When that happens, write n = (k 2). Then the set of all distance functions on X, when |X| = k, is such a family.) The number of such distance functions, up to metric equivalence, is a(n).
It is easy to see that an equivalence class of distance functions gives rise to a well-defined weak order on {d_1, ..., d_n}. To see that any weak order is realizable, choose distances from the set of integers {n-1, ..., 2n-2} so that the triangle inequality is automatically satisfied. (End)
a(n) is the number of rooted labeled forests on n nodes that avoid the patterns 213, 312, and 321. - Kassie Archer, Aug 30 2018
From A.H.M. Smeets, Nov 17 2018: (Start)
Also the number of semantic different assignments to n variables (x_1, ..., x_n) including simultaneous assignments. From the example given by Joerg Arndt (Mar 18 2014), this is easily seen by replacing
"{i}" by "x_i := expression_i(x_1, ..., x_n)",
"{i, j}" by "x_i, x_j := expression_i(x_1, .., x_n), expression_j(x_1, ..., x_n)", i.e., simultaneous assignment to two different variables (i <> j),
similar for simultaneous assignments to more variables, and
"<" by ";", i.e., the sequential constructor. These examples are directly related to "Number of ways n competitors can rank in a competition, allowing for the possibility of ties." in the first comment.
From this also the number of different mean definitions as obtained by iteration of n different mean functions on n initial values. Examples:
the AGM(x1,x2) = AGM(x2,x1) is represented by {arithmetic mean, geometric mean}, i.e., simultaneous assignment in any iteration step;
Archimedes's scheme (for Pi) is represented by {geometric mean} < {harmonic mean}, i.e., sequential assignment in any iteration step;
the geometric mean of two values can also be observed by {arithmetic mean, harmonic mean};
the AGHM (as defined in A319215) is represented by {arithmetic mean, geometric mean, harmonic mean}, i.e., simultaneous assignment, but there are 12 other semantic different ways to assign the values in an AGHM scheme.
By applying power means (also called Holder means) this can be extended to any value of n. (End)
Total number of faces of all dimensions in the permutohedron of order n. For example, the permutohedron of order 3 (a hexagon) has 6 vertices + 6 edges + 1 2-face = 13 faces, and the permutohedron of order 4 (a truncated octahedron) has 24 vertices + 36 edges + 14 2-faces + 1 3-face = 75 faces. A001003 is the analogous sequence for the associahedron. - Noam Zeilberger, Dec 08 2019
Number of odd multinomial coefficients N!/(a_1!*a_2!*...*a_k!). Here each a_i is positive, and Sum_{i} a_i = N (so 2^{N-1} multinomial coefficients in all), where N is any positive integer whose binary expansion has n 1's. - Richard Stanley, Apr 05 2022 (edited Oct 19 2022)
From Peter Bala, Jul 08 2022: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 16 we obtain the sequence [1, 1, 3, 13, 11, 13, 11, 13, 11, 13, ...], with an apparent period of 2 beginning at a(4). Cf. A354242.
More generally, we conjecture that the same property holds for integer sequences having an e.g.f. of the form G(exp(x) - 1), where G(x) is an integral power series. (End)
a(n) is the number of ways to form a permutation of [n] and then choose a subset of its descent set. - Geoffrey Critzer, Apr 29 2023
This is the Akiyama-Tanigawa transform of A000079, the powers of two. - Shel Kaphan, May 02 2024
Examples
Let the points be labeled 1,2,3,... a(2) = 3: 1<2, 2<1, 1=2. a(3) = 13 from the 13 arrangements: 1<2<3, 1<3<2, 2<1<3, 2<3<1, 3<1<2, 3<2<1, 1=2<3 1=3<2, 2=3<1, 1<2=3, 2<1=3, 3<1=2, 1=2=3. Three competitors can finish in 13 ways: 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2; 3,2,1; 1,1,3; 2,2,1; 1,3,1; 2,1,2; 3,1,1; 1,2,2; 1,1,1. a(3) = 13. The 13 plane increasing 0-1-2 trees on 3 vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 2 colors, are: ........................................................ ........1 (x3 colors).....1(x2 colors)....1(x2 colors).. ........|................/.\............./.\............ ........2 (x3 colors)...2...3...........3...2........... ........|............................................... ........3............................................... ......====..............====............====............ .Totals 9......+..........2....+..........2....=..13.... ........................................................ a(4) = 75. The 75 non-plane increasing 0-1-2 trees on 4 vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 4 colors, are: ............................................................... .....1 (x3).....1(x4).......1(x4).....1(x4)........1(x3)....... .....|........./.\........./.\......./.\...........|........... .....2 (x3)...2...3.(x3)..3...2(x3).4...2(x3)......2(x4)....... .....|.............\...........\.........\......../.\.......... .....3.(x3).........4...........4.........3......3...4......... .....|......................................................... .....4......................................................... ....====......=====........====......====.........====......... Tots 27....+....12......+...12....+...12.......+...12...=...75. From _Joerg Arndt_, Mar 18 2014: (Start) The a(3) = 13 strings on the alphabet {1,2,3} containing all letters up to the maximal value appearing and the corresponding ordered set partitions are: 01: [ 1 1 1 ] { 1, 2, 3 } 02: [ 1 1 2 ] { 1, 2 } < { 3 } 03: [ 1 2 1 ] { 1, 3 } < { 2 } 04: [ 2 1 1 ] { 2, 3 } < { 1 } 05: [ 1 2 2 ] { 1 } < { 2, 3 } 06: [ 2 1 2 ] { 2 } < { 1, 3 } 07: [ 2 2 1 ] { 3 } < { 1, 2 } 08: [ 1 2 3 ] { 1 } < { 2 } < { 3 } 09: [ 1 3 2 ] { 1 } < { 3 } < { 2 } 00: [ 2 1 3 ] { 2 } < { 1 } < { 3 } 11: [ 2 3 1 ] { 3 } < { 1 } < { 2 } 12: [ 3 1 2 ] { 2 } < { 3 } < { 1 } 13: [ 3 2 1 ] { 3 } < { 2 } < { 1 } (End)
References
- Mohammad K. Azarian, Geometric Series, Problem 329, Mathematics and Computer Education, Vol. 30, No. 1, Winter 1996, p. 101. Solution published in Vol. 31, No. 2, Spring 1997, pp. 196-197.
- Norman Biggs, E. Keith Lloyd and Robin J. Wilson, Graph Theory 1736-1936, Oxford, 1976, p. 44 (P(x)).
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 183 (see R_n).
- Kenneth S. Brown, Buildings, Springer-Verlag, 1988.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 228.
- Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 13, pp 4, Ellipses, Paris 2008.
- P. J. Freyd, On the size of Heyting semi-lattices, preprint, 2002.
- Ian P. Goulden and David M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd Ed., 1994, exercise 7.44 (pp. 378, 571).
- Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
- Donald E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, 1973, Section 5.3.1, Problem 3.
- M. Muresan, Generalized Fubini numbers, Stud. Cerc. Mat., Vol. 37, No. 1 (1985), pp. 70-76.
- Paul Peart, Hankel determinants via Stieltjes matrices. Proceedings of the Thirty-first Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2000). Congr. Numer. 144 (2000), 153-159.
- S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 19.
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Richard P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Example 3.15.10, p. 146.
- Jack van der Elsen, Black and White Transformations, Shaker Publishing, Maastricht, 2005, p. 18.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..424 (first 101 terms from N. J. A. Sloane)
- Connor Ahlbach, Jeremy Usatine, and Nicholas Pippenger, Barred Preferential Arrangements, Electron. J. Combin., Volume 20, Issue 2 (2013), #P55.
- Jean-Christophe Aval, Valentin Féray, Jean-Christophe Novelli, and Jean-Yves Thibon, Quasi-symmetric functions as polynomial functions on Young diagrams, arXiv preprint arXiv:1312.2727 [math.CO], 2013.
- Jean-Christophe Aval, Adrien Boussicault, and Philippe Nadeau, Tree-like Tableaux, Electronic Journal of Combinatorics, Vol. 20, No. 4 (2013), #P34.
- Ralph W. Bailey, The number of weak orderings of a finite set, Social Choice and Welfare, Vol. 15 (1998), pp. 559-562.
- Paul Barry, Exponential Riordan Arrays and Permutation Enumeration, J. Int. Seq., Vol. 13 (2010), Article 10.9.1, Example 12.
- Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, J. Int. Seq., Vol. 14 (2011), Article 11.9.5; arXiv preprint, arXiv:1105.3043 [math.CO], 2011.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.
- Daniel Barsky, Analyse p-adique et suites classiques de nombres, Sem. Loth. Comb. B05b (1981), pp. 1-21.
- J. P. Barthelemy, An asymptotic equivalent for the number of total preorders on a finite set, Discrete Mathematics, Vol. 29, No. 3 (1980), pp. 311-313.
- Beáta Bényi and José L. Ramírez, Some Applications of S-restricted Set Partitions, arXiv:1804.03949 [math.CO], 2018.
- François Bergeron, Philippe Flajolet, and Bruno Salvy, Varieties of increasing trees, in J. C. Raoult (ed.), CAAP '92, Colloquium on Trees in Algebra and Programming, CAAP 1992, Lecture Notes in Computer Science, Vol. 581, Springer, Berlin, Heidelberg, 1992, pp. 24-48; alternative link.
- Nantel Bergeron, Laura Colmenarejo, Shu Xiao Li, John Machacek, Robin Sulzgruber, Mike Zabrocki, Adriano Garsia, Marino Romero, Don Qui, and Nolan Wallach, Super Harmonics and a representation theoretic model for the Delta conjecture, A summary of the open problem sessions of Jan 24, 2019, Representation Theory Connections to (q,t)-Combinatorics (19w5131), Banff, BC, Canada.
- Sara Billey and Matjaž Konvalinka, Generalized rank functions and quilts of alternating sign matrices, arXiv:2412.03236 [math.CO], 2024. See p. 5.
- Sara C. Billey, Matjaž Konvalinka, T. Kyle Petersen, William Slofstra, Bridget E. Tenner, Parabolic double cosets in Coxeter groups, Discrete Mathematics and Theoretical Computer Science, Submitted, 2016.
- P. Blasiak, K. A. Penson, and A. I. Solomon, Dobinski-type relations and the log-normal distribution, arXiv:quant-ph/0303030, 2003.
- Olivier Bodini, Antoine Genitrini, and Mehdi Naima, Ranked Schröder Trees, arXiv:1808.08376 [cs.DS], 2018.
- Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
- S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, Yuxuan (Susan) Wang, and Juliet Whidden, Unit interval parking functions and the r-Fubini numbers, arXiv:2401.06937 [math.CO], 2024. See page 2.
- Florian Bridoux, Caroline Gaze-Maillot, Kévin Perrot, and Sylvain Sené, Complexity of limit-cycle problems in Boolean networks, arXiv:2001.07391 [cs.DM], 2020.
- A. Cayley, On the theory of the analytical forms called trees II, Phil. Mag., Vol. 18 (1859), pp. 374-378 = Math. Papers Vol. 4, pp. 112-115.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seq., Vol. 3 (2000), Article 00.1.5.
- J. L. Chandon, J. LeMaire, and J. Pouget, Dénombrement des quasi-ordres sur un ensemble fini, Math. Sci. Humaines, Vol. 62 (1978), pp. 61-80.
- Grégory Chatel, Vincent Pilaud, and Viviane Pons, The weak order on integer posets, arXiv:1701.07995 [math.CO], 2017.
- Chao-Ping Chen, Sharp inequalities and asymptotic series related to Somos' quadratic recurrence constant, Journal of Number Theory, Vol. 172 (March 2017), pp. 145-159.
- William Y. C. Chen, Alvin Y. L. Dai, and Robin D. P. Zhou, Ordered Partitions Avoiding a Permutation of Length 3, arXiv preprint arXiv:1304.3187 [math.CO], 2013.
- Ali Chouria, Vlad-Florin Drǎgoi, and Jean-Gabriel Luque, On recursively defined combinatorial classes and labelled trees, arXiv:2004.04203 [math.CO], 2020.
- Mircea I. Cirnu, Determinantal formulas for sum of generalized arithmetic-geometric series, Boletin de la Asociacion Matematica Venezolana, Vol. XVIII, No. 1 (2011), p. 13.
- Anders Claesson and T. Kyle Petersen, Conway's napkin problem, Amer. Math. Monthly, Vol. 114, No. 3 (2007), pp. 217-231.
- Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, to appear in Involve;
- Pietro Codara, Ottavio M. D'Antona and Vincenzo Marra, Best Approximation of Ruspini Partitions in Goedel Logic, in Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Computer Science, Vol. 4724 (2007), pp. 161-172.
- Pierluigi Contucci, Emanuele Panizzi, Federico Ricci-Tersenghi, and Alina Sîrbu, A new dimension for democracy: egalitarianism in the rank aggregation problem, arXiv:1406.7642 [physics.soc-ph], 2014.
- H. B. Curry, An Analysis of Logical Substitution, American Journal of Mathematics, Vol. 51, No. 3 (1929), pp. 363-84; see page 369.
- N. G. de Bruijn, Enumerative combinatorial structures concerning structures, Nieuw Archief. voor Wisk., Vol. 11 (1963), pp. 142-161; see p. 150.
- Ayhan Dil and Veli Kurt, Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices, J. Int. Seq., Vol. 14 (2011), Article 11.4.6.
- Ayhan Dil and Veli Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series I, INTEGERS, Vol. 12 (2012), #A38.
- Diego Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions, arXiv:math/0501052v2 [math.CA], 2005.
- Frédéric Fauvet, Loïc Foissy, and Dominique Manchon, The Hopf algebra of finite topologies and mould composition, arXiv preprint arXiv:1503.03820, 2015
- Valentin Féray, Cyclic inclusion-exclusion, arXiv preprint arXiv:1410.1772 [math.CO], 2014.
- Philippe Flajolet, Stefan Gerhold, and Bruno Salvy, On the non-holonomic character of logarithms, powers and the n-th prime function, arXiv:math/0501379 [math.CO], 2005.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 109.
- Aviezri S. Fraenkel and Moshe Mor, Combinatorial compression and partitioning of large dictionaries, Computer J., Vol. 26 (1983), pp. 336-343. See Tables 4 and 5.
- Harvey M. Friedman, Concrete Mathematical Incompleteness: Basic Emulation Theory, Hilary Putnam on Logic and Mathematics, Outstanding Contributions to Logic, Vol. 9, Springer, Cham, 2018, pp. 179-234.
- Florent Foucaud, Ralf Klasing and Peter J. Slater, Centroidal bases in graphs, arXiv preprint arXiv:1406.7490 [math.CO], 2014.
- Wolfgang Gatterbauer and Dan Suciu, Approximate Lifted Inference with Probabilistic Databases, arXiv preprint arXiv:1412.1069 [cs.DB], 2014.
- Wolfgang Gatterbauer and Dan Suciu, Dissociation and propagation for approximate lifted inference with standard relational database management systems, The VLDB Journal, Vol. 26, No. 1 (February 2017), pp 5-30; DOI 10.1007/s00778-016-0434-5.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Christian Geist and Ulle Endriss, Automated search for impossibility theorems in social choice theory: ranking sets of objects, arXiv:1401.3866 [cs.AI], 2014; J. Artif. Intell. Res. (JAIR), Vol. 40 (2011), pp. 143-174.
- Olivier Gérard, Re: Horse Race Puzzle.
- Seyoum Getu, Louis W. Shapiro, Wen-jin Woan, and Leon C. Woodson, How to guess a generating function, SIAM J. Discrete Math., Vol. 5, No. 4 (1992), pp. 497-499.
- Robert Gill, The number of elements in a generalized partition semilattice, Discrete mathematics, Vol. 186, No. 1-3 (1998), pp. 125-134. See Example 1.
- Samuele Giraudo, Combinatorial operads from monoids, arXiv preprint arXiv:1306.6938 [math.CO], 2013.
- Manfred Göbel, On the number of special permutation-invariant orbits and terms, in Applicable Algebra in Engin., Comm. and Comp. (AAECC 8), Vol. 8, No. 6 (1997), pp. 505-509.
- W. Steven Gray and Makhin Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013.
- Martin Griffiths and István Mező, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS, Vol. 13 (2010), Article 10.2.5.
- O. A. Gross, Preferential arrangements, Amer. Math. Monthly, Vol. 69, No. 1 (1962), pp. 4-8.
- Gottfried Helms, Discussion of a problem concerning summing of like powers, 2007.
- Michael E. Hoffman, Updown categories: Generating functions and universal covers, arXiv preprint arXiv:1207.1705 [math.CO], 2012.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 41.
- Marsden Jacques and Dennis Wong, Greedy Universal Cycle Constructions for Weak Orders, Conference on Algorithms and Discrete Applied Mathematics (CALDAM 2020): Algorithms and Discrete Applied Mathematics, pp. 363-370.
- Jacques Marsden, Dennis Wong, and Kyounga Woo. Generating Gray codes for weak orders in constant amortized time, Discrete Mathematics, Vo. 343, No. 10 (2020), 111992.
- Svante Janson, Euler-Frobenius numbers and rounding, arXiv preprint arXiv:1305.3512 [math.PR], 2013.
- Marek Jarociński and Bartosz Maćkowiak, Online Appendix to "Granger-Causal-Priority and Choice of Variables in Vector Autoregressions", 2013.
- Vít Jelínek, Ida Kantor, Jan Kynčl, and Martin Tancer, On the growth of the Möbius function of permutations, arXiv:1809.05774 [math.CO], 2018.
- Niraj Khare, Rudolph Lorentz, and Catherine Huafei Yan, Bivariate Gončarov polynomials and integer sequences, Science China Mathematics, Vol. 57, No. 1 (2014), pp. 1561-1578; alternative link.
- Dongseok Kim, Young Soo Kwon, and Jaeun Lee, Enumerations of finite topologies associated with a finite graph, arXiv preprint arXiv:1206.0550 [math.CO], 2012. See Th. 4.3. - From _N. J. A. Sloane_, Nov 09 2012
- Donald E. Knuth, John Riordan, and N. J. A. Sloane, Correspondence, 1970.
- Martin J. Kochanski, How many orders are there?
- Ali Sinan Koksal, Yewen Pu, Saurabh Srivastava, Rastislav Bodik, Jasmin Fisher, and Nir Piterman, Synthesis of biological models from mutation experiments, Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, 2013, pp. 469-482.
- Takao Komatsu and José L. Ramírez, Some determinants involving incomplete Fubini numbers, arXiv:1802.06188 [math.NT], 2018.
- Germain Kreweras, Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963): 31-41.
- Alex Kumjian, David Pask, Aidan Sims, and Michael F. Whittaker, Topological spaces associated to higher-rank graphs, arXiv preprint arXiv:1310.6100 [math.OA], 2013.
- Hans Maassen and Thom Bezembinder, Generating random weak orders and the probability of a Condorcet winner, Social Choice and Welfare, Vol. 19, No. 3 (2002), pp. 517-532.
- P. A. MacMahon, Yoke-chains and multipartite compositions in connexion with the analytical forms called "trees, Proc. London Math. Soc., Vol. 22 (1891), pp. 330-346; reprinted in Coll. Papers I, pp. 600-616.
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- Elliott Mendelson, Races with Ties, Math. Mag., Vol. 55, No. 3 (1982), pp. 170-175.
- István Mező, Periodicity of the last digits of some combinatorial sequences, J. Int. Seq., Vol. 17 (2014), Article 14.1.1; arXiv preprint, arXiv:1308.1637 [math.CO], 2013.
- István Mező and Árpád Baricz, On the generalization of the Lambert W function with applications in theoretical physics, arXiv preprint arXiv:1408.3999 [math.CA], 2014.
- Moshe Mor and Aviezri S. Fraenkel, Cayley permutations, Discrete Math., Vol. 48, No. 1 (1984), pp. 101-112.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- Todd Mullen, On Variants of Diffusion, Dalhousie University (Halifax, NS Canada, 2020).
- Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
- Roger B. Nelsen and Harvey Schmidt, Jr., Chains in power sets, Math. Mag., Vol. 64, No. 1 (1991), pp. 23-31.
- S. Nkonkobe and V. Murali, On Some Identities of Barred Preferential Arrangements, arXiv preprint arXiv:1503.06173 [math.CO], 2015.
- S. Nkonkobe and V. Murali. A study of a family of generating functions of Nelsen-Schmidt type and some identities on restricted barred preferential arrangements, Discrete Mathematics, Vol. 340 (2017), pp. 1122-1128.
- Mathilde Noual and Sylvain Sene, Towards a theory of modelling with Boolean automata networks-I. Theorisation and observations, arXiv preprint arXiv:1111.2077 [cs.DM], 2011.
- J.-C. Novelli and J.-Y. Thibon, Polynomial realizations of some trialgebras, Proc. Formal Power Series and Algebraic Combinatorics 2006 (San-Diego, 2006); arXiv:math/0605061 [math.CO], 2006.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- J.-C. Novelli, J.-Y. Thibon, and L. K. Williams, Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux, Adv. Math., Vol. 224, No. 4 (2010), pp. 1311-1348.
- Arthur Nunge, Eulerian polynomials on segmented permutations, arXiv:1805.01797 [math.CO], 2018.
- OEIS Wiki, Sorting numbers.
- Karolina Okrasa and Paweł Rzążewski, Intersecting edge distinguishing colorings of hypergraphs, arXiv:1804.10470 [cs.DM], 2018.
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela, and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003.
- Tilman Piesk, Tree of weak orderings in concertina cube. Illustration of a(3) = 13, used with permission. See also the original of this figure on Wikimedia Commons.
- Vincent Pilaud and Viviane Pons, Permutrees, arXiv preprint arXiv:1606.09643 [math.CO], 2016-2017.
- Claudio de J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq., Vol. 16 (2013), Article 13.5.7.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Helmut Prodinger, Ordered Fibonacci partitions, Canad. Math. Bull. 26 (1983), no. 3, 312--316. MR0703402 (84m:05012). [See F_n on page 312.]
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seq., Vol. 4 (2001), Article 01.2.1.
- S. Ramanujan, Notebook entry.
- Joe Sawada and Dennis Wong, An Efficient Universal Cycle Construction for Weak Orders, University of Guelph, School of Computer Science (2019), presented at the 30th Coast Combinatorics Conference at University of Hawaii, Manoa.
- Joe Sawada and Dennis Wong. Efficient universal cycle constructions for weak orders, Discrete Mathematics 343.10 (2020): 112022. [Note that this is a different item from that mentioned in the link with a similar title. One is a paper, the other is a talk.]
- Benjamin Schreyer, Rigged Horse Numbers and their Modular Periodicity, arXiv:2409.03799 [math.CO], 2024. See p. 12.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order, Vol. 21 (2004), pp. 83-89.
- Jacob Sprittulla, The ordered Bell numbers as weighted sums of odd or even Stirling numbers of the second kind, arXiv:2109.12705 [math.CO], 2021.
- Daniel J. Velleman and Gregory S. Call, Permutations and combination locks, Math. Mag., Vol. 68, No. 4 (1995), pp. 243-253.
- Carl G. Wagner, Enumeration of generalized weak orders, Preprint, 1980. [Annotated scanned copy] Arch. Math., Vol. 39 (1982), pp. 147-152.
- Carl G. Wagner and N. J. A. Sloane, Correspondence, 1980.
- F. V. Weinstein, Notes on Fibonacci partitions, arXiv:math/0307150 [math.NT], 2003-2015 (see page 9).
- Eric Weisstein's World of Mathematics, Combination Lock.
- Wikipedia, Ordered Bell number.
- Herbert S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 175, Eq. 5.2.6, 5.2.7.
- Andrew T. Wilson, Torus link homology and the nabla operator, Journal of Combinatorial Theory, Series A, Vol. 154 (2018), pp. 129-144; arXiv preprint, arXiv:1606.00764 [math.CO], 2016.
- Ai-Min Xu and Zhong-Di Cen, Some identities involving exponential functions and Stirling numbers and applications, J. Comput. Appl. Math., Vol. 260 (2014), pp. 201-207.
- Yan X Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
- Yi Zhu and Evgueni T. Filipov, An efficient numerical approach for simulating contact in origami assemblages, Proc. R. Soc. A, Vol. 475 (2019), 20190366.
- Index entries for "core" sequences
- Index entries for related partition-counting sequences
Crossrefs
See A240763 for a list of the actual preferential arrangements themselves.
A000629, this sequence, A002050, A032109, A052856, A076726 are all more-or-less the same sequence. - N. J. A. Sloane, Jul 04 2012
Asymptotic to A034172.
Cf. A002144, A002869, A004121, A004122, A007047, A007318, A048144, A053525, A080253, A080254, A011782, A154921, A162312, A163204, A242280, A261959, A290376, A074206.
Column k=1 of A326322.
Programs
-
Haskell
a000670 n = a000670_list !! n a000670_list = 1 : f [1] (map tail $ tail a007318_tabl) where f xs (bs:bss) = y : f (y : xs) bss where y = sum $ zipWith (*) xs bs -- Reinhard Zumkeller, Jul 26 2014
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( 1/(2-Exp(x)) ))); // G. C. Greubel, Jun 11 2024 -
Maple
A000670 := proc(n) option remember; local k; if n <=1 then 1 else add(binomial(n,k)*A000670(n-k),k=1..n); fi; end; with(combstruct); SeqSetL := [S, {S=Sequence(U), U=Set(Z,card >= 1)},labeled]; seq(count(SeqSetL,size=j),j=1..12); with(combinat): a:=n->add(add((-1)^(k-i)*binomial(k, i)*i^n, i=0..n), k=0..n): seq(a(n), n=0..18); # Zerinvary Lajos, Jun 03 2007 a := n -> add(combinat:-eulerian1(n,k)*2^k,k=0..n): # Peter Luschny, Jan 02 2015 a := n -> (polylog(-n, 1/2)+`if`(n=0,1,0))/2: seq(round(evalf(a(n),32)), n=0..20); # Peter Luschny, Nov 03 2015 # next Maple program: b:= proc(n, k) option remember; `if`(n=0, k!, k*b(n-1, k)+b(n-1, k+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..20); # Alois P. Heinz, Aug 04 2021
-
Mathematica
Table[(PolyLog[-z, 1/2] + KroneckerDelta[z])/2, {z, 0, 20}] (* Wouter Meeussen *) a[0] = 1; a[n_]:= a[n]= Sum[Binomial[n, k]*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Roger L. Bagula and Gary W. Adamson, Sep 13 2008 *) t = 30; Range[0, t]! CoefficientList[Series[1/(2 - Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *) a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (2 - Exp@x), {x, 0, n}]]; (* Michael Somos, Jun 19 2015 *) Table[Sum[k^n/2^(k+1),{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Jun 26 2015 *) Table[HurwitzLerchPhi[1/2, -n, 0]/2, {n, 0, 20}] (* Jean-François Alcover, Jan 31 2016 *) Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*((i+r)^(n-r)/(i!*(k-i-r)!)), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; Table[Fubini[n, 1], {n, 0, 20}] (* Jean-François Alcover, Mar 31 2016 *) Eulerian1[0, 0] = 1; Eulerian1[n_, k_] := Sum[(-1)^j (k-j+1)^n Binomial[n+1, j], {j, 0, k+1}]; Table[Sum[Eulerian1[n, k] 2^k, {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Jul 13 2019, after Peter Luschny *) Prepend[Table[-(-1)^k HurwitzLerchPhi[2, -k, 0]/2, {k, 1, 50}], 1] (* Federico Provvedi,Sep 05 2020 *) Table[Sum[k!*StirlingS2[n,k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 22 2020 *)
-
Maxima
makelist(sum(stirling2(n,k)*k!,k,0,n),n,0,12); /* Emanuele Munarini, Jul 07 2011 */
-
Maxima
a[0]:1$ a[n]:=sum(binomial(n,k)*a[n-k],k,1,n)$ A000670(n):=a[n]$ makelist(A000670(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
{a(n) = if( n<0, 0, n! * polcoeff( subst( 1 / (1 - y), y, exp(x + x*O(x^n)) - 1), n))}; /* Michael Somos, Mar 04 2004 */
-
PARI
Vec(serlaplace(1/(2-exp('x+O('x^66))))) /* Joerg Arndt, Jul 10 2011 */
-
PARI
{a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1-k*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 20 2011 */
-
PARI
{a(n) = if( n<1, n==0, sum(k=1, n, binomial(n, k) * a(n-k)))}; /* Michael Somos, Jul 16 2017 */
-
Python
from math import factorial from sympy.functions.combinatorial.numbers import stirling def A000670(n): return sum(factorial(k)*stirling(n,k) for k in range(n+1)) # Chai Wah Wu, Nov 08 2022
-
Sage
@CachedFunction def A000670(n) : return 1 if n == 0 else add(A000670(k)*binomial(n,k) for k in range(n)) [A000670(n) for n in (0..20)] # Peter Luschny, Jul 14 2012
Formula
a(n) = Sum_{k=0..n} k! * StirlingS2(n,k) (whereas the Bell numbers A000110(n) = Sum_{k=0..n} StirlingS2(n,k)).
E.g.f.: 1/(2-exp(x)).
a(n) = Sum_{k=1..n} binomial(n, k)*a(n-k), a(0) = 1.
The e.g.f. y(x) satisfies y' = 2*y^2 - y.
a(n) = A052856(n) - 1, if n>0.
a(n) = A052882(n)/n, if n>0.
a(n) = A076726(n)/2.
a(n) is asymptotic to (1/2)*n!*log_2(e)^(n+1), where log_2(e) = 1.442695... [Barthelemy80, Wilf90].
For n >= 1, a(n) = (n!/2) * Sum_{k=-infinity..infinity} of (log(2) + 2 Pi i k)^(-n-1). - Dean Hickerson
a(n) = ((x*d/dx)^n)(1/(2-x)) evaluated at x=1. - Karol A. Penson, Sep 24 2001
For n>=1, a(n) = Sum_{k>=1} (k-1)^n/2^k = A000629(n)/2. - Benoit Cloitre, Sep 08 2002
Value of the n-th Eulerian polynomial (cf. A008292) at x=2. - Vladeta Jovovic, Sep 26 2003
First Eulerian transform of the powers of 2 [A000079]. See A000142 for definition of FET. - Ross La Haye, Feb 14 2005
a(n) = Sum_{k=0..n} (-1)^k*k!*Stirling2(n+1, k+1)*(1+(-1)^k)/2. - Paul Barry, Apr 20 2005
Equals inverse binomial transform of A000629. - Gary W. Adamson, May 30 2005
a(n) = Sum_{k=0..n} k!*( Stirling2(n+2, k+2) - Stirling2(n+1, k+2) ). - Micha Hofri (hofri(AT)wpi.edu), Jul 01 2006
Recurrence: 2*a(n) = (a+1)^n where superscripts are converted to subscripts after binomial expansion - reminiscent of Bernoulli numbers' B_n = (B+1)^n. - Martin Kochanski (mjk(AT)cardbox.com), May 10 2007
a(n) = (-1)^n * n! * Laguerre(n,P((.),2)), umbrally, where P(j,t) are the polynomials in A131758. - Tom Copeland, Sep 27 2007
Formula in terms of the hypergeometric function, in Maple notation: a(n) = hypergeom([2,2...2],[1,1...1],1/2)/4, n=1,2..., where in the hypergeometric function there are n upper parameters all equal to 2 and n-1 lower parameters all equal to 1 and the argument is equal to 1/2. Example: a(4) = evalf(hypergeom([2,2,2,2],[1,1,1],1/2)/4) = 75. - Karol A. Penson, Oct 04 2007
a(n) = Sum_{k=0..n} A131689(n,k). - Philippe Deléham, Nov 03 2008
From Peter Bala, Jul 01 2009: (Start)
Analogy with the Bernoulli numbers.
We enlarge upon the above comment of M. Kochanski.
The Bernoulli polynomials B_n(x), n = 0,1,..., are given by the formula
(1)... B_n(x) := Sum_{k=0..n} binomial(n,k)*B(k)*x^(n-k),
where B(n) denotes the sequence of Bernoulli numbers B(0) = 1,
B(1) = -1/2, B(2) = 1/6, B(3) = 0, ....
By analogy, we associate with the present sequence an Appell sequence of polynomials {P_n(x)} n >= 0 defined by
(2)... P_n(x) := Sum_{k=0..n} binomial(n,k)*a(k)*x^(n-k).
These polynomials have similar properties to the Bernoulli polynomials.
The first few values are P_0(x) = 1, P_1(x) = x + 1,
P_2(x) = x^2 + 2*x + 3, P_3(x) = x^3 + 3*x^2 + 9*x + 13 and
P_4(x) = x^4 + 4*x^3 + 18*x^2 + 52*x + 75. See A154921 for the triangle of coefficients of these polynomials.
The e.g.f. for this polynomial sequence is
(3)... exp(x*t)/(2 - exp(t)) = 1 + (x + 1)*t + (x^2 + 2*x + 3)*t^2/2! + ....
The polynomials satisfy the difference equation
(4)... 2*P_n(x - 1) - P_n(x) = (x - 1)^n,
and so may be used to evaluate the weighted sums of powers of integers
(1/2)*1^m + (1/2)^2*2^m + (1/2)^3*3^m + ... + (1/2)^(n-1)*(n-1)^m
via the formula
(5)... Sum_{k=1..n-1} (1/2)^k*k^m = 2*P_m(0) - (1/2)^(n-1)*P_m(n),
analogous to the evaluation of the sums 1^m + 2^m + ... + (n-1)^m in terms of Bernoulli polynomials.
This last result can be generalized to
(6)... Sum_{k=1..n-1} (1/2)^k*(k+x)^m = 2*P_m(x)-(1/2)^(n-1)*P_m(x+n).
For more properties of the polynomials P_n(x), refer to A154921.
For further information on weighted sums of powers of integers and the associated polynomial sequences, see A162312.
The present sequence also occurs in the evaluation of another sum of powers of integers. Define
(7)... S_m(n) := Sum_{k=1..n-1} (1/2)^k*((n-k)*k)^m, m = 1,2,....
Then
(8)... S_m(n) = (-1)^m *[2*Q_m(-n) - (1/2)^(n-1)*Q_m(n)],
where Q_m(x) are polynomials in x given by
(9)... Q_m(x) = Sum_{k=0..m} a(m+k)*binomial(m,k)*x^(m-k).
The first few values are Q_1(x) = x + 3, Q_2(x) = 3*x^2 + 26*x + 75
and Q_3(x) = 13*x^3 + 225*x^2 + 1623*x + 4683.
For example, m = 2 gives
(10)... S_2(n) := Sum_{k=1..n-1} (1/2)^k*((n-k)*k)^2
= 2*(3*n^2 - 26*n + 75) - (1/2)^(n-1)*(3*n^2 + 26*n + 75).
(End)
G.f.: 1/(1-x/(1-2*x/(1-2*x/(1-4*x/(1-3*x/(1-6*x/(1-4*x/(1-8*x/(1-5*x/(1-10*x/(1-6*x/(1-... (continued fraction); coefficients of continued fraction are given by floor((n+2)/2)*(3-(-1)^n)/2 (A029578(n+2)). - Paul Barry, Mar 30 2010
G.f.: 1/(1-x-2*x^2/(1-4*x-8*x^2/(1-7*x-18*x^2/(1-10*x-32*x^2/(1../(1-(3*n+1)*x-2*(n+1)^2*x^2/(1-... (continued fraction). - Paul Barry, Jun 17 2010
G.f.: A(x) = Sum_{n>=0} n!*x^n / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Jul 20 2011
a(n) = A074206(q_1*q_2*...*q_n), where {q_i} are distinct primes. - Vladimir Shevelev, Aug 05 2011
The adjusted e.g.f. A(x) := 1/(2-exp(x))-1, has inverse function A(x)^-1 = Integral_{t=0..x} 1/((1+t)*(1+2*t)). Applying [Dominici, Theorem 4.1] to invert the integral yields a formula for a(n): Let f(x) = (1+x)*(1+2*x). Let D be the operator f(x)*d/dx. Then a(n) = D^(n-1)(f(x)) evaluated at x = 0. Compare with A050351. - Peter Bala, Aug 31 2011
a(n) = D^n*(1/(1-x)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A052801. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, from Oct 2011 to Oct 2013: (Start)
Continued fractions:
G.f.: 1+x/(1-x+2*x*(x-1)/(1+3*x*(2*x-1)/(1+4*x*(3*x-1)/(1+5*x*(4*x-1)/(1+... or 1+x/(U(0)-x), U(k) = 1+(k+2)*(k*x+x-1)/U(k+1).
E.g.f.: 1 + x/(G(0)-2*x) where G(k) = x + k + 1 - x*(k+1)/G(k+1).
E.g.f. (2 - 2*x)*(1 - 2*x^3/(8*x^2 - 4*x + (x^2 - 4*x + 2)*G(0)))/(x^2 - 4*x + 2) where G(k) = k^2 + k*(x+4) + 2*x + 3 - x*(k+1)*(k+3)^2 /G(k+1).
G.f.: 1 + x/G(0) where G(k) = 1 - 3*x*(k+1) - 2*x^2*(k+1)*(k+2)/G(k+1).
G.f.: 1/G(0) where G(k) = 1 - x*(k+1)/( 1 - 2*x*(k+1)/G(k+1) ).
G.f.: 1 + x/Q(0), where Q(k) = 1 - 3*x*(2*k+1) - 2*x^2*(2*k+1)*(2*k+2)/( 1 - 3*x*(2*k+2) - 2*x^2*(2*k+2)*(2*k+3)/Q(k+1) ).
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)^2/( 2*x^2*(k+1)^2 - (1-x-3*x*k)*(1-4*x-3*x*k)/T(k+1) ). (End)
a(n) is always odd. For odd prime p and n >= 1, a((p-1)*n) = 0 (mod p). - Peter Bala, Sep 18 2013
a(n) = log(2)* Integral_{x>=0} floor(x)^n * 2^(-x) dx. - Peter Bala, Feb 06 2015
For n > 0, a(n) = Re(polygamma(n, i*log(2)/(2*Pi))/(2*Pi*i)^(n+1)) - n!/(2*log(2)^(n+1)). - Vladimir Reshetnikov, Oct 15 2015
a(n) = Sum_{k=1..n} (k*b2(k-1)*(k)!*Stirling2(n, k)), n>0, a(0)=1, where b2(n) is the n-th Bernoulli number of the second kind. - Vladimir Kruchinin, Nov 21 2016
Conjecture: a(n) = Sum_{k=0..2^(n-1)-1} A284005(k) for n > 0 with a(0) = 1. - Mikhail Kurkov, Jul 08 2018
a(n) = A074206(k) for squarefree k with n prime factors. In particular a(n) = A074206(A002110(n)). - Amiram Eldar, May 13 2019
For n > 0, a(n) = -(-1)^n / 2 * PHI(2, -n, 0), where PHI(z, s, a) is the Lerch zeta function. - Federico Provvedi, Sep 05 2020
a(n) = Sum_{s in S_n} Product_{i=1..n} binomial(i,s(i)-1), where s ranges over the set S_n of permutations of [n]. - Jose A. Rodriguez, Feb 02 2021
Sum_{n>=0} 1/a(n) = 2.425674839121428857970063350500499393706641093287018840857857170864211946122664... - Vaclav Kotesovec, Jun 17 2021
From Jacob Sprittulla, Oct 05 2021: (Start)
The following identities hold for sums over Stirling numbers of the second kind with even or odd second argument:
a(n) = 2 * Sum_{k=0..floor(n/2)} ((2k)! * Stirling2(n,2*k) ) - (-1)^n = 2*A052841-(-1)^n
a(n) = 2 * Sum_{k=0..floor(n/2)} ((2k+1)!* Stirling2(n,2*k+1))+ (-1)^n = 2*A089677+(-1)^n
a(n) = Sum_{k=1..floor((n+1)/2)} ((2k-1)!* Stirling2(n+1,2*k))
a(n) = Sum_{k=0..floor((n+1)/2)} ((2k)! * Stirling2(n+1,2*k+1)). (End)
A010060 Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 0's and 1's.
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1
Offset: 0
Comments
Named after Axel Thue, whose name is pronounced as if it were spelled "Tü" where the ü sound is roughly as in the German word üben. (It is incorrect to say "Too-ee" or "Too-eh".) - N. J. A. Sloane, Jun 12 2018
Also called the Thue-Morse infinite word, or the Morse-Hedlund sequence, or the parity sequence.
Fixed point of the morphism 0 --> 01, 1 --> 10, see example. - Joerg Arndt, Mar 12 2013
The sequence is cubefree (does not contain three consecutive identical blocks) [see Offner for a direct proof] and is overlap-free (does not contain XYXYX where X is 0 or 1 and Y is any string of 0's and 1's).
a(n) = "parity sequence" = parity of number of 1's in binary representation of n.
To construct the sequence: alternate blocks of 0's and 1's of successive lengths A003159(k) - A003159(k-1), k = 1, 2, 3, ... (A003159(0) = 0). Example: since the first seven differences of A003159 are 1, 2, 1, 1, 2, 2, 2, the sequence starts with 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0. - Emeric Deutsch, Jan 10 2003
Characteristic function of A000069 (odious numbers). - Ralf Stephan, Jun 20 2003
a(n) = S2(n) mod 2, where S2(n) = sum of digits of n, n in base-2 notation. There is a class of generalized Thue-Morse sequences: Let Sk(n) = sum of digits of n; n in base-k notation. Let F(t) be some arithmetic function. Then a(n)= F(Sk(n)) mod m is a generalized Thue-Morse sequence. The classical Thue-Morse sequence is the case k=2, m=2, F(t)= 1*t. - Ctibor O. Zizka, Feb 12 2008 (with correction from Daniel Hug, May 19 2017)
More generally, the partial sums of the generalized Thue-Morse sequences a(n) = F(Sk(n)) mod m are fractal, where Sk(n) is sum of digits of n, n in base k; F(t) is an arithmetic function; m integer. - Ctibor O. Zizka, Feb 25 2008
Starting with offset 1, = running sums mod 2 of the kneading sequence (A035263, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, ...); also parity of A005187: (1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, ...). - Gary W. Adamson, Jun 15 2008
Generalized Thue-Morse sequences mod n (n>1) = the array shown in A141803. As n -> infinity the sequences -> (1, 2, 3, ...). - Gary W. Adamson, Jul 10 2008
The Thue-Morse sequence for N = 3 = A053838, (sum of digits of n in base 3, mod 3): (0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, ...) = A004128 mod 3. - Gary W. Adamson, Aug 24 2008
For all positive integers k, the subsequence a(0) to a(2^k-1) is identical to the subsequence a(2^k+2^(k-1)) to a(2^(k+1)+2^(k-1)-1). That is to say, the first half of A_k is identical to the second half of B_k, and the second half of A_k is identical to the first quarter of B_{k+1}, which consists of the k/2 terms immediately following B_k.
Proof: The subsequence a(2^k+2^(k-1)) to a(2^(k+1)-1), the second half of B_k, is by definition formed from the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, by interchanging its 0's and 1's. In turn, the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, which is by definition also B_{k-1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), the first half of A_k, which is by definition also A_{k-1}, by interchanging its 0's and 1's. Interchanging the 0's and 1's of a subsequence twice leaves it unchanged, so the subsequence a(2^k+2^(k-1)) to a(2^(k+1)-1), the second half of B_k, must be identical to the subsequence a(0) to a(2^(k-1)-1), the first half of A_k.
Also, the subsequence a(2^(k+1)) to a(2^(k+1)+2^(k-1)-1), the first quarter of B_{k+1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), the first quarter of A_{k+1}, by interchanging its 0's and 1's. As noted above, the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, which is by definition also B_{k-1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), which is by definition A_{k-1}, by interchanging its 0's and 1's, as well. If two subsequences are formed from the same subsequence by interchanging its 0's and 1's then they must be identical, so the subsequence a(2^(k+1)) to a(2^(k+1)+2^(k-1)-1), the first quarter of B_{k+1}, must be identical to the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k.
Therefore the subsequence a(0), ..., a(2^(k-1)-1), a(2^(k-1)), ..., a(2^k-1) is identical to the subsequence a(2^k+2^(k-1)), ..., a(2^(k+1)-1), a(2^(k+1)), ..., a(2^(k+1)+2^(k-1)-1), QED.
According to the German chess rules of 1929 a game of chess was drawn if the same sequence of moves was repeated three times consecutively. Euwe, see the references, proved that this rule could lead to infinite games. For his proof he reinvented the Thue-Morse sequence. - Johannes W. Meijer, Feb 04 2010
"Thue-Morse 0->01 & 1->10, at each stage append the previous with its complement. Start with 0, 1, 2, 3 and write them in binary. Next calculate the sum of the digits (mod 2) - that is divide the sum by 2 and use the remainder." Pickover, The Math Book.
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence, then prod(n >= 0, ((2*n+1)/(2*n+2))^epsilon(n) ) = 1/sqrt(2). - Jonathan Vos Post, Jun 06 2012
Dekking shows that the constant obtained by interpreting this sequence as a binary expansion is transcendental; see also "The Ubiquitous Prouhet-Thue-Morse Sequence". - Charles R Greathouse IV, Jul 23 2013
Drmota, Mauduit, and Rivat proved that the subsequence a(n^2) is normal--see A228039. - Jonathan Sondow, Sep 03 2013
Although the probability of a 0 or 1 is equal, guesses predicated on the latest bit seen produce a correct match 2 out of 3 times. - Bill McEachen, Mar 13 2015
From a(0) to a(2n+1), there are n+1 terms equal to 0 and n+1 terms equal to 1 (see Hassan Tarfaoui link, Concours Général 1990). - Bernard Schott, Jan 21 2022
Examples
The evolution starting at 0 is: 0 0, 1 0, 1, 1, 0 0, 1, 1, 0, 1, 0, 0, 1 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 ....... A_2 = 0 1 1 0, so B_2 = 1 0 0 1 and A_3 = A_2 B_2 = 0 1 1 0 1 0 0 1. From _Joerg Arndt_, Mar 12 2013: (Start) The first steps of the iterated substitution are Start: 0 Rules: 0 --> 01 1 --> 10 ------------- 0: (#=1) 0 1: (#=2) 01 2: (#=4) 0110 3: (#=8) 01101001 4: (#=16) 0110100110010110 5: (#=32) 01101001100101101001011001101001 6: (#=64) 0110100110010110100101100110100110010110011010010110100110010110 (End) From _Omar E. Pol_, Oct 28 2013: (Start) Written as an irregular triangle in which row lengths is A011782, the sequence begins: 0; 1; 1,0; 1,0,0,1; 1,0,0,1,0,1,1,0; 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1; 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0; It appears that: row j lists the first A011782(j) terms of A010059, with j >= 0; row sums give A166444 which is also 0 together with A011782; right border gives A000035. (End)
References
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 15.
- Jason Bell, Michael Coons, and Eric Rowland, "The Rational-Transcendental Dichotomy of Mahler Functions", Journal of Integer Sequences, Vol. 16 (2013), #13.2.10.
- J. Berstel and J. Karhumaki, Combinatorics on words - a tutorial, Bull. EATCS, #79 (2003), pp. 178-228.
- B. Bollobas, The Art of Mathematics: Coffee Time in Memphis, Cambridge, 2006, p. 224.
- S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Applied Math., 24 (1989), 83-96. doi:10.1016/0166-218X(92)90274-E.
- Yann Bugeaud and Guo-Niu Han, A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence, Electronic Journal of Combinatorics 21(3) (2014), #P3.26.
- Y. Bugeaud and M. Queffélec, On Rational Approximation of the Binary Thue-Morse-Mahler Number, Journal of Integer Sequences, 16 (2013), #13.2.3.
- Currie, James D. "Non-repetitive words: Ages and essences." Combinatorica 16.1 (1996): 19-40
- Colin Defant, Anti-Power Prefixes of the Thue-Morse Word, Journal of Combinatorics, 24(1) (2017), #P1.32
- F. M. Dekking, Transcendance du nombre de Thue-Morse, Comptes Rendus de l'Academie des Sciences de Paris 285 (1977), pp. 157-160.
- F. M. Dekking, On repetitions of blocks in binary sequences. J. Combinatorial Theory Ser. A 20 (1976), no. 3, pp. 292-299. MR0429728(55 #2739)
- Dekking, Michel, Michel Mendès France, and Alf van der Poorten. "Folds." The Mathematical Intelligencer, 4.3 (1982): 130-138 & front cover, and 4:4 (1982): 173-181 (printed in two parts).
- Dubickas, Artūras. On a sequence related to that of Thue-Morse and its applications. Discrete Math. 307 (2007), no. 9-10, 1082--1093. MR2292537 (2008b:11086).
- Fabien Durand, Julien Leroy, and Gwenaël Richomme, "Do the Properties of an S-adic Representation Determine Factor Complexity?", Journal of Integer Sequences, Vol. 16 (2013), #13.2.6.
- M. Euwe, Mengentheoretische Betrachtungen Über das Schachspiel, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, Vol. 32 (5): 633-642, 1929.
- S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math., 206 (1999), 145-154.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.8.
- W. H. Gottschalk and G. A. Hedlund, Topological Dynamics. American Mathematical Society, Colloquium Publications, Vol. 36, Providence, RI, 1955, p. 105.
- J. Grytczuk, Thue type problems for graphs, points and numbers, Discrete Math., 308 (2008), 4419-4429.
- A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schroedinger operators, Commun. Math. Phys. 174 (1995), 149-159.
- Mari Huova and Juhani Karhumäki, "On Unavoidability of k-abelian Squares in Pure Morphic Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.9.
- B. Kitchens, Review of "Computational Ergodic Theory" by G. H. Choe, Bull. Amer. Math. Soc., 44 (2007), 147-155.
- Le Breton, Xavier, Linear independence of automatic formal power series. Discrete Math. 306 (2006), no. 15, 1776-1780.
- M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 23.
- Donald MacMurray, A mathematician gives an hour to chess, Chess Review 6 (No. 10, 1938), 238. [Discusses Marston's 1938 article]
- Mauduit, Christian. Multiplicative properties of the Thue-Morse sequence. Period. Math. Hungar. 43 (2001), no. 1-2, 137--153. MR1830572 (2002i:11081)
- C. A. Pickover, Wonders of Numbers, Adventures in Mathematics, Mind and Meaning, Chapter 17, 'The Pipes of Papua,' Oxford University Press, Oxford, England, 2000, pages 34-38.
- C. A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
- Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 316.
- Narad Rampersad and Elise Vaslet, "On Highly Repetitive and Power Free Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.7.
- G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, J. London Math. Soc. 83(1) (2011) 79-95.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- M. Rigo, P. Salimov, and E. Vandomme, "Some Properties of Abelian Return Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.5.
- Benoit Rittaud, Elise Janvresse, Emmanuel Lesigne and Jean-Christophe Novelli, Quand les maths se font discrètes, Le Pommier, 2008 (ISBN 978-2-7465-0370-0).
- A. Salomaa, Jewels of Formal Language Theory. Computer Science Press, Rockville, MD, 1981, p. 6.
- Shallit, J. O. "On Infinite Products Associated with Sums of Digits." J. Number Th. 21, 128-134, 1985.
- Ian Stewart, "Feedback", Mathematical Recreations Column, Scientific American, 274 (No. 3, 1996), page 109 [Historical notes on this sequence]
- Thomas Stoll, On digital blocks of polynomial values and extractions in the Rudin-Shapiro sequence, RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), EDP Sciences, 2016, 50, pp. 93-99.
. - A. Thue. Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, No. 7 (1906), 1-22.
- A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, 1 (1912), 1-67.
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 890.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..16383
- A. G. M. Ahmed, AA Weaving. In: Proceedings of Bridges 2013: Mathematics, Music, Art, ..., 2013.
- A. Aksenov, The Newman phenomenon and Lucas sequence, arXiv preprint arXiv:1108.5352 [math.NT], 2011-2012.
- Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
- Bill Allombert and Alain Lasjaunias, On a family of continued fractions in Q((T^1)) associated to infinite binary words derived from the Thue-Morse sequence, arXiv:2505.20102 [math.NT], 2025. See p. 2.
- J.-P. Allouche, Series and infinite products related to binary expansions of integers, Behaviour, 4.4 (1992): p. 5.
- J.-P. Allouche, Lecture notes on automatic sequences, Krakow October 2013.
- J.-P. Allouche, Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence, J. de Théorie des Nombres de Bordeaux, 27, no. 2 (2015), 375-388.
- Jean-Paul Allouche, On the morphism 1 -> 121, 2 -> 12221, CNRS France, 2024. See p. 3.
- Jean-Paul Allouche, On the morphism 1 -> 121, 2 -> 12221, Preprint, 2024 [Local copy, with permission]
- J.-P. Allouche, Andre Arnold, Jean Berstel, Srecko Brlek, William Jockusch, Simon Plouffe and Bruce E. Sagan, A relative of the Thue-Morse sequence, Discrete Math., 139 (1995), 455-461.
- Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit and Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
- J.-P. Allouche and H. Cohen, Dirichlet Series and Curious Infinite Products, Bull. London Math. Soc. 17, 531-538, 1985.
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [The hal link does not always work. - _N. J. A. Sloane_, Feb 19 2025]
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [Local copy with annotations and a correction from _N. J. A. Sloane_, Feb 19 2025]
- J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11.
- J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. [Local copy]
- J.-P. Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence, in C. Ding. T. Helleseth and H. Niederreiter, eds., Sequences and Their Applications: Proceedings of SETA '98, Springer-Verlag, 1999, pp. 1-16.
- J.-P. Allouche and J. Shallit, The Ring of k-regular Sequences, II, Theoretical Computer Science 307.1 (2003): 3-29. doi:10.1016/S0304-3975(03)00090-2
- Jorge Almeida and Ondrej Klíma, Binary patterns in the Prouhet-Thue-Morse sequence, arXiv:1904.07137 [math.CO], 2019.
- Joerg Arndt, Matters Computational (The Fxtbook), p. 44.
- G. N. Arzhantseva, C. H. Cashen, D. Gruber and D. Hume, Contracting geodesics in infinitely presented graphical small cancellation groups, arXiv preprint arXiv:1602.03767 [math.GR], 2016-2018.
- Ricardo Astudillo, On a Class of Thue-Morse Type Sequences, J. Integer Seqs., Vol. 6, 2003.
- F. Axel et al., Vibrational modes in a one dimensional "quasi-alloy": the Morse case, J. de Physique, Colloq. C3, Supp. to No. 7, Vol. 47 (Jul 1986), pp. C3-181-C3-186; see Eq. (10).
- M. Baake, U. Grimm and J. Nilsson, Scaling of the Thue-Morse diffraction measure, arXiv preprint arXiv:1311.4371 [math-ph], 2013.
- Scott Balchin and Dan Rust, Computations for Symbolic Substitutions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1.
- Lucilla Baldini and Josef Eschgfäller, Random functions from coupled dynamical systems, arXiv preprint arXiv:1609.01750 [math.CO], 2016. See Example 3.11.
- J. Berstel, Axel Thue's papers on repetitions in words: a translation, July 21 1994. Publications du LaCIM, Département de mathématiques et d'informatique 20, Université du Québec à Montréal, 1995, 85 pages. [Cached copy]
- J.-F. Bertazzon, Resolution of an integral equation with the Thue-Morse sequence, arXiv:1201.2502v1 [math.CO], Jan 12, 2012.
- J. Cooper and A. Dutle, Greedy Galois Games, Amer. Math. Mnthly, 120 (2013), 441-451.
- Françoise Dejean, Sur un Théorème de Thue, J. Combinatorial Theory, vol. 13 A, iss. 1 (1972) 90-99.
- F. Michel Dekking, Morphisms, Symbolic sequences, and their Standard Forms, arXiv:1509.00260 [math.CO], 2015.
- F. M. Dekking, The Thue-Morse Sequence in Base 3/2, J. Int. Seq., Vol. 26 (2023), Article 23.2.3.
- A. de Luca and S. Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theoret. Comput. Sci. 63 (1989), 333-348.
- E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
- M. Drmota, C. Mauduit and J. Rivat, The Thue-Morse Sequence Along The Squares is Normal, Abstract, ÖMG-DMV Congress, 2013.
- Arthur Dolgopolov, Equitable Sequencing and Allocation Under Uncertainty, Preprint, 2016.
- J. Endrullis, D. Hendriks and J. W. Klop, Degrees of streams, Journal of Integers B 11 (2011): 1-40..
- A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
- Hao Fu and G.-N. Han, Computer assisted proof for Apwenian sequences related to Hankel determinants, arXiv preprint arXiv:1601.04370 [math.NT], 2016.
- Maciej Gawro and Maciej Ulas, "On formal inverse of the Prouhet-Thue-Morse sequence." Discrete Mathematics 339.5 (2016): 1459-1470. Also arXiv:1601.04840, 2016.
- Michael Gilleland, Some Self-Similar Integer Sequences
- Daniel Goc, Luke Schaeffer and Jeffrey Shallit, The Subword Complexity of k-Automatic Sequences is k-Synchronized, arXiv 1206.5352 [cs.FL], Jun 28 2012.
- G. A. Hedlund, Remarks on the work of Axel Thue on sequences, Nordisk Mat. Tid., 15 (1967), 148-150.
- Russell Jay Hendel, A Family of Sequences Generalizing the Thue Morse and Rudin Shapiro Sequences, arXiv:2505.20547 [cs.FL], 2025. See p. 2.
- Dimitri Hendriks, Frits G. W. Dannenberg, Jorg Endrullis, Mark Dow and Jan Willem Klop, Arithmetic Self-Similarity of Infinite Sequences, arXiv preprint 1201.3786 [math.CO], 2012.
- A. M. Hinz, S. Klavžar, U. Milutinović and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 79. Website for book
- Denis Janković, Rémi Pasquier, Jean-Gabriel Hartmann, and Paul-Antoine Hervieux, Elucidating the Physical and Mathematical Properties of the Prouhet-Thue-Morse Sequence in Quantum Computing, arXiv:2501.09610 [quant-ph], 2025. See p. 17.
- Tanya Khovanova, There are no coincidences, arXiv preprint 1410.2193 [math.CO], 2014.
- Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
- Naoki Kobayashi, Kazutaka Matsuda and Ayumi Shinohara, Functional Programs as Compressed Data, Higher-Order and Symbolic Computation, 25, no. 1 (2012): 39-84..
- Philip Lafrance, Narad Rampersad and Randy Yee, Some properties of a Rudin-Shapiro-like sequence, arXiv:1408.2277 [math.CO], 2014.
- C. Mauduit and J. Rivat, La somme des chiffres des carrés, Acta Mathem. 203 (1) (2009) 107-148.
- Harold Marston Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc., 22 (1921), 84-100.
- F. Mignosi, A. Restivo, and M. Sciortino, Words and forbidden factors, WORDS (Rouen, 1999). Theoret. Comput. Sci. 273 (2002), no. 1-2, 99--117. MR1872445 (2002m:68096).
- Marston Morse, A solution of the problem of infinite play in chess, (review), Bull. Amer. Math. Soc., 44 (No. 9, 1938), p. 632. [Mentions an application to chess]
- K. Nakano, Shall We Juggle, Coinductively?, in Certified Programs and Proofs, Lecture Notes in Computer Science Volume 7679, 2012, pp. 160-172.
- Hieu D. Nguyen, A mixing of Prouhet-Thue-Morse sequences and Rademacher functions, arXiv preprint arXiv:1405.6958 [math.NT], 2014.
- Hieu D. Nguyen, A Generalization of the Digital Binomial Theorem , J. Int. Seq. 18 (2015) # 15.5.7.
- C. D. Offner, Repetitions of Words and the Thue-Morse sequence. Preprint, no date.
- Matt Parker, The Fairest Sharing Sequence Ever, YouTube video, Nov 27 2015
- A. Parreau, M. Rigo, E. Rowland and E. Vandomme, A new approach to the 2-regularity of the l-abelian complexity of 2-automatic sequences, arXiv preprint arXiv:1405.3532 [cs.FL], 2014.
- C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review
- Saúl Pilatowsky-Cameo, Soonwon Choi, and Wen Wei Ho, Critically slow Hilbert-space ergodicity in quantum morphic drives, arXiv:2502.06936 [quant-ph], 2025. See pp. 6, 15.
- E. Prouhet, Mémoire sur quelques relations entre les puissances des nombres, Comptes Rendus Acad. des Sciences, 33 (No. 8, 1851), p. 225. [Said to implicitly mention this sequence]
- Michel Rigo, Relations on words, arXiv preprint arXiv:1602.03364 [cs.FL], 2016.
- Luke Schaeffer and Jeffrey Shallit, Closed, Palindromic, Rich, Privileged, Trapezoidal, and Balanced Words in Automatic Sequences, Electronic Journal of Combinatorics 23(1) (2016), #P1.25.
- M. R. Schroeder & N. J. A. Sloane, Correspondence, 1991
- R. Schroeppel and R. W. Gosper, HACKMEM #122 (1972).
- Vladimir Shevelev, Two analogs of Thue-Morse sequence, arXiv preprint arXiv:1603.04434 [math.NT], 2016-2017.
- N. J. A. Sloane, The first 1000 terms as a string
- L. Spiegelhofer, Normality of the Thue-Morse Sequence along Piatetski-Shapiro sequences, Quart. J. Math. 66 (3) (2015).
- Hassan Tarfaoui, Concours Général 1990 - Exercice 1 (in French).
- Eric Weisstein's World of Mathematics, Thue-Morse Sequence
- Eric Weisstein's World of Mathematics, Thue-Morse Constant
- Eric Weisstein's World of Mathematics, Parity
- Joost Winter, Marcello M. Bonsangue, and Jan J. M. M. Rutten, Context-free coalgebras, Journal of Computer and System Sciences, 81.5 (2015): 911-939.
- Hans Zantema, Complexity of Automatic Sequences, International Conference on Language and Automata Theory and Applications (LATA 2020): Language and Automata Theory and Applications, 260-271.
- Index entries for sequences that are fixed points of mappings
- Index entries for "core" sequences
- Index entries for sequences related to binary expansion of n
- Index entries for characteristic functions
- Index to sequences related to Olympiads and other Mathematical competitions.
Crossrefs
Cf. A001285 (for 1, 2 version), A010059 (for 1, 0 version), A106400 (for +1, -1 version), A048707. A010060(n)=A000120(n) mod 2.
Cf. A007413, A080813, A080814, A036581, A108694. See also the Thue (or Roth) constant A014578, also A014571.
Cf. A004128, A053838, A059448, A171900, A161916, A214212, A005942 (subword complexity), A010693 (Abelian complexity), A225186 (squares), A228039 (a(n^2)), A282317.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Programs
-
Haskell
a010060 n = a010060_list !! n a010060_list = 0 : interleave (complement a010060_list) (tail a010060_list) where complement = map (1 - ) interleave (x:xs) ys = x : interleave ys xs -- Doug McIlroy (doug(AT)cs.dartmouth.edu), Jun 29 2003 -- Edited by Reinhard Zumkeller, Oct 03 2012
-
Maple
s := proc(k) local i, ans; ans := [ 0,1 ]; for i from 0 to k do ans := [ op(ans),op(map(n->(n+1) mod 2, ans)) ] od; return ans; end; t1 := s(6); A010060 := n->t1[n]; # s(k) gives first 2^(k+2) terms. a := proc(k) b := [0]: for n from 1 to k do b := subs({0=[0,1], 1=[1,0]},b) od: b; end; # a(k), after the removal of the brackets, gives the first 2^k terms. # Example: a(3); gives [[[[0, 1], [1, 0]], [[1, 0], [0, 1]]]] A010060:=proc(n) add(i,i=convert(n, base, 2)) mod 2 ; end proc: seq(A010060(n),n=0..104); # Emeric Deutsch, Mar 19 2005 map(`-`,convert(StringTools[ThueMorse](1000),bytes),48); # Robert Israel, Sep 22 2014
-
Mathematica
Table[ If[ OddQ[ Count[ IntegerDigits[n, 2], 1]], 1, 0], {n, 0, 100}]; mt = 0; Do[ mt = ToString[mt] <> ToString[(10^(2^n) - 1)/9 - ToExpression[mt] ], {n, 0, 6} ]; Prepend[ RealDigits[ N[ ToExpression[mt], 2^7] ] [ [1] ], 0] Mod[ Count[ #, 1 ]& /@Table[ IntegerDigits[ i, 2 ], {i, 0, 2^7 - 1} ], 2 ] (* Harlan J. Brothers, Feb 05 2005 *) Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 7] (* Robert G. Wilson v Sep 26 2006 *) a[n_] := If[n == 0, 0, If[Mod[n, 2] == 0, a[n/2], 1 - a[(n - 1)/2]]] (* Ben Branman, Oct 22 2010 *) a[n_] := Mod[Length[FixedPointList[BitAnd[#, # - 1] &, n]], 2] (* Jan Mangaldan, Jul 23 2015 *) Table[2/3 (1 - Cos[Pi/3 (n - Sum[(-1)^Binomial[n, k], {k, 1, n}])]), {n, 0, 100}] (* or, for version 10.2 or higher *) Table[ThueMorse[n], {n, 0, 100}] (* Vladimir Reshetnikov, May 06 2016 *) ThueMorse[Range[0, 100]] (* The program uses the ThueMorse function from Mathematica version 11 *) (* Harvey P. Dale, Aug 11 2016 *) Nest[Join[#, 1 - #] &, {0}, 7] (* Paolo Xausa, Oct 25 2024 *)
-
PARI
a(n)=if(n<1,0,sum(k=0,length(binary(n))-1,bittest(n,k))%2)
-
PARI
a(n)=if(n<1,0,subst(Pol(binary(n)), x,1)%2)
-
PARI
default(realprecision, 6100); x=0.0; m=20080; for (n=1, m-1, x=x+x; x=x+sum(k=0, length(binary(n))-1, bittest(n, k))%2); x=2*x/2^m; for (n=0, 20000, d=floor(x); x=(x-d)*2; write("b010060.txt", n, " ", d)); \\ Harry J. Smith, Apr 28 2009
-
PARI
a(n)=hammingweight(n)%2 \\ Charles R Greathouse IV, Mar 22 2013
-
Python
A010060_list = [0] for _ in range(14): A010060_list += [1-d for d in A010060_list] # Chai Wah Wu, Mar 04 2016
-
Python
def A010060(n): return n.bit_count()&1 # Chai Wah Wu, Mar 01 2023
-
R
maxrow <- 8 # by choice b01 <- 1 for(m in 0:maxrow) for(k in 0:(2^m-1)){ b01[2^(m+1)+ k] <- b01[2^m+k] b01[2^(m+1)+2^m+k] <- 1-b01[2^m+k] } (b01 <- c(0,b01)) # Yosu Yurramendi, Apr 10 2017
Formula
a(2n) = a(n), a(2n+1) = 1 - a(n), a(0) = 0. Also, a(k+2^m) = 1 - a(k) if 0 <= k < 2^m.
If n = Sum b_i*2^i is the binary expansion of n then a(n) = Sum b_i (mod 2).
Let S(0) = 0 and for k >= 1, construct S(k) from S(k-1) by mapping 0 -> 01 and 1 -> 10; sequence is S(infinity).
G.f.: (1/(1 - x) - Product_{k >= 0} (1 - x^(2^k)))/2. - Benoit Cloitre, Apr 23 2003
a(0) = 0, a(n) = (n + a(floor(n/2))) mod 2; also a(0) = 0, a(n) = (n - a(floor(n/2))) mod 2. - Benoit Cloitre, Dec 10 2003
a(n) = -1 + (Sum_{k=0..n} binomial(n,k) mod 2) mod 3 = -1 + A001316(n) mod 3. - Benoit Cloitre, May 09 2004
Let b(1) = 1 and b(n) = b(ceiling(n/2)) - b(floor(n/2)) then a(n-1) = (1/2)*(1 - b(2n-1)). - Benoit Cloitre, Apr 26 2005
a(n) = A001969(n) - 2n. - Franklin T. Adams-Watters, Aug 28 2006
For n >= 0, a(A004760(n+1)) = 1 - a(n). - Vladimir Shevelev, Apr 25 2009
a(A160217(n)) = 1 - a(n). - Vladimir Shevelev, May 05 2009
a(n) == A000069(n) (mod 2). - Robert G. Wilson v, Jan 18 2012
a(n) + A181155(n-1) = 2n for n >= 1. - Clark Kimberling, Oct 06 2014
G.f. A(x) satisfies: A(x) = x / (1 - x^2) + (1 - x) * A(x^2). - Ilya Gutkovskiy, Jul 29 2021
From Bernard Schott, Jan 21 2022: (Start)
a(n) = a(n*2^k) for k >= 0.
a((2^m-1)^2) = (1-(-1)^m)/2 (see Hassan Tarfaoui link, Concours Général 1990). (End)
A003242 Number of compositions of n such that no two adjacent parts are equal (these are sometimes called Carlitz compositions).
1, 1, 1, 3, 4, 7, 14, 23, 39, 71, 124, 214, 378, 661, 1152, 2024, 3542, 6189, 10843, 18978, 33202, 58130, 101742, 178045, 311648, 545470, 954658, 1670919, 2924536, 5118559, 8958772, 15680073, 27443763, 48033284, 84069952, 147142465, 257534928, 450748483, 788918212
Offset: 0
Examples
From _Joerg Arndt_, Oct 27 2012: (Start) The 23 such compositions of n=7 are [ 1] 1 2 1 2 1 [ 2] 1 2 1 3 [ 3] 1 2 3 1 [ 4] 1 2 4 [ 5] 1 3 1 2 [ 6] 1 3 2 1 [ 7] 1 4 2 [ 8] 1 5 1 [ 9] 1 6 [10] 2 1 3 1 [11] 2 1 4 [12] 2 3 2 [13] 2 4 1 [14] 2 5 [15] 3 1 2 1 [16] 3 1 3 [17] 3 4 [18] 4 1 2 [19] 4 2 1 [20] 4 3 [21] 5 2 [22] 6 1 [23] 7 (End)
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 191.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4100 (first 501 terms from Christian G. Bower)
- L. Carlitz, Restricted Compositions, Fibonacci Quarterly, 14 (1976) 254-264.
- Sylvie Corteel, Paweł Hitczenko, Generalizations of Carlitz Compositions, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.8
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2022, p. 42 and 117.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 201
- F. Harary & R. W. Robinson, The number of achiral trees, Jnl. Reine Angewandte Mathematik 278 (1975), 322-335. (Annotated scanned copy)
- A. Knopfmacher and H. Prodinger, On Carlitz compositions, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589.
- E. Munarini, M. Poneti, S. Rinaldi, Matrix compositions, JIS 12 (2009) 09.4.8, Chapter 8.
Crossrefs
Programs
-
Haskell
a003242 n = a003242_list !! n a003242_list = 1 : f [1] where f xs = y : f (y : xs) where y = sum $ zipWith (*) xs a048272_list -- Reinhard Zumkeller, Nov 04 2015
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(`if`(j=i, 0, b(n-j, `if`(j<=n-j, j, 0))), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..50); # Alois P. Heinz, Mar 27 2014
-
Mathematica
A048272[n_] := Total[If[OddQ[#], 1, -1]& /@ Divisors[n]]; a[n_] := a[n] = Sum[A048272[k]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 38}](* Jean-François Alcover, Nov 25 2011, after Vladeta Jovovic *) nmax = 50; CoefficientList[Series[1/(1 - Sum[x^k/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 07 2020 *) Table[Count[Flatten[Permutations/@IntegerPartitions[n],1],?(FreeQ[Differences[#],0]&)],{n,0,20}] (* The program generates the first 21 terms of the sequence. *) (* _Harvey P. Dale, Nov 23 2024 *)
-
PARI
N = 66; x = 'x + O('x^N); p=2; gf = 1/(1-sum(k=1,N, x^k/(1-x^k)-p*x^(k*p)/(1-x^(k*p)))); Vec(gf) /* Joerg Arndt, Apr 28 2013 */
Formula
a(n) = Sum_{k=1..n} A048272(k)*a(n-k), n>1, a(0)=1. - Vladeta Jovovic, Feb 05 2002
G.f.: 1/(1 - Sum_{k>0} x^k/(1+x^k)).
a(n) ~ c r^n where c is approximately 0.456387 and r is approximately 1.750243. (Formula from Knopfmacher and Prodinger reference.) - Franklin T. Adams-Watters, May 27 2010. With better precision: r = 1.7502412917183090312497386246398158787782058181381590561316586... (see A241902), c = 0.4563634740588133495321001859298593318027266156100046548066205... - Vaclav Kotesovec, Apr 30 2014
G.f. is the special case p=2 of 1/(1 - Sum_{k>0} (z^k/(1-z^k) - p*z^(k*p)/(1-z^(k*p)))), see A129922. - Joerg Arndt, Apr 28 2013
G.f.: 1/(1 - x * (d/dx) log(Product_{k>=1} (1 + x^k)^(1/k))). - Ilya Gutkovskiy, Oct 18 2018
Moebius transform of A329738. - Gus Wiseman, Nov 27 2019
Extensions
More terms from David W. Wilson
A001511 The ruler function: exponent of the highest power of 2 dividing 2n. Equivalently, the 2-adic valuation of 2n.
1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1
Offset: 1
Comments
Number of 2's dividing 2*n.
a(n) is equivalently the exponent of the smallest power of 2 which does not divide n. - David James Sycamore, Oct 02 2023
a(n) - 1 is the number of trailing zeros in the binary expansion of n.
If you are counting in binary and the least significant bit is numbered 1, the next bit is 2, etc., a(n) is the bit that is incremented when increasing from n-1 to n. - Jud McCranie, Apr 26 2004
Number of steps to reach an integer starting with (n+1)/2 and using the map x -> x*ceiling(x) (cf. A073524).
a(n) is the number of the disk to be moved at the n-th step of the optimal solution to Towers of Hanoi problem (comment from Andreas M. Hinz).
Shows which bit to flip when creating the binary reflected Gray code (bits are numbered from the right, offset is 1). This is essentially equivalent to Hinz's comment. - Adam Kertesz, Jul 28 2001
a(n) is the Hamming distance between n and n-1 (in binary). This is equivalent to Kertesz's comments above. - Tak-Shing Chan (chan12(AT)alumni.usc.edu), Feb 25 2003
Let S(0) = {1}, S(n) = {S(n-1), S(n-1)-{x}, x+1} where x = last term of S(n-1); sequence gives S(infinity). - Benoit Cloitre, Jun 14 2003
The sum of all terms up to and including the first occurrence of m is 2^m-1. - Donald Sampson (marsquo(AT)hotmail.com), Dec 01 2003
m appears every 2^m terms starting with the 2^(m-1)th term. - Donald Sampson (marsquo(AT)hotmail.com), Dec 08 2003
Sequence read mod 4 gives A092412. - Philippe Deléham, Mar 28 2004
If q = 2n/2^A001511(n) and if b(m) is defined by b(0)=q-1 and b(m)=2*b(m-1)+1, then 2n = b(A001511(n)) + 1. - Gerald McGarvey, Dec 18 2004
Repeating pattern ABACABADABACABAE ... - Jeremy Gardiner, Jan 16 2005
Relation to C(n) = Collatz function iteration using only odd steps: a(n) is the number of right bits set in binary representation of A004767(n) (numbers of the form 4*m+3). So for m=A004767(n) it follows that there are exactly a(n) recursive steps where m
Between every two instances of any positive integer m there are exactly m distinct values (1 through m-1 and one value greater than m). - Franklin T. Adams-Watters, Sep 18 2006
Number of divisors of n of the form 2^k. - Giovanni Teofilatto, Jul 25 2007
Every prefix up to (but not including) the first occurrence of some k >= 2 is a palindrome. - Gary W. Adamson, Sep 24 2008
1 interleaved with (2 interleaved with (3 interleaved with ( ... ))). - Eric D. Burgess (ericdb(AT)gmail.com), Oct 17 2009
A054525 (Möbius transform) * A001511 = A036987 = A047999^(-1) * A001511. - Gary W. Adamson, Oct 26 2009
Equals A051731 * A036987, (inverse Möbius transform of the Fredholm-Rueppel sequence) = A047999 * A036987. - Gary W. Adamson, Oct 26 2009
Cf. A173238, showing links between generalized ruler functions and A000041. - Gary W. Adamson, Feb 14 2010
Given A000041, P(x) = A(x)/A(x^2) with P(x) = (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...), A(x) = (1 + x + 3x^2 + 4x^3 + 10x^4 + 13x^5 + ...), A(x^2) = (1 + x^2 + 3x^4 + 4x^6 + 10x^8 + ...), where A092119 = (1, 1, 3, 4, 10, ...) = Euler transform of the ruler sequence, A001511. - Gary W. Adamson, Feb 11 2010
Subtracting 1 from every term and deleting any 0's yields the same sequence, A001511. - Ben Branman, Dec 28 2011
In the listing of the compositions of n as lists in lexicographic order, a(k) is the last part of composition(k) for all k <= 2^(n-1) and all n, see example. - Joerg Arndt, Nov 12 2012
According to Hinz, et al. (see links), this sequence was studied by Louis Gros in his 1872 pamphlet "Théorie du Baguenodier" and has therefore been called the Gros sequence.
First n terms comprise least squarefree word of length n using positive integers, where "squarefree" means that the word contains no consecutive identical subwords; e.g., 1 contains no square; 11 contains a square but 12 does not; 121 contains no square; both 1211 and 1212 have squares but 1213 does not; etc. - Clark Kimberling, Sep 05 2013
Length of 0-run starting from 2 (10, 100, 110, 1000, 1010, ...), or length of 1-run starting from 1 (1, 11, 101, 111, 1001, 1011, ...) of every second number, from right to left in binary representation. - Armands Strazds, Apr 13 2017
a(n) is also the frequency of the largest part in the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2,2,2,1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 24 2017
As A000005(n) equals the number of even divisors of 2n and A001227(n) = A001227(2n), the formula A001511(n) = A000005(n)/A001227(n) might be read as "The number of even divisors of 2n is always divisible by the number of odd divisors of 2n" (where number of divisors means sum of zeroth powers of divisors). Conjecture: For any nonnegative integer k, the sum of the k-th powers of even divisors of n is always divisible by the sum of the k-th powers of odd divisors of n. - Ivan N. Ianakiev, Jul 06 2019
From Benoit Cloitre, Jul 14 2022: (Start)
To construct the sequence, start from 1's separated by a place 1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,...
Then put the 2's in every other remaining place
1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,...
Then the 3's in every other remaining place
1,2,1,3,1,2,1,,1,2,1,3,1,2,1,,1,2,1,3,1,2,1,,1,2,1,...
Then the 4's in every other remaining place
1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,,1,2,1,3,1,2,1,4,1,2,1,...
By iterating this process, we get the ruler function 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,... (End)
a(n) is the least positive integer k for which there does not exist i+j=n and a(i)=a(j)=k (cf. A322523). - Rémy Sigrist and Jianing Song, Aug 23 2022
a(n) is the smallest positive integer that does not occur in the coincidences of the sequence so far a(1..n-1) and its reverse. - Neal Gersh Tolunsky, Jan 18 2023
The geometric mean of this sequence approaches the Somos constant (A112302). - Jwalin Bhatt, Jan 31 2025
Examples
For example, 2^1|2, 2^2|4, 2^1|6, 2^3|8, 2^1|10, 2^2|12, ... giving the initial terms 1, 2, 1, 3, 1, 2, ... From _Omar E. Pol_, Jun 12 2009: (Start) Triangle begins: 1; 2,1; 3,1,2,1; 4,1,2,1,3,1,2,1; 5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1; 6,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1; 7,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6,1,2,1,3,... (End) S(0) = {} S(1) = 1 S(2) = 1, 2, 1 S(3) = 1, 2, 1, 3, 1, 2, 1 S(4) = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1. - Yann David (yann_david(AT)hotmail.com), Mar 21 2010 From _Joerg Arndt_, Nov 12 2012: (Start) The 16 compositions of 5 as lists in lexicographic order: [ n] a(n) composition [ 1] [ 1] [ 1 1 1 1 1 ] [ 2] [ 2] [ 1 1 1 2 ] [ 3] [ 1] [ 1 1 2 1 ] [ 4] [ 3] [ 1 1 3 ] [ 5] [ 1] [ 1 2 1 1 ] [ 6] [ 2] [ 1 2 2 ] [ 7] [ 1] [ 1 3 1 ] [ 8] [ 4] [ 1 4 ] [ 9] [ 1] [ 2 1 1 1 ] [10] [ 2] [ 2 1 2 ] [11] [ 1] [ 2 2 1 ] [12] [ 3] [ 2 3 ] [13] [ 1] [ 3 1 1 ] [14] [ 2] [ 3 2 ] [15] [ 1] [ 4 1 ] [16] [ 5] [ 5 ] a(n) is the last part in each list. (End) From _Omar E. Pol_, Aug 20 2013: (Start) Also written as a triangle in which the right border gives A000027 and row lengths give A011782 and row sums give A000079 the sequence begins: 1; 2; 1,3; 1,2,1,4; 1,2,1,3,1,2,1,5; 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6; 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,7; (End) G.f. = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 2*x^6 + x^7 + 4*x^8 + x^9 + 2*x^10 + ...
References
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 2nd ed., 2001-2003; see Dim- and Dim+ on p. 98; Dividing Rulers, on pp. 436-437; The Ruler Game, pp. 469-470; Ruler Fours, Fives, ... Fifteens on p. 470.
- L. Gros, Théorie du Baguenodier, Aimé Vingtrinier, Lyon, 1872.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E22.
- A. M. Hinz, The Tower of Hanoi, in Algebras and combinatorics (Hong Kong, 1997), 277-289, Springer, Singapore, 1999.
- D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.1.3, Problem 41, p. 589.
- Andrew Schloss, "Towers of Hanoi" composition, in The Digital Domain. Elektra/Asylum Records 9 60303-2, 1983. Works by Jaffe (Finale to "Silicon Valley Breakdown"), McNabb ("Love in the Asylum"), Schloss ("Towers of Hanoi"), Mattox ("Shaman"), Rush, Moorer ("Lions are Growing") and others.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
- Joerg Arndt, Matters Computational (The Fxtbook), p. 9, pp. 733-734
- Joerg Arndt, Subset-lex: did we miss an order?, arXiv:1405.6503 [math.CO], 2014.
- B. Baker Swart, R. Florez, D. Narayan, and G. Rudolph Extrema Property of the k-Ranking of Directed Paths and Cycles, AKCE International Journal of Graphs and Combinatorics, 13 (2016) 38-53.
- J. Britton, Tower of Hanoi Solution
- Yann Bugeaud and Guo-Niu Han, A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence, Electronic Journal of Combinatorics 21(3) (2014), #P3.26. See G(z) in (1.1).
- Antonin Callard, Léo Paviet Salomon, and Pascal Vanier, Computability of extender sets in multidimensional subshifts, arXiv:2401.07549 [cs.DM], 2024.
- Imanuel Chen and Michael Z. Spivey, Integral Generalized Binomial Coefficients of Multiplicative Functions, Preprint 2015; Summer Research Paper 238, Univ. Puget Sound.
- Vassili Daiev, Greatest divisors of even integers: Problem 636, Math. Mag., 40 (1967), 164-165.
- P. Flajolet, J.-C. Raoult, and J. Vuillemin, The number of registers required for evaluating arithmetic expressions, Theoret. Comput. Sci. 9 (1979), no. 1, 99-125.
- R. Florez and D. Narayan Maximizing the number of edges in optimal k-rankings, AKCE International Journal of Graphs and Combinatorics, 12.1 (2015) 1-8.
- Rigoberto Flórez, Robinson A. Higuita, and Antara Mukherjee, The Star of David and Other Patterns in Hosoya Polynomial Triangles, J. Int. Seq., Vol. 21 (2018), Article 18.4.6, also arXiv:1706.04247 [math.CO], 2017.
- Madeleine Goertz and Aaron Williams, The Quaternary Gray Code and How It Can Be Used to Solve Ziggurat and Other Ziggu Puzzles, arXiv:2411.19291 [math.CO], 2024. See pp. 1, 2, 12, 24.
- Fernando Q. Gouvêa, p-Adic Numbers, Springer-Verlag, 1993; see p. 23.
- A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See 'The Gros Sequence', page 60. Book's website
- Norbert Hungerbühler and Ernst Specker, A generalization of the Smarandache Function to several variables, INTEGERS 6 (2006) #A23. [See final section.]
- Douglas E. Iannucci and Urban Larsson, Game values of arithmetic functions, arXiv:2101.07608 [math.NT], 2021. Section 1.1.2. p. 5.
- Jonas Kaiser, On the relationship between the Collatz conjecture and Mersenne prime numbers, arXiv preprint arXiv:1608.00862 [math.GM], 2016.
- J. C. Lagarias and N. J. A. Sloane, Approximate squaring (pdf, ps), Experimental Math., 13 (2004), 113-128.
- S. Legendre and P. Paclet, On the Permutations Generated by Cyclic Shift , J. Int. Seq. 14 (2011) # 11.3.2.
- Subhayan Roy Moulik and Sergii Strelchuk, DQC1-hardness of estimating correlation functions, arXiv:2411.05208 [quant-ph], 2024. See p. 8.
- Juan Carlos Nuño and Francisco J. Muñoz, On the ubiquity of the ruler sequence, arXiv:2009.14629 [math.HO], 2020.
- Michael Naylor, Abacaba-Dabacaba [updated by _Jeremy Gardiner_, Sep 11 2015]
- Juan Carlos Nuño and Francisco J. Muñoz, The Ruler Sequence Revisited: A Dynamic Perspective, Mathematics (2024) Vol. 12, No. 5, 742.
- Simon Plouffe, On the values of the functions ... [zeta and Gamma] ..., arXiv preprint arXiv:1310.7195 [math.NT], 2013.
- Joseph Rosenbaum, Elementary Problem E319, American Mathematical Monthly, volume 45, number 10, December 1938, pages 694-696. (The A indices in P at equations 1 and 2.)
- Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
- Dinesh Thakur, Gauss sums for function fields, J. Number Theory, Volume 37, Issue 2, February 1991, Pages 242-252.
- Dinesh S. Thakur, Continued fraction for the exponential for F_q[T], Journal of Number Theory, 41.2 (1992): 150-155. See page 153.
- Dinesh S. Thakur, Patterns of Continued Fractions for the Analogues of e and Related Numbers in the Function Field Case, Journal of Number Theory, 66.1 (1997): 129-147. See p. 130.
- Eric Weisstein's World of Mathematics, Binary Carry Sequence, Ruler Function, and Towers of Hanoi
- Index entries for "core" sequences
- Index entries for sequences related to binary expansion of n
- Index entries for sequences that are fixed points of mappings
- Index entries for sequences related to Towers of Hanoi
Crossrefs
Column 1 of table A050600.
Sequence read mod 2 gives A035263.
This is Guy Steele's sequence GS(4, 2) (see A135416).
Programs
-
Haskell
a001511 n = length $ takeWhile ((== 0) . (mod n)) a000079_list -- Reinhard Zumkeller, Sep 27 2011
-
Haskell
a001511 n | odd n = 1 | otherwise = 1 + a001511 (n `div` 2) -- Walt Rorie-Baety, Mar 22 2013
-
MATLAB
nmax=5;r=1;for n=2:nmax;r=[r n r];end % Adriano Caroli, Feb 26 2016
-
Magma
[Valuation(2*n,2): n in [1..105]]; // Bruno Berselli, Nov 23 2015
-
Maple
A001511 := n->2-wt(n)+wt(n-1); # where wt is defined in A000120 # This is the binary logarithm of the denominator of (256^n-1)B_{8n}/n, in Maple parlance a := n -> log[2](denom((256^n-1)*bernoulli(8*n)/n)). - Peter Luschny, May 31 2009 A001511 := n -> padic[ordp](2*n,2): seq(A001511(n), n=1..105); # Peter Luschny, Nov 26 2010 a:= n-> ilog2((Bits[Xor](2*n, 2*n-1)+1)/2): seq(a(n), n=1..50); # Gary Detlefs, Dec 13 2018
-
Mathematica
Array[ If[ Mod[ #, 2] == 0, FactorInteger[ # ][[1, 2]], 0] &, 105] + 1 (* or *) Nest[ Flatten[ # /. a_Integer -> {1, a + 1}] &, {1}, 7] (* Robert G. Wilson v, Mar 04 2005 *) IntegerExponent[2*n, 2] (* Alexander R. Povolotsky, Aug 19 2011 *) myHammingDistance[n_, m_] := Module[{g = Max[m, n], h = Min[m, n]}, b1 = IntegerDigits[g, 2]; b2 = IntegerDigits[h, 2, Length[b1]]; HammingDistance[b1, b2]] (* Vladimir Shevelev A206853 *) Table[ myHammingDistance[n, n - 1], {n, 111}] (* Robert G. Wilson v, Apr 05 2012 *) Table[Position[Reverse[IntegerDigits[n,2]],1,1,1],{n,110}]//Flatten (* Harvey P. Dale, Aug 18 2017 *)
-
PARI
a(n) = sum(k=0,floor(log(n)/log(2)),floor(n/2^k)-floor((n-1)/2^k)) /* Ralf Stephan */
-
PARI
a(n)=if(n%2,1,factor(n)[1,2]+1) /* Jon Perry, Jun 06 2004 */
-
PARI
{a(n) = if( n, valuation(n, 2) + 1, 0)}; /* Michael Somos, Sep 30 2006 */
-
PARI
{a(n)=if(n==1,1,polcoeff(x-sum(k=1, n-1, a(k)*x^k*(1-x^k)*(1-x+x*O(x^n))), n))} /* Paul D. Hanna, Jun 22 2007 */
-
Python
def a(n): return bin(n)[2:][::-1].index("1") + 1 # Indranil Ghosh, May 11 2017
-
Python
A001511 = lambda n: (n&-n).bit_length() # M. F. Hasler, Apr 09 2020
-
Python
def A001511(n): return (~n & n-1).bit_length()+1 # Chai Wah Wu, Jul 01 2022
-
Sage
[valuation(2*n,2) for n in (1..105)] # Bruno Berselli, Nov 23 2015
-
Scheme
(define (A001511 n) (let loop ((n n) (e 1)) (if (odd? n) e (loop (/ n 2) (+ 1 e))))) ;; Antti Karttunen, Oct 06 2017
Formula
a(2*n+1) = 1; a(2*n) = 1 + a(n). - Philippe Deléham, Dec 08 2003
Multiplicative with a(p^e) = e+1 if p = 2; 1 if p > 2. - David W. Wilson, Aug 01 2001
For any real x > 1/2: lim_{N->infinity} (1/N)*Sum_{n=1..N} x^(-a(n)) = 1/(2*x-1); also lim_{N->infinity} (1/N)*Sum_{n=1..N} 1/a(n) = log(2). - Benoit Cloitre, Nov 16 2001
s(n) = Sum_{k=1..n} a(k) is asymptotic to 2*n since s(n) = 2*n - A000120(n). - Benoit Cloitre, Aug 31 2002
For any n >= 0, for any m >= 1, a(2^m*n + 2^(m-1)) = m. - Benoit Cloitre, Nov 24 2002
a(n) = Sum_{d divides n and d is odd} mu(d)*tau(n/d). - Vladeta Jovovic, Dec 04 2002
G.f.: A(x) = Sum_{k>=0} x^(2^k)/(1-x^(2^k)). - Ralf Stephan, Dec 24 2002
a(1) = 1; for n > 1, a(n) = a(n-1) + (-1)^n*a(floor(n/2)). - Vladeta Jovovic, Apr 25 2003
A fixed point of the mapping 1->12; 2->13; 3->14; 4->15; 5->16; ... . - Philippe Deléham, Dec 13 2003
Product_{k>0} (1+x^k)^a(k) is g.f. for A000041(). - Vladeta Jovovic, Mar 26 2004
G.f. A(x) satisfies A(x) = A(x^2) + x/(1-x). - Franklin T. Adams-Watters, Feb 09 2006
a(A118413(n,k)) = A002260(n,k); = a(A118416(n,k)) = A002024(n,k); a(A014480(n)) = A003602(A014480(n)). - Reinhard Zumkeller, Apr 27 2006
Ordinal transform of A003602. - Franklin T. Adams-Watters, Aug 28 2006 (The ordinal transform of a sequence b_0, b_1, b_2, ... is the sequence a_0, a_1, a_2, ... where a_n is the number of times b_n has occurred in {b_0 ... b_n}.)
Could be extended to n <= 0 using a(-n) = a(n), a(0) = 0, a(2*n) = a(n)+1 unless n=0. - Michael Somos, Sep 30 2006
Sequence = A129360 * A000005 = M*V, where M = an infinite lower triangular matrix and V = d(n) as a vector: [1, 2, 2, 3, 2, 4, ...]. - Gary W. Adamson, Apr 15 2007
Row sums of triangle A130093. - Gary W. Adamson, May 13 2007
Dirichlet g.f.: zeta(s)*2^s/(2^s-1). - Ralf Stephan, Jun 17 2007
a(n) = -Sum_{d divides n} mu(2*d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
G.f.: x/(1-x) = Sum_{n>=1} a(n)*x^n*( 1 - x^n ). - Paul D. Hanna, Jun 22 2007
2*n = 2^a(n)* A000265(n). - Eric Desbiaux, May 14 2009 [corrected by Alejandro Erickson, Apr 17 2012]
Multiplicative with a(2^k) = k + 1, a(p^k) = 1 for any odd prime p. - Franklin T. Adams-Watters, Jun 09 2009
With S(n): 2^n - 1 first elements of the sequence then S(0) = {} (empty list) and if n > 0, S(n) = S(n-1), n, S(n-1). - Yann David (yann_david(AT)hotmail.com), Mar 21 2010
a((2*n-1)*2^p) = p+1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 05 2013
a(n+1) = 1 + Sum_{j=0..ceiling(log_2(n+1))} (j * (1 - abs(sign((n mod 2^(j + 1)) - 2^j + 1)))). - Enrico Borba, Oct 01 2015
Inverse Moebius transform of A209229. - Andrew Howroyd, Aug 04 2018
a(n) = log_2((Xor(2*n,2*n-1)+1)/2). - Gary Detlefs, Dec 13 2018
(2^(a(n)-1)-1)*(n mod 4) = 2*floor(((n+1) mod 4)/3). - Gary Detlefs, Dec 14 2018
a(n) = Sum_{j=1..r} (j/2^j)*(Product_{k=1..j} (1 - (-1)^floor( (n+2^(j-1))/2^(k-1) ))), for n < a predefined 2^r. - Adriano Caroli, Sep 30 2019
Extensions
Name edited following suggestion by David James Sycamore, Oct 05 2023
A001787 a(n) = n*2^(n-1).
0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544
Offset: 0
Comments
Number of edges in an n-dimensional hypercube.
Number of 132-avoiding permutations of [n+2] containing exactly one 123 pattern. - Emeric Deutsch, Jul 13 2001
Number of ways to place n-1 nonattacking kings on a 2 X 2(n-1) chessboard for n >= 2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001
(-1) times the determinant of matrix A_{i,j} = -|i-j|, 0 <= i,j <= n.
a(n) is the number of ones in binary numbers 1 to 111...1 (n bits). a(n) = A000337(n) - A000337(n-1) for n = 2,3,... . - Emeric Deutsch, May 24 2003
The number of 2 X n 0-1 matrices containing n+1 1's and having no zero row or column. The number of spanning trees of the complete bipartite graph K(2,n). This is the case m = 2 of K(m,n). See A072590. - W. Edwin Clark, May 27 2003
Binomial transform of 0,1,2,3,4,5,... (A001477). Without the initial 0, binomial transform of odd numbers.
With an additional leading zero, [0,0,1,4,...] this is the binomial transform of the integers repeated A004526. Its formula is then (2^n*(n-1) + 0^n)/4. - Paul Barry, May 20 2003
Number of zeros in all different (n+1)-bit integers. - Ralf Stephan, Aug 02 2003
From Lekraj Beedassy, Jun 03 2004: (Start)
Final element of a summation table (as opposed to a difference table) whose first row consists of integers 0 through n (or first n+1 nonnegative integers A001477); illustrating the case n=5:
0 1 2 3 4 5
1 3 5 7 9
4 8 12 16
12 20 28
32 48
80
and the final element is a(5)=80. (End)
This sequence and A001871 arise in counting ordered trees of height at most k where only the rightmost branch at the root actually achieves this height and the count is by the number of edges, with k = 3 for this sequence and k = 4 for A001871.
Let R be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all elements x,y of P(A), xRy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y. Then a(n) = |R|. - Ross La Haye, Sep 21 2004
Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1) and (10;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in same relative order as those in the triple (x,y,z). - Sergey Kitaev, Nov 11 2004
Number of subsequences 00 in all binary words of length n+1. Example: a(2)=4 because in 000,001,010,011,100,101,110,111 the sequence 00 occurs 4 times. - Emeric Deutsch, Apr 04 2005
If you expand the n-factor expression (a+1)*(b+1)*(c+1)*...*(z+1), there are a(n) variables in the result. For example, the 3-factor expression (a+1)*(b+1)*(c+1) expands to abc+ab+ac+bc+a+b+c+1 with a(3) = 12 variables. - David W. Wilson, May 08 2005
An inverse Chebyshev transform of n^2, where g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), c(x) the g.f. of A000108. - Paul Barry, May 13 2005
The number of never-decreasing positive integer sequences of length n with a maximum value of 2*n. - Ben Paul Thurston, Nov 13 2006
Total size of all the subsets of an n-element set. For example, a 2-element set has 1 subset of size 0, 2 subsets of size 1 and 1 of size 2. - Ross La Haye, Dec 30 2006
Convolution of the natural numbers [A000027] and A045623 beginning [0,1,2,5,...]. - Ross La Haye, Feb 03 2007
If M is the matrix (given by rows) [2,1;0,2] then the sequence gives the (1,2) entry in M^n. - Antonio M. Oller-Marcén, May 21 2007
If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n > 0, a(n) is equal to the number of (n+1)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007
Number of n-permutations of 3 objects u,v,w, with repetition allowed, containing exactly one u. Example: a(2)=4 because we have uv, vu, uw and wu. - Zerinvary Lajos, Dec 27 2007
A member of the family of sequences defined by a(n) = n*[c(1)*...*c(r)]^(n-1); c(i) integer. This sequence has c(1)=2, A027471 has c(1)=3. - Ctibor O. Zizka, Feb 23 2008
a(n) is the number of ways to split {1,2,...,n-1} into two (possibly empty) complementary intervals {1,2,...,i} and {i+1,i+2,...,n-1} and then select a subset from each interval. - Geoffrey Critzer, Jan 31 2009
Equals the Jacobsthal sequence A001045 convolved with A003945: (1, 3, 6, 12, ...). - Gary W. Adamson, May 23 2009
Starting with offset 1 = A059570: (1, 2, 6, 14, 34, ...) convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 23 2009
Equals the first left hand column of A167591. - Johannes W. Meijer, Nov 12 2009
The number of tatami tilings of an n X n square with n monomers is n*2^(n-1). - Frank Ruskey, Sep 25 2010
Under T. D. Noe's variant of the hypersigma function, this sequence gives hypersigma(2^n): a(n) = A191161(A000079(n)). - Alonso del Arte, Nov 04 2011
Number of Dyck (n+2)-paths with exactly one valley at height 1 and no higher valley. - David Scambler, Nov 07 2011
Equals triangle A059260 * A016777 as a vector, where A016777 = (3n + 1): [1, 4, 7, 10, 13, ...]. - Gary W. Adamson, Mar 06 2012
Main transitions in systems of n particles with spin 1/2 (see A212697 with b=2). - Stanislav Sykora, May 25 2012
Let T(n,k) be the triangle with (first column) T(n,1) = 2*n-1 for n >= 1, otherwise T(n,k) = T(n,k-1) + T(n-1,k-1), then a(n) = T(n,n). - J. M. Bergot, Jan 17 2013
Sum of all parts of all compositions (ordered partitions) of n. The equivalent sequence for partitions is A066186. - Omar E. Pol, Aug 28 2013
Starting with a(1)=1: powers of 2 (A000079) self-convolved. - Bob Selcoe, Aug 05 2015
Coefficients of the series expansion of the normalized Schwarzian derivative -S{p(x)}/6 of the polynomial p(x) = -(x-x1)*(x-x2) with x1 + x2 = 1 (cf. A263646). - Tom Copeland, Nov 02 2015
a(n) is the number of North-East lattice paths from (0,0) to (n+1,n+1) that have exactly one east step below y = x-1 and no east steps above y = x+1. Details can be found in Pan and Remmel's link. - Ran Pan, Feb 03 2016
Also the number of maximal and maximum cliques in the n-hypercube graph for n > 0. - Eric W. Weisstein, Dec 01 2017
Let [n]={1,2,...,n}; then a(n-1) is the total number of elements missing in proper subsets of [n] that contain n to form [n]. For example, for n = 3, a(2) = 4 since the proper subsets of [3] that contain 3 are {3}, {1,3}, {2,3} and the total number of elements missing in these subsets to form [3] is 4: 2 in the first subset, 1 in the second, and 1 in the third. - Enrique Navarrete, Aug 08 2020
Number of 3-permutations of n elements avoiding the patterns 132, 231. See Bonichon and Sun. - Michel Marcus, Aug 19 2022
Examples
a(2)=4 since 2314, 2341,3124 and 4123 are the only 132-avoiding permutations of 1234 containing exactly one increasing subsequence of length 3. x + 4*x^2 + 12*x^3 + 32*x^4 + 80*x^5 + 192*x^6 + 448*x^7 + ... a(5) = 1*0 + 5*1 + 10*2 + 10*3 + 5*4 + 1*5 = 80, with 1,5,10,10,5,1 the 5th row of Pascal's triangle. - _J. M. Bergot_, Apr 29 2014
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 131.
- Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..500
- Rémi Abgrall and Wasilij Barsukow, Extensions of Active Flux to arbitrary order of accuracy, arXiv:2208.14476 [math.NA], 2022.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- F. S. Al-Kharousi, A. Umar, and M. M. Zubairu, On injective partial Catalan monoids, arXiv:2501.00285 [math.GR], 2024. See p. 9.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Douglas W. Bass and I. Hal Sudborough, Hamilton decompositions and (n/2)-factorizations of hypercubes, J. Graph Algor. Appl., Vol. 7, No. 1 (2003), pp. 79-98.
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- Harlan J. Brothers, Pascal's Prism: Supplementary Material.
- David Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Frank Ellermann, Illustration of binomial transforms
- Mohamed Elkadi and Bernard Mourrain, Symbolic-numeric methods for solving polynomial equations and applications, Chap 3. of A. Dickenstein and I. Z. Emiris, eds., Solving Polynomial Equations, Springer, 2005, pp. 126-168. See p. 152.
- Alejandro Erickson, Frank Ruskey, Mark Schurch and Jennifer Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, Advances in Applied Mathematics, Vol. 77 (2016), pp. 1-42, arXiv preprint, arXiv:1603.01040 [math.CO], 2016.
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424.
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
- Frank A. Haight, Letter to N. J. A. Sloane, n.d.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Jul 06, 1976
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=4, q=-4.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 408. (Dead link)
- Milan Janjić, Two Enumerative Functions.
- Milan Janjić and Boris Petković, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjić and Boris Petković, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn, and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A. 62, (1946). 187-203.
- Kenji Kimura and Saburo Higuchi, Monte Carlo estimation of the number of tatami tilings, International Journal of Modern Physics C, Vol. 27, No. 11 (2016), 1650128, arXiv preprint, arXiv:1509.05983 [cond-mat.stat-mech], 2015-2016, eq. (1).
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004). (Dead link)
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012.
- T. Y. Lam, On the diagonalization of quadratic forms, Math. Mag., 72 (1999), 231-235 (see page 234).
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. See Eq.(3).
- Duško Letić, Nenad Cakić, Branko Davidović, Ivana Berković and Eleonora Desnica, Some certain properties of the generalized hypercubical functions, Advances in Difference Equations, 2011, 2011:60.
- Toufik Mansour and Armend Sh. Shabani, Bargraphs in bargraphs, Turkish Journal of Mathematics (2018) Vol. 42, Issue 5, 2763-2773.
- Ronald Orozco López, Deformed Differential Calculus on Generalized Fibonacci Polynomials, arXiv:2211.04450 [math.CO], 2022.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Michael Penn, on the alternating sum of subsets, YouTube video, 2021.
- Michael Penn, Rare proof of well-known sum, YouTube video, 2023.
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Maxwell Phillips, Ahmed Ammar, and Firas Hassan, A Generalized Multi-Level Structure for High-Precision Binary Decoders, IEEE 67th Int'l Midwest Symp. Circ. Sys. (MWSCAS 2024), 42-46.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Lara Pudwell, Nathan Chenette and Manda Riehl, Statistics on Hypercube Orientations, AMS Special Session on Experimental and Computer Assisted Mathematics, Joint Mathematics Meetings (Denver 2020).
- Lara Pudwell, Connor Scholten, Tyler Schrock and Alexa Serrato, Noncontiguous pattern containment in binary trees, ISRN Comb. 2014, Article ID 316535, 8 p. (2014), chapter 5.2.
- Aaron Robertson, Permutations containing and avoiding 123 and 132 patterns, Discrete Math. and Theoret. Computer Sci., 3 (1999), 151-154.
- Aaron Robertson, Herbert S. Wilf and Doron Zeilberger, Permutation patterns and continued fractions, Electr. J. Combin. 6, 1999, #R38.
- Thomas Selig and Haoyue Zhu, Complete non-ambiguous trees and associated permutations: connections through the Abelian sandpile model, arXiv:2303.15756 [math.CO], 2023, see p. 16.
- Jeffrey Shallit, Letter to N. J. A. Sloane Mar 14, 1979, concerning A001787, A005209, A005210, A005211.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Hypercube.
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Maximum Clique.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
Haskell
a001787 n = n * 2 ^ (n - 1) a001787_list = zipWith (*) [0..] $ 0 : a000079_list -- Reinhard Zumkeller, Jul 11 2014
-
Magma
[n*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Feb 04 2016
-
Maple
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..29); # Zerinvary Lajos, Oct 09 2006 A001787:=1/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, dropping the initial zero
-
Mathematica
Table[Sum[Binomial[n, i] i, {i, 0, n}], {n, 0, 30}] (* Geoffrey Critzer, Mar 18 2009 *) f[n_] := n 2^(n - 1); f[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *) Array[# 2^(# - 1) &, 40, 0] (* Harvey P. Dale, Jul 26 2011 *) Join[{0}, Table[n 2^(n - 1), {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *) Join[{0}, LinearRecurrence[{4, -4}, {1, 4}, 20]] (* Eric W. Weisstein, Dec 01 2017 *) CoefficientList[Series[x/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
PARI
{a(n) = if( n<0, 0, n * 2^(n-1))}
-
PARI
concat(0, Vec(x/(1-2*x)^2 + O(x^50))) \\ Altug Alkan, Nov 03 2015
-
Python
def A001787(n): return n*(1<
Chai Wah Wu, Nov 14 2022
Formula
a(n) = Sum_{k=1..n} k*binomial(n, k). - Benoit Cloitre, Dec 06 2002
E.g.f.: x*exp(2x). - Paul Barry, Apr 10 2003
G.f.: x/(1-2*x)^2.
G.f.: x / (1 - 4*x / (1 + x / (1 - x))). - Michael Somos, Apr 07 2012
A108666(n) = Sum_{k=0..n} binomial(n, k)^2 * a(n). - Michael Somos, Apr 07 2012
PSumSIGN transform of A053220. PSumSIGN transform is A045883. Binomial transform is A027471(n+1). - Michael Somos, Jul 10 2003
Starting at a(1)=1, INVERT transform is A002450, INVERT transform of A049072, MOBIUS transform of A083413, PSUM transform is A000337, BINOMIAL transform is A081038, BINOMIAL transform of A005408. - Michael Somos, Apr 07 2012
a(n) = 2*a(n-1)+2^(n-1).
a(2*n) = n*4^n, a(2*n+1) = (2*n+1)4^n.
G.f.: x/det(I-x*M) where M=[1,i;i,1], i=sqrt(-1). - Paul Barry, Apr 27 2005
Starting 1, 1, 4, 12, ... this is 0^n + n2^(n-1), the binomial transform of the 'pair-reversed' natural numbers A004442. - Paul Barry, Jul 24 2003
Convolution of [1, 2, 4, 8, ...] with itself. - Jon Perry, Aug 07 2003
The signed version of this sequence, n(-2)^(n-1), is the inverse binomial transform of n(-1)^(n-1) (alternating sign natural numbers). - Paul Barry, Aug 20 2003
a(n-1) = (Sum_{k=0..n} 2^(n-k-1)*C(n-k, k)*C(1,(k+1)/2)*(1-(-1)^k)/2) - 0^n/4. - Paul Barry, Oct 15 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)(n-2k)^2. - Paul Barry, May 13 2005
a(n) = n! * Sum_{k=0..n} 1/((k - 1)!(n - k)!). - Paul Barry, Mar 26 2003
a(n+1) = Sum_{k=0..n} 4^k * A109466(n,k). - Philippe Deléham, Nov 13 2006
Row sums of A130300 starting (1, 4, 12, 32, ...). - Gary W. Adamson, May 20 2007
a(n) = 4*a(n-1) - 4*a(n-2), a(0)=0, a(1)=1. - Philippe Deléham, Nov 16 2008
Sum_{n>0} 1/a(n) = 2*log(2). - Jaume Oliver Lafont, Feb 10 2009
a(n) = n * A011782(n). - Omar E. Pol, Aug 28 2013
a(n-1) = Sum_{t_1+2*t_2+...+n*t_n=n} (t_1+t_2+...+t_n-1)*multinomial(t_1+t_2 +...+t_n,t_1,t_2,...,t_n). - Mircea Merca, Dec 06 2013
a(n+1) = Sum_{r=0..n} (2*r+1)*C(n,r). - J. M. Bergot, Apr 07 2014
a(n) = A007283(n)*n/6. - Enxhell Luzhnica, Apr 16 2016
Sum_{n>0} (-1)^(n+1)/a(n) = 2*log(3/2) = 2*A016578. - Ilya Gutkovskiy, Sep 17 2016
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (i+1) * C(k,i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = Sum_{i=1..n} Sum_{j=1..n} phi(i)*binomial(n, i*j). - Ridouane Oudra, Feb 17 2024
A006519 Highest power of 2 dividing n.
1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2
Offset: 1
Comments
Least positive k such that m^k + 1 divides m^n + 1 (with fixed base m). - Vladimir Baltic, Mar 25 2002
To construct the sequence: start with 1, concatenate 1, 1 and double last term gives 1, 2. Concatenate those 2 terms, 1, 2, 1, 2 and double last term 1, 2, 1, 2 -> 1, 2, 1, 4. Concatenate those 4 terms: 1, 2, 1, 4, 1, 2, 1, 4 and double last term -> 1, 2, 1, 4, 1, 2, 1, 8, etc. - Benoit Cloitre, Dec 17 2002
a(n) = gcd(seq(binomial(2*n, 2*m+1)/2, m = 0 .. n - 1)) (odd numbered entries of even numbered rows of Pascal's triangle A007318 divided by 2), where gcd() denotes the greatest common divisor of a set of numbers. Due to the symmetry of the rows it suffices to consider m = 0 .. floor((n-1)/2). - Wolfdieter Lang, Jan 23 2004
Equals the continued fraction expansion of a constant x (cf. A100338) such that the continued fraction expansion of 2*x interleaves this sequence with 2's: contfrac(2*x) = [2; 1, 2, 2, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 2, 8, 2, ...].
Simon Plouffe observes that this sequence and A003484 (Radon function) are very similar, the difference being all zeros except for every 16th term (see A101119 for nonzero differences). Dec 02 2004
This sequence arises when calculating the next odd number in a Collatz sequence: Next(x) = (3*x + 1) / A006519, or simply (3*x + 1) / BitAnd(3*x + 1, -3*x - 1). - Jim Caprioli, Feb 04 2005
a(n) = n if and only if n = 2^k. This sequence can be obtained by taking a(2^n) = 2^n in place of a(2^n) = n and using the same sequence building approach as in A001511. - Amarnath Murthy, Jul 08 2005
Also smallest m such that m + n - 1 = m XOR (n - 1); A086799(n) = a(n) + n - 1. - Reinhard Zumkeller, Feb 02 2007
Number of 1's between successive 0's in A159689. - Philippe Deléham, Apr 22 2009
Least number k such that all coefficients of k*E(n, x), the n-th Euler polynomial, are integers (cf. A144845). - Peter Luschny, Nov 13 2009
In the binary expansion of n, delete everything left of the rightmost 1 bit. - Ralf Stephan, Aug 22 2013
The equivalent sequence for partitions is A194446. - Omar E. Pol, Aug 22 2013
Also the 2-adic value of 1/n, n >= 1. See the Mahler reference, definition on p. 7. This is a non-archimedean valuation. See Mahler, p. 10. Sometimes called 2-adic absolute value of 1/n. - Wolfdieter Lang, Jun 28 2014
First 2^(k-1) - 1 terms are also the heights of the successive rectangles and squares of width 2 that are adjacent to any of the four sides of the toothpick structure of A139250 after 2^k stages, with k >= 2. For example: if k = 5 the heights after 32 stages are [1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1] respectively, the same as the first 15 terms of this sequence. - Omar E. Pol, Dec 29 2020
Examples
2^3 divides 24, but 2^4 does not divide 24, so a(24) = 8. 2^0 divides 25, but 2^1 does not divide 25, so a(25) = 1. 2^1 divides 26, but 2^2 does not divide 26, so a(26) = 2. Per _Marc LeBrun_'s 2000 comment, a(n) can also be determined with bitwise operations in two's complement. For example, given n = 48, we see that n in binary in an 8-bit byte is 00110000 while -n is 11010000. Then 00110000 AND 11010000 = 00010000, which is 16 in decimal, and therefore a(48) = 16. G.f. = x + 2*x^2 + x^3 + 4*x^4 + x^5 + 2*x^6 + x^7 + 8*x^8 + x^9 + ...
References
- Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Dzmitry Badziahin and Jeffrey Shallit, An Unusual Continued Fraction, arXiv:1505.00667 [math.NT], 2015.
- Dzmitry Badziahin and Jeffrey Shallit, An unusual continued fraction, Proc. Amer. Math. Soc. 144 (2016), 1887-1896.
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
- M. Beeler, R. W. Gosper and R. Schroeppel, Item 175, in Beeler, M., Gosper, R. W. and Schroeppel, R. HAKMEM. MIT AI Memo 239, Feb 29 1972.
- Ron Brown and Jonathan L. Merzel, The number of Ducci sequences with a given period, Fib. Quart., 45 (2007), 115-121.
- Daniel Bruns, Wojciech Mostowski, and Mattias Ulbrich, Implementation-level verification of algorithms with KeY, International Journal on Software Tools for Technology Transfer, November 2013.
- Victor Meally, Letter to N. J. A. Sloane, May 1975.
- Laurent Orseau, Levi H. S. Lelis, and Tor Lattimore, Zooming Cautiously: Linear-Memory Heuristic Search With Node Expansion Guarantees, arXiv:1906.03242 [cs.AI], 2019.
- Laurent Orseau, Levi H. S. Lelis, Tor Lattimore, and Théophane Weber, Single-Agent Policy Tree Search With Guarantees, arXiv:1811.10928 [cs.AI], 2018, also in Advances in Neural Information Processing Systems, 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
- Ralf Stephan, Some divide-and-conquer sequences with (relatively) simple ordinary generating functions.
- Ralf Stephan, Table of generating functions.
- Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
- Eric Weisstein's World of Mathematics, Even Part.
- Wikipedia, Converse nonimplication.
- Index entries for sequences related to binary expansion of n.
Crossrefs
Programs
-
Haskell
import Data.Bits ((.&.)) a006519 n = n .&. (-n) :: Integer -- Reinhard Zumkeller, Mar 11 2012, Dec 29 2011
-
Julia
using IntegerSequences [EvenPart(n) for n in 1:102] |> println # Peter Luschny, Sep 25 2021
-
Magma
[2^Valuation(n, 2): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
-
Maple
with(numtheory): for n from 1 to 200 do if n mod 2 = 1 then printf(`%d,`,1) else printf(`%d,`,2^ifactors(n)[2][1][2]) fi; od: A006519 := proc(n) if type(n,'odd') then 1 ; else for f in ifactors(n)[2] do if op(1,f) = 2 then return 2^op(2,f) ; end if; end do: end if; end proc: # R. J. Mathar, Oct 25 2010 A006519 := n -> 2^padic[ordp](n,2): # Peter Luschny, Nov 26 2010
-
Mathematica
lowestOneBit[n_] := Block[{k = 0}, While[Mod[n, 2^k] == 0, k++]; 2^(k - 1)]; Table[lowestOneBit[n], {n, 102}] (* Robert G. Wilson v Nov 17 2004 *) Table[2^IntegerExponent[n, 2], {n, 128}] (* Jean-François Alcover, Feb 10 2012 *) Table[BitAnd[BitNot[i - 1], i], {i, 1, 102}] (* Peter Luschny, Oct 10 2019 *)
-
PARI
{a(n) = 2^valuation(n, 2)};
-
PARI
a(n)=1<
Joerg Arndt, Jun 10 2011 -
PARI
a(n)=bitand(n,-n); \\ Joerg Arndt, Jun 10 2011
-
PARI
a(n)=direuler(p=2,n,if(p==2,1/(1-2*X),1/(1-X)))[n] \\ Ralf Stephan, Mar 27 2015
-
Python
def A006519(n): return n&-n # Chai Wah Wu, Jul 06 2022
-
Scala
(1 to 128).map(Integer.lowestOneBit()) // _Alonso del Arte, Mar 04 2020
Formula
a(n) = n AND -n (where "AND" is bitwise, and negative numbers are represented in two's complement in a suitable bit width). - Marc LeBrun, Sep 25 2000, clarified by Alonso del Arte, Mar 16 2020
Also: a(n) = gcd(2^n, n). - Labos Elemer, Apr 22 2003
Multiplicative with a(p^e) = p^e if p = 2; 1 if p > 2. - David W. Wilson, Aug 01 2001
G.f.: Sum_{k>=0} 2^k*x^2^k/(1 - x^2^(k+1)). - Ralf Stephan, May 06 2003
Dirichlet g.f.: zeta(s)*(2^s - 1)/(2^s - 2) = zeta(s)*(1 - 2^(-s))/(1 - 2*2^(-s)). - Ralf Stephan, Jun 17 2007
a(n) = 2^A007814(n). - R. J. Mathar, Oct 25 2010
a((2*k - 1)*2^e) = 2^e, k >= 1, e >= 0. - Johannes W. Meijer, Jun 07 2011
a(n) = denominator of Euler(n-1, 1). - Arkadiusz Wesolowski, Jul 12 2012
a(n) = (n XOR floor(n/2)) XOR (n-1 XOR floor((n-1)/2)) = n - (n AND n-1) (where "AND" is bitwise). - Gary Detlefs, Jun 12 2014
a(n) = ((n XOR n-1)+1)/2. - Gary Detlefs, Jul 02 2014
a(n) = A171977(n)/2. - Peter Kern, Jan 04 2017
a(n) = (n-1) o n where 'o' is the bitwise converse nonimplication. 'o' is not commutative. n o (n+1) = A135481(n). - Peter Luschny, Oct 10 2019
From Peter Munn, Dec 13 2019: (Start)
Sum_{k=1..n} a(k) ~ (1/(2*log(2)))*n*log(n) + (3/4 + (gamma-1)/(2*log(2)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022
a(n) = n / A000265(n). - Amiram Eldar, May 22 2025
Extensions
More terms from James Sellers, Jun 20 2000
A029931 If 2n = Sum 2^e_i, a(n) = Sum e_i.
0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 6, 7, 8, 9, 9, 10, 11, 12, 10, 11, 12, 13, 13, 14, 15, 16, 11, 12, 13, 14, 14, 15, 16, 17, 15, 16, 17, 18, 18, 19, 20, 21, 7, 8, 9, 10, 10, 11, 12, 13, 11, 12, 13, 14, 14, 15, 16
Offset: 0
Comments
Write n in base 2, n = sum b(i)*2^(i-1), then a(n) = sum b(i)*i. - Benoit Cloitre, Jun 09 2002
May be regarded as a triangular array read by rows, giving weighted sum of compositions in standard order. The standard order of compositions is given by A066099. - Franklin T. Adams-Watters, Nov 06 2006
Sum of all positive integer roots m_i of polynomial {m,k} - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015
Also the sum of binary indices of n, where a binary index of n (A048793) is any position of a 1 in its reversed binary expansion. For example, the binary indices of 11 are {1,2,4}, so a(11) = 7. - Gus Wiseman, May 22 2024
Examples
14 = 8+4+2 so a(7) = 3+2+1 = 6. Composition number 11 is 2,1,1; 1*2+2*1+3*1 = 7, so a(11) = 7. The triangle starts: 0 1 2 3 3 4 5 6 The reversed binary expansion of 18 is (0,1,0,0,1) with 1's at positions {2,5}, so a(18) = 2 + 5 = 7. - _Gus Wiseman_, Jul 22 2019
Links
- T. D. Noe, Table of n, a(n) for n = 0..1023
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197, ex. 10. See also DOI.
- Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1. (See Section 3, Theorem 21 and Section 8, Theorem 50)
Crossrefs
Other sequences that are built by replacing 2^k in the binary representation with other numbers: A022290 (Fibonacci), A059590 (factorials), A073642, A089625 (primes), A116549, A326031.
Contains exactly A000009(n) copies of n.
For product instead of sum we have A096111.
Numbers k such that a(k) is prime are A372689.
A014499 lists binary indices of prime numbers.
Programs
-
Haskell
a029931 = sum . zipWith (*) [1..] . a030308_row -- Reinhard Zumkeller, Feb 28 2014
-
Maple
HammingWeight := n -> add(i, i = convert(n, base, 2)): a := proc(n) option remember; `if`(n = 0, 0, ifelse(n::even, a(n/2) + HammingWeight(n/2), a(n-1) + 1)) end: seq(a(n), n = 0..78); # Peter Luschny, Oct 30 2021
-
Mathematica
a[n_] := (b = IntegerDigits[n, 2]).Reverse @ Range[Length @ b]; Array[a,78,0] (* Jean-François Alcover, Apr 28 2011, after B. Cloitre *)
-
PARI
for(n=0,100,l=length(binary(n)); print1(sum(i=1,l, component(binary(n),i)*(l-i+1)),","))
-
PARI
a(n) = my(b=binary(n)); b*-[-#b..-1]~; \\ Ruud H.G. van Tol, Oct 17 2023
-
Python
def A029931(n): return sum(i if j == '1' else 0 for i, j in enumerate(bin(n)[:1:-1],1)) # Chai Wah Wu, Dec 20 2022 (C#) ulong A029931(ulong n) { ulong result = 0, counter = 1; while(n > 0) { if (n % 2 == 1) result += counter; counter++; n /= 2; } return result; } // Frank Hollstein, Jan 07 2023
Formula
a(n) = a(n - 2^L(n)) + L(n) + 1 [where L(n) = floor(log_2(n)) = A000523(n)] = sum of digits of A048794 [at least for n < 512]. - Henry Bottomley, Mar 09 2001
a(0) = 0, a(2n) = a(n) + e1(n), a(2n+1) = a(2n) + 1, where e1(n) = A000120(n). a(n) = log_2(A029930(n)). - Ralf Stephan, Jun 19 2003
G.f.: (1/(1-x)) * Sum_{k>=0} (k+1)*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 23 2003
a(n) = sum of n-th row of the triangle in A213629. - Reinhard Zumkeller, Jun 17 2012
From Reinhard Zumkeller, Feb 28 2014: (Start)
Extensions
More terms from Erich Friedman
A238279 Triangle read by rows: T(n,k) is the number of compositions of n into nonzero parts with k parts directly followed by a different part, n>=0, 0<=k<=A004523(n-1).
1, 1, 2, 2, 2, 3, 4, 1, 2, 10, 4, 4, 12, 14, 2, 2, 22, 29, 10, 1, 4, 26, 56, 36, 6, 3, 34, 100, 86, 31, 2, 4, 44, 148, 200, 99, 16, 1, 2, 54, 230, 374, 278, 78, 8, 6, 58, 322, 680, 654, 274, 52, 2, 2, 74, 446, 1122, 1390, 814, 225, 22, 1, 4, 88, 573, 1796, 2714, 2058, 813, 136, 10, 4, 88, 778, 2694, 4927
Offset: 0
Comments
Same as A238130, with zeros omitted.
Last elements in rows are 1, 1, 2, 2, 1, 4, 2, 1, 6, 2, 1, 8, ... with g.f. -(x^6+x^4-2*x^2-x-1)/(x^6-2*x^3+1).
For n > 0, also the number of compositions of n with k + 1 runs. - Gus Wiseman, Apr 10 2020
Examples
Triangle starts: 00: 1; 01: 1; 02: 2; 03: 2, 2; 04: 3, 4, 1; 05: 2, 10, 4; 06: 4, 12, 14, 2; 07: 2, 22, 29, 10, 1; 08: 4, 26, 56, 36, 6; 09: 3, 34, 100, 86, 31, 2; 10: 4, 44, 148, 200, 99, 16, 1; 11: 2, 54, 230, 374, 278, 78, 8; 12: 6, 58, 322, 680, 654, 274, 52, 2; 13: 2, 74, 446, 1122, 1390, 814, 225, 22, 1; 14: 4, 88, 573, 1796, 2714, 2058, 813, 136, 10; 15: 4, 88, 778, 2694, 4927, 4752, 2444, 618, 77, 2; 16: 5, 110, 953, 3954, 8531, 9930, 6563, 2278, 415, 28, 1; ... Row n=5 is 2, 10, 4 because in the 16 compositions of 5 ##: [composition] no. of changes 01: [ 1 1 1 1 1 ] 0 02: [ 1 1 1 2 ] 1 03: [ 1 1 2 1 ] 2 04: [ 1 1 3 ] 1 05: [ 1 2 1 1 ] 2 06: [ 1 2 2 ] 1 07: [ 1 3 1 ] 2 08: [ 1 4 ] 1 09: [ 2 1 1 1 ] 1 10: [ 2 1 2 ] 2 11: [ 2 2 1 ] 1 12: [ 2 3 ] 1 13: [ 3 1 1 ] 1 14: [ 3 2 ] 1 15: [ 4 1 ] 1 16: [ 5 ] 0 there are 2 with no changes, 10 with one change, and 4 with two changes.
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..180, flattened
Crossrefs
Columns k=0-10 give: A000005 (for n>0), 2*A002133, A244714, A244715, A244716, A244717, A244718, A244719, A244720, A244721, A244722.
Row lengths are A004523.
Row sums are A011782.
The version counting adjacent equal parts is A106356.
The version for ascents/descents is A238343.
The version for weak ascents/descents is A333213.
Programs
-
Maple
b:= proc(n, v) option remember; `if`(n=0, 1, expand( add(b(n-i, i)*`if`(v=0 or v=i, 1, x), i=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)): seq(T(n), n=0..14);
-
Mathematica
b[n_, v_] := b[n, v] = If[n == 0, 1, Expand[Sum[b[n-i, i]*If[v == 0 || v == i, 1, x], {i, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Maple *) Table[If[n==0,1,Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Split[#]]==k+1&]]],{n,0,12},{k,0,If[n==0,0,Floor[2*(n-1)/3]]}] (* Gus Wiseman, Apr 10 2020 *)
-
PARI
T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N),h=(1+ sum(i=1,N,(x^i-y*x^i)/(1+y*x^i-x^i)))/(1-sum(i=1,N, y*x^i/(1+y*x^i-x^i)))); for(n=0,N-1, print(Vecrev(polcoeff(h,n))))} T_xy(16) \\ John Tyler Rascoe, Jul 10 2024
Formula
G.f.: A(x,y) = ( 1 + Sum_{i>0} ((x^i)*(1 - y)/(1 + y*x^i - x^i)) )/( 1 - Sum_{i>0} ((y*x^i)/(1 + y*x^i - x^i)) ). - John Tyler Rascoe, Jul 10 2024
Comments