cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 457 results. Next

A000079 Powers of 2: a(n) = 2^n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Keywords

Comments

2^0 = 1 is the only odd power of 2.
Number of subsets of an n-set.
There are 2^(n-1) compositions (ordered partitions) of n (see for example Riordan). This is the unlabeled analog of the preferential labelings sequence A000670.
This is also the number of weakly unimodal permutations of 1..n + 1, that is, permutations with exactly one local maximum. E.g., a(4) = 16: 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and their reversals. - Jon Perry, Jul 27 2003 [Proof: see next line! See also A087783.]
Proof: n must appear somewhere and there are 2^(n-1) possible choices for the subset that precedes it. These must appear in increasing order and the rest must follow n in decreasing order. QED. - N. J. A. Sloane, Oct 26 2003
a(n+1) is the smallest number that is not the sum of any number of (distinct) earlier terms.
Same as Pisot sequences E(1, 2), L(1, 2), P(1, 2), T(1, 2). See A008776 for definitions of Pisot sequences.
With initial 1 omitted, same as Pisot sequences E(2, 4), L(2, 4), P(2, 4), T(2, 4). - David W. Wilson
Not the sum of two or more consecutive numbers. - Lekraj Beedassy, May 14 2004
Least deficient or near-perfect numbers (i.e., n such that sigma(n) = A000203(n) = 2n - 1). - Lekraj Beedassy, Jun 03 2004. [Comment from Max Alekseyev, Jan 26 2005: All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2.]
Almost-perfect numbers referred to as least deficient or slightly defective (Singh 1997) numbers. Does "near-perfect numbers" refer to both almost-perfect numbers (sigma(n) = 2n - 1) and quasi-perfect numbers (sigma(n) = 2n + 1)? There are no known quasi-perfect or least abundant or slightly excessive (Singh 1997) numbers.
The sum of the numbers in the n-th row of Pascal's triangle; the sum of the coefficients of x in the expansion of (x+1)^n.
The Collatz conjecture (the hailstone sequence will eventually reach the number 1, regardless of which positive integer is chosen initially) may be restated as (the hailstone sequence will eventually reach a power of 2, regardless of which positive integer is chosen initially).
The only hailstone sequence which doesn't rebound (except "on the ground"). - Alexandre Wajnberg, Jan 29 2005
With p(n) as the number of integer partitions of n, p(i) is the number of parts of the i-th partition of n, d(i) is the number of different parts of the i-th partition of n, m(i,j) is the multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i = 1..p(n)} (p(i)! / (Product_{j=1..d(i)} m(i,j)!)). - Thomas Wieder, May 18 2005
The number of binary relations on an n-element set that are both symmetric and antisymmetric. Also the number of binary relations on an n-element set that are symmetric, antisymmetric and transitive.
The first differences are the sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
a(n) is the largest number with shortest addition chain involving n additions. - David W. Wilson, Apr 23 2006
Beginning with a(1) = 0, numbers not equal to the sum of previous distinct natural numbers. - Giovanni Teofilatto, Aug 06 2006
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n} -> {1, 2} such that for a fixed x in {1, 2, ..., n} and a fixed y in {1, 2} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
Let P(A) be the power set of an n-element set A. Then a(n) is the number of pairs of elements {x,y} of P(A) for which x = y. - Ross La Haye, Jan 09 2008
a(n) is the number of permutations on [n+1] such that every initial segment is an interval of integers. Example: a(3) counts 1234, 2134, 2314, 2341, 3214, 3241, 3421, 4321. The map "p -> ascents of p" is a bijection from these permutations to subsets of [n]. An ascent of a permutation p is a position i such that p(i) < p(i+1). The permutations shown map to 123, 23, 13, 12, 3, 2, 1 and the empty set respectively. - David Callan, Jul 25 2008
2^(n-1) is the largest number having n divisors (in the sense of A077569); A005179(n) is the smallest. - T. D. Noe, Sep 02 2008
a(n) appears to match the number of divisors of the modified primorials (excluding 2, 3 and 5). Very limited range examined, PARI example shown. - Bill McEachen, Oct 29 2008
Successive k such that phi(k)/k = 1/2, where phi is Euler's totient function. - Artur Jasinski, Nov 07 2008
A classical transform consists (for general a(n)) in swapping a(2n) and a(2n+1); examples for Jacobsthal A001045 and successive differences: A092808, A094359, A140505. a(n) = A000079 leads to 2, 1, 8, 4, 32, 16, ... = A135520. - Paul Curtz, Jan 05 2009
This is also the (L)-sieve transform of {2, 4, 6, 8, ..., 2n, ...} = A005843. (See A152009 for the definition of the (L)-sieve transform.) - John W. Layman, Jan 23 2009
a(n) = a(n-1)-th even natural number (A005843) for n > 1. - Jaroslav Krizek, Apr 25 2009
For n >= 0, a(n) is the number of leaves in a complete binary tree of height n. For n > 0, a(n) is the number of nodes in an n-cube. - K.V.Iyer, May 04 2009
Permutations of n+1 elements where no element is more than one position right of its original place. For example, there are 4 such permutations of three elements: 123, 132, 213, and 312. The 8 such permutations of four elements are 1234, 1243, 1324, 1423, 2134, 2143, 3124, and 4123. - Joerg Arndt, Jun 24 2009
Catalan transform of A099087. - R. J. Mathar, Jun 29 2009
a(n) written in base 2: 1,10,100,1000,10000,..., i.e., (n+1) times 1, n times 0 (A011557(n)). - Jaroslav Krizek, Aug 02 2009
Or, phi(n) is equal to the number of perfect partitions of n. - Juri-Stepan Gerasimov, Oct 10 2009
These are the 2-smooth numbers, positive integers with no prime factors greater than 2. - Michael B. Porter, Oct 04 2009
A064614(a(n)) = A000244(n) and A064614(m) < A000244(n) for m < a(n). - Reinhard Zumkeller, Feb 08 2010
a(n) is the largest number m such that the number of steps of iterations of {r - (largest divisor d < r)} needed to reach 1 starting at r = m is equal to n. Example (a(5) = 32): 32 - 16 = 16; 16 - 8 = 8; 8 - 4 = 4; 4 - 2 = 2; 2 - 1 = 1; number 32 has 5 steps and is the largest such number. See A105017, A064097, A175125. - Jaroslav Krizek, Feb 15 2010
a(n) is the smallest proper multiple of a(n-1). - Dominick Cancilla, Aug 09 2010
The powers-of-2 triangle T(n, k), n >= 0 and 0 <= k <= n, begins with: {1}; {2, 4}; {8, 16, 32}; {64, 128, 256, 512}; ... . The first left hand diagonal T(n, 0) = A006125(n + 1), the first right hand diagonal T(n, n) = A036442(n + 1) and the center diagonal T(2*n, n) = A053765(n + 1). Some triangle sums, see A180662, are: Row1(n) = A122743(n), Row2(n) = A181174(n), Fi1(n) = A181175(n), Fi2(2*n) = A181175(2*n) and Fi2(2*n + 1) = 2*A181175(2*n + 1). - Johannes W. Meijer, Oct 10 2010
Records in the number of prime factors. - Juri-Stepan Gerasimov, Mar 12 2011
Row sums of A152538. - Gary W. Adamson, Dec 10 2008
A078719(a(n)) = 1; A006667(a(n)) = 0. - Reinhard Zumkeller, Oct 08 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 2-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Equals A001405 convolved with its right-shifted variant: (1 + 2x + 4x^2 + ...) = (1 + x + 2x^2 + 3x^3 + 6x^4 + 10x^5 + ...) * (1 + x + x^2 + 2x^3 + 3x^4 + 6x^5 + ...). - Gary W. Adamson, Nov 23 2011
The number of odd-sized subsets of an n+1-set. For example, there are 2^3 odd-sized subsets of {1, 2, 3, 4}, namely {1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. Also, note that 2^n = Sum_{k=1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
a(n) is the number of 1's in any row of Pascal's triangle (mod 2) whose row number has exactly n 1's in its binary expansion (see A007318 and A047999). (The result of putting together A001316 and A000120.) - Marcus Jaiclin, Jan 31 2012
A204455(k) = 1 if and only if k is in this sequence. - Wolfdieter Lang, Feb 04 2012
For n>=1 apparently the number of distinct finite languages over a unary alphabet, whose minimum regular expression has alphabetic width n (verified up to n=17), see the Gruber/Lee/Shallit link. - Hermann Gruber, May 09 2012
First differences of A000225. - Omar E. Pol, Feb 19 2013
This is the lexicographically earliest sequence which contains no arithmetic progression of length 3. - Daniel E. Frohardt, Apr 03 2013
a(n-2) is the number of bipartitions of {1..n} (i.e., set partitions into two parts) such that 1 and 2 are not in the same subset. - Jon Perry, May 19 2013
Numbers n such that the n-th cyclotomic polynomial has a root mod 2; numbers n such that the n-th cyclotomic polynomial has an even number of odd coefficients. - Eric M. Schmidt, Jul 31 2013
More is known now about non-power-of-2 "Almost Perfect Numbers" as described in Dagal. - Jonathan Vos Post, Sep 01 2013
Number of symmetric Ferrers diagrams that fit into an n X n box. - Graham H. Hawkes, Oct 18 2013
Numbers n such that sigma(2n) = 2n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
a(1), ..., a(floor(n/2)) are all values of permanent on set of square (0,1)-matrices of order n>=2 with row and column sums 2. - Vladimir Shevelev, Nov 26 2013
Numbers whose base-2 expansion has exactly one bit set to 1, and thus has base-2 sum of digits equal to one. - Stanislav Sykora, Nov 29 2013
A072219(a(n)) = 1. - Reinhard Zumkeller, Feb 20 2014
a(n) is the largest number k such that (k^n-2)/(k-2) is an integer (for n > 1); (k^a(n)+1)/(k+1) is never an integer (for k > 1 and n > 0). - Derek Orr, May 22 2014
If x = A083420(n), y = a(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
The mini-sequence b(n) = least number k > 0 such that 2^k ends in n identical digits is given by {1, 18, 39}. The repeating digits are {2, 4, 8} respectively. Note that these are consecutive powers of 2 (2^1, 2^2, 2^3), and these are the only powers of 2 (2^k, k > 0) that are only one digit. Further, this sequence is finite. The number of n-digit endings for a power of 2 with n or more digits id 4*5^(n-1). Thus, for b(4) to exist, one only needs to check exponents up to 4*5^3 = 500. Since b(4) does not exist, it is clear that no other number will exist. - Derek Orr, Jun 14 2014
The least number k > 0 such that 2^k ends in n consecutive decreasing digits is a 3-number sequence given by {1, 5, 25}. The consecutive decreasing digits are {2, 32, 432}. There are 100 different 3-digit endings for 2^k. There are no k-values such that 2^k ends in '987', '876', '765', '654', '543', '321', or '210'. The k-values for which 2^k ends in '432' are given by 25 mod 100. For k = 25 + 100*x, the digit immediately before the run of '432' is {4, 6, 8, 0, 2, 4, 6, 8, 0, 2, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}, respectively. Thus, we see the digit before '432' will never be a 5. So, this sequence is complete. - Derek Orr, Jul 03 2014
a(n) is the number of permutations of length n avoiding both 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Numbers n such that sigma(n) = sigma(2n) - phi(4n). - Farideh Firoozbakht, Aug 14 2014
This is a B_2 sequence: for i < j, differences a(j) - a(i) are all distinct. Here 2*a(n) < a(n+1) + 1, so a(n) - a(0) < a(n+1) - a(n). - Thomas Ordowski, Sep 23 2014
a(n) counts n-walks (closed) on the graph G(1-vertex; 1-loop, 1-loop). - David Neil McGrath, Dec 11 2014
a(n-1) counts walks (closed) on the graph G(1-vertex; 1-loop, 2-loop, 3-loop, 4-loop, ...). - David Neil McGrath, Jan 01 2015
b(0) = 4; b(n+1) is the smallest number not in the sequence such that b(n+1) - Prod_{i=0..n} b(i) divides b(n+1) - Sum_{i=0..n} b(i). Then b(n) = a(n) for n > 2. - Derek Orr, Jan 15 2015
a(n) counts the permutations of length n+2 whose first element is 2 such that the permutation has exactly one descent. - Ran Pan, Apr 17 2015
a(0)-a(30) appear, with a(26)-a(30) in error, in tablet M 08613 (see CDLI link) from the Old Babylonian period (c. 1900-1600 BC). - Charles R Greathouse IV, Sep 03 2015
Subsequence of A028982 (the squares or twice squares sequence). - Timothy L. Tiffin, Jul 18 2016
A000120(a(n)) = 1. A000265(a(n)) = 1. A000593(a(n)) = 1. - Juri-Stepan Gerasimov, Aug 16 2016
Number of monotone maps f : [0..n] -> [0..n] which are order-increasing (i <= f(i)) and idempotent (f(f(i)) = f(i)). In other words, monads on the n-th ordinal (seen as a posetal category). Any monad f determines a subset of [0..n] that contains n, by considering its set of monad algebras = fixed points { i | f(i) = i }. Conversely, any subset S of [0..n] containing n determines a monad on [0..n], by the function i |-> min { j | i <= j, j in S }. - Noam Zeilberger, Dec 11 2016
Consider n points lying on a circle. Then for n>=2 a(n-2) gives the number of ways to connect two adjacent points with nonintersecting chords. - Anton Zakharov, Dec 31 2016
Satisfies Benford's law [Diaconis, 1977; Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Also the number of independent vertex sets and vertex covers in the n-empty graph. - Eric W. Weisstein, Sep 21 2017
Also the number of maximum cliques in the n-halved cube graph for n > 4. - Eric W. Weisstein, Dec 04 2017
Number of pairs of compositions of n corresponding to a seaweed algebra of index n-1. - Nick Mayers, Jun 25 2018
The multiplicative group of integers modulo a(n) is cyclic if and only if n = 0, 1, 2. For n >= 3, it is a product of two cyclic groups. - Jianing Song, Jun 27 2018
k^n is the determinant of n X n matrix M_(i, j) = binomial(k + i + j - 2, j) - binomial(i+j-2, j), in this case k=2. - Tony Foster III, May 12 2019
Solutions to the equation Phi(2n + 2*Phi(2n)) = 2n. - M. Farrokhi D. G., Jan 03 2020
a(n-1) is the number of subsets of {1,2,...,n} which have an element that is the size of the set. For example, for n = 4, a(3) = 8 and the subsets are {1}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4}. - Enrique Navarrete, Nov 21 2020
a(n) is the number of self-inverse (n+1)-order permutations with 231-avoiding. E.g., a(3) = 8: [1234, 1243, 1324, 1432, 2134, 2143, 3214, 4321]. - Yuchun Ji, Feb 26 2021
For any fixed k > 0, a(n) is the number of ways to tile a strip of length n+1 with tiles of length 1, 2, ... k, where the tile of length k can be black or white, with the restriction that the first tile cannot be black. - Greg Dresden and Bora Bursalı, Aug 31 2023

Examples

			There are 2^3 = 8 subsets of a 3-element set {1,2,3}, namely { -, 1, 2, 3, 12, 13, 23, 123 }.
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 1016.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 73, 84.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.5 Logarithms and §8.1 Terminology, pp. 150, 264.
  • Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton University Press, Princeton, NJ. 1998, pp. 69-70.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 273.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. E. Tarakanov, Combinatorial problems on binary matrices, Combin. Analysis, MSU, 5 (1980), 4-15. (Russian)
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

This is the Hankel transform (see A001906 for the definition) of A000984, A002426, A026375, A026387, A026569, A026585, A026671 and A032351. - John W. Layman, Jul 31 2000
Euler transform of A001037, A209406 (multisets), inverse binomial transform of A000244, binomial transform of A000012.
Complement of A057716.
Boustrophedon transforms: A000734, A000752.
Range of values of A006519, A007875, A011782, A030001, A034444, A037445, A053644, and A054243.
Cf. A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (sum of 2, ..., 9 distinct powers of 2).
Cf. A090129.
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Haskell
    a000079 = (2 ^)
    a000079_list = iterate (* 2) 1
    -- Reinhard Zumkeller, Jan 22 2014, Mar 05 2012, Dec 29 2011
    
  • Magma
    [2^n: n in [0..40]]; // Vincenzo Librandi, Feb 17 2014
    
  • Magma
    [n le 2 select n else 5*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 17 2014
    
  • Maple
    A000079 := n->2^n; [ seq(2^n,n=0..50) ];
    isA000079 := proc(n)
        local fs;
        fs := numtheory[factorset](n) ;
        if n = 1 then
            true ;
        elif nops(fs) <> 1 then
            false;
        elif op(1,fs) = 2 then
            true;
        else
            false ;
        end if;
    end proc: # R. J. Mathar, Jan 09 2017
  • Mathematica
    Table[2^n, {n, 0, 50}]
    2^Range[0, 50] (* Wesley Ivan Hurt, Jun 14 2014 *)
    LinearRecurrence[{2}, {2}, {0, 20}] (* Eric W. Weisstein, Sep 21 2017 *)
    CoefficientList[Series[1/(1 - 2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
    NestList[2# &, 1, 40] (* Harvey P. Dale, Oct 07 2019 *)
  • Maxima
    A000079(n):=2^n$ makelist(A000079(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    A000079(n)=2^n \\ Edited by M. F. Hasler, Aug 27 2014
    
  • PARI
    unimodal(n)=local(x,d,um,umc); umc=0; for (c=0,n!-1, x=numtoperm(n,c); d=0; um=1; for (j=2,n,if (x[j]x[j-1] && d==1,um=0); if (um==0,break)); if (um==1,print(x)); umc+=um); umc
    
  • Python
    def a(n): return 1<Michael S. Branicky, Jul 28 2022
    
  • Python
    def is_powerof2(n) -> bool: return n and (n & (n - 1)) == 0  # Peter Luschny, Apr 10 2025
  • Scala
    (List.fill(20)(2: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, Jan 16 2020
    
  • Scheme
    (define (A000079 n) (expt 2 n)) ;; Antti Karttunen, Mar 21 2017
    

Formula

a(n) = 2^n.
a(0) = 1; a(n) = 2*a(n-1).
G.f.: 1/(1 - 2*x).
E.g.f.: exp(2*x).
a(n)= Sum_{k = 0..n} binomial(n, k).
a(n) is the number of occurrences of n in A000523. a(n) = A001045(n) + A001045(n+1). a(n) = 1 + Sum_{k = 0..(n - 1)} a(k). The Hankel transform of this sequence gives A000007 = [1, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Feb 25 2004
n such that phi(n) = n/2, for n > 1, where phi is Euler's totient (A000010). - Lekraj Beedassy, Sep 07 2004
a(n + 1) = a(n) XOR 3*a(n) where XOR is the binary exclusive OR operator. - Philippe Deléham, Jun 19 2005
a(n) = StirlingS2(n + 1, 2) + 1. - Ross La Haye, Jan 09 2008
a(n+2) = 6a(n+1) - 8a(n), n = 1, 2, 3, ... with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Aug 06 2008
a(n) = ka(n-1) + (4 - 2k)a(n-2) for any integer k and n > 1, with a(0) = 1, a(1) = 2. - Jaume Oliver Lafont, Dec 05 2008
a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i <= l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(0) = 1, a(1) = 2; a(n) = a(n-1)^2/a(n-2), n >= 2. - Jaume Oliver Lafont, Sep 22 2009
a(n) = A173786(n, n)/2 = A173787(n + 1, n). - Reinhard Zumkeller, Feb 28 2010
If p[i] = i - 1 and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 02 2010
If p[i] = Fibonacci(i-2) and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 2, a(n-2) = det A. - Milan Janjic, May 08 2010
The sum of reciprocals, 1/1 + 1/2 + 1/4 + 1/8 + ... + 1/(2^n) + ... = 2. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2*A001045(n) + A078008(n) = 3*A001045(n) + (-1)^n. - Paul Barry, Feb 20 2003
a(n) = A118654(n, 2).
a(n) = A140740(n+1, 1).
a(n) = A131577(n) + A011782(n) = A024495(n) + A131708(n) + A024493(n) = A000749(n) + A038503(n) + A038504(n) + A038505(n) = A139761(n) + A139748(n) + A139714(n) + A133476(n) + A139398(n). - Paul Curtz, Jul 25 2011
a(n) = row sums of A007318. - Susanne Wienand, Oct 21 2011
a(n) = Hypergeometric([-n], [], -1). - Peter Luschny, Nov 01 2011
G.f.: A(x) = B(x)/x, B(x) satisfies B(B(x)) = x/(1 - x)^2. - Vladimir Kruchinin, Nov 10 2011
a(n) = Sum_{k = 0..n} A201730(n, k)*(-1)^k. - Philippe Deléham, Dec 06 2011
2^n = Sum_{k = 1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
A209229(a(n)) = 1. - Reinhard Zumkeller, Mar 07 2012
A001227(a(n)) = 1. - Reinhard Zumkeller, May 01 2012
Sum_{n >= 1} mobius(n)/a(n) = 0.1020113348178103647430363939318... - R. J. Mathar, Aug 12 2012
E.g.f.: 1 + 2*x/(U(0) - x) where U(k) = 6*k + 1 + x^2/(6*k+3 + x^2/(6*k + 5 + x^2/U(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Dec 04 2012
a(n) = det(|s(i+2,j)|, 1 <= i,j <= n), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013
a(n) = det(|ps(i+1,j)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013
G.f.: W(0), where W(k) = 1 + 2*x*(k+1)/(1 - 2*x*(k+1)/( 2*x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
a(n-1) = Sum_{t_1 + 2*t_2 + ... + n*t_n = n} multinomial(t_1 + t_2 + ... + t_n; t_1, t_2, ..., t_n). - Mircea Merca, Dec 06 2013
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A(n)=(1,1,1,...) and S(n)=(0,1,0,0,...) (where * is convolution operation). Then a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
a(n) = A000005(A002110(n)). - Ivan N. Ianakiev, May 23 2016
From Ilya Gutkovskiy, Jul 18 2016: (Start)
Exponential convolution of A000012 with themselves.
a(n) = Sum_{k=0..n} A011782(k).
Sum_{n>=0} a(n)/n! = exp(2) = A072334.
Sum_{n>=0} (-1)^n*a(n)/n! = exp(-2) = A092553. (End)
G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = A090129(x) = (1 + 2x + 2x^2 + 4x^3 + 8x^4 + ...). - Gary W. Adamson, Sep 13 2016
a(n) = A000045(n + 1) + A000045(n) + Sum_{k = 0..n - 2} A000045(k + 1)*2^(n - 2 - k). - Melvin Peralta, Dec 22 2017
a(n) = 7*A077020(n)^2 + A077021(n)^2, n>=3. - Ralf Steiner, Aug 08 2021
a(n)= n + 1 + Sum_{k=3..n+1} (2*k-5)*J(n+2-k), where Jacobsthal number J(n) = A001045(n). - Michael A. Allen, Jan 12 2022
Integral_{x=0..Pi} cos(x)^n*cos(n*x) dx = Pi/a(n) (see Nahin, pp. 69-70). - Stefano Spezia, May 17 2023

Extensions

Clarified a comment T. D. Noe, Aug 30 2009
Edited by Daniel Forgues, May 12 2010
Incorrect comment deleted by Matthew Vandermast, May 17 2014
Comment corrected to match offset by Geoffrey Critzer, Nov 28 2014

A000009 Expansion of Product_{m >= 1} (1 + x^m); number of partitions of n into distinct parts; number of partitions of n into odd parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122, 142, 165, 192, 222, 256, 296, 340, 390, 448, 512, 585, 668, 760, 864, 982, 1113, 1260, 1426, 1610, 1816, 2048, 2304, 2590, 2910, 3264, 3658, 4097, 4582, 5120, 5718, 6378
Offset: 0

Views

Author

Keywords

Comments

Partitions into distinct parts are sometimes called "strict partitions".
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The result that number of partitions of n into distinct parts = number of partitions of n into odd parts is due to Euler.
Bijection: given n = L1* 1 + L2*3 + L3*5 + L7*7 + ..., a partition into odd parts, write each Li in binary, Li = 2^a1 + 2^a2 + 2^a3 + ... where the aj's are all different, then expand n = (2^a1 * 1 + ...)*1 + ... by removing the brackets and we get a partition into distinct parts. For the reverse operation, just keep splitting any even number into halves until no evens remain.
Euler transform of period 2 sequence [1,0,1,0,...]. - Michael Somos, Dec 16 2002
Number of different partial sums 1+[1,2]+[1,3]+[1,4]+..., where [1,x] indicates a choice. E.g., a(6)=4, as we can write 1+1+1+1+1+1, 1+2+3, 1+2+1+1+1, 1+1+3+1. - Jon Perry, Dec 31 2003
a(n) is the sum of the number of partitions of x_j into at most j parts, where j is the index for the j-th triangular number and n-T(j)=x_j. For example; a(12)=partitions into <= 4 parts of 12-T(4)=2 + partitions into <= 3 parts of 12-T(3)=6 + partitions into <= 2 parts of 12-T(2)=9 + partitions into 1 part of 12-T(1)=11 = (2)(11) + (6)(51)(42)(411)(33)(321)(222) + (9)(81)(72)(63)(54)+(11) = 2+7+5+1 = 15. - Jon Perry, Jan 13 2004
Number of partitions of n where if k is the largest part, all parts 1..k are present. - Jon Perry, Sep 21 2005
Jack Grahl and Franklin T. Adams-Watters prove this claim of Jon Perry's by observing that the Ferrers dual of a "gapless" partition is guaranteed to have distinct parts; since the Ferrers dual is an involution, this establishes a bijection between the two sets of partitions. - Allan C. Wechsler, Sep 28 2021
The number of connected threshold graphs having n edges. - Michael D. Barrus (mbarrus2(AT)uiuc.edu), Jul 12 2007
Starting with offset 1 = row sums of triangle A146061 and the INVERT transform of A000700 starting: (1, 0, 1, -1, 1, -1, 1, -2, 2, -2, 2, -3, 3, -3, 4, -5, ...). - Gary W. Adamson, Oct 26 2008
Number of partitions of n in which the largest part occurs an odd number of times and all other parts occur an even number of times. (Such partitions are the duals of the partitions with odd parts.) - David Wasserman, Mar 04 2009
Equals A035363 convolved with A010054. The convolution square of A000009 = A022567 = A000041 convolved with A010054. A000041 = A000009 convolved with A035363. - Gary W. Adamson, Jun 11 2009
Considering all partitions of n into distinct parts: there are A140207(n) partitions of maximal size which is A003056(n), and A051162(n) is the greatest number occurring in these partitions. - Reinhard Zumkeller, Jun 13 2009
Equals left border of triangle A091602 starting with offset 1. - Gary W. Adamson, Mar 13 2010
Number of symmetric unimodal compositions of n+1 where the maximal part appears once. Also number of symmetric unimodal compositions of n where the maximal part appears an odd number of times. - Joerg Arndt, Jun 11 2013
Because for these partitions the exponents of the parts 1, 2, ... are either 0 or 1 (j^0 meaning that part j is absent) one could call these partitions also 'fermionic partitions'. The parts are the levels, that is the positive integers, and the occupation number is either 0 or 1 (like Pauli's exclusion principle). The 'fermionic states' are denoted by these partitions of n. - Wolfdieter Lang, May 14 2014
The set of partitions containing only odd parts forms a monoid under the product described in comments to A047993. - Richard Locke Peterson, Aug 16 2018
Ewell (1973) gives a number of recurrences. - N. J. A. Sloane, Jan 14 2020
a(n) equals the number of permutations p of the set {1,2,...,n+1}, written in one line notation as p = p_1p_2...p_(n+1), satisfying p_(i+1) - p_i <= 1 for 1 <= i <= n, (i.e., those permutations that, when read from left to right, never increase by more than 1) whose major index maj(p) := Sum_{p_i > p_(i+1)} i equals n. For example, of the 16 permutations on 5 letters satisfying p_(i+1) - p_i <= 1, 1 <= i <= 4, there are exactly two permutations whose major index is 4, namely, 5 3 4 1 2 and 2 3 4 5 1. Hence a(4) = 2. See the Bala link in A007318 for a proof. - Peter Bala, Mar 30 2022
Conjecture: Each positive integer n can be written as a_1 + ... + a_k, where a_1,...,a_k are strict partition numbers (i.e., terms of the current sequence) with no one dividing another. This has been verified for n = 1..1350. - Zhi-Wei Sun, Apr 14 2023
Conjecture: For each integer n > 7, a(n) divides none of p(n), p(n) - 1 and p(n) + 1, where p(n) is the number of partitions of n given by A000041. This has been verified for n up to 10^5. - Zhi-Wei Sun, May 20 2023 [Verified for n <= 2*10^6. - Vaclav Kotesovec, May 23 2023]
The g.f. Product_{k >= 0} 1 + x^k = Product_{k >= 0} 1 - x^k + 2*x^k == Product_{k >= 0} 1 - x^k == Sum_{k in Z} (-1)^k*x^(k*(3*k-1)/2) (mod 2) by Euler's pentagonal number theorem. It follows that a(n) is odd iff n = k*(3*k - 1)/2 for some integer k, i.e., iff n is a generalized pentagonal number A001318. - Peter Bala, Jan 07 2025

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 8*x^9 + ...
G.f. = q + q^25 + q^49 + 2*q^73 + 2*q^97 + 3*q^121 + 4*q^145 + 5*q^169 + ...
The partitions of n into distinct parts (see A118457) for small n are:
  1: 1
  2: 2
  3: 3, 21
  4: 4, 31
  5: 5, 41, 32
  6: 6, 51, 42, 321
  7: 7, 61, 52, 43, 421
  8: 8, 71, 62, 53, 521, 431
  ...
From _Reinhard Zumkeller_, Jun 13 2009: (Start)
a(8)=6, A140207(8)=#{5+2+1,4+3+1}=2, A003056(8)=3, A051162(8)=5;
a(9)=8, A140207(9)=#{6+2+1,5+3+1,4+3+2}=3, A003056(9)=3, A051162(9)=6;
a(10)=10, A140207(10)=#{4+3+2+1}=1, A003056(10)=4, A051162(10)=4. (End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.
  • George E. Andrews, The Theory of Partitions, Cambridge University Press, 1998, p. 19.
  • George E. Andrews, Number Theory, Dover Publications, 1994, Theorem 12-3, pp. 154-5, and (13-1-1) p. 163.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 196.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, Problem 18.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 99.
  • William Dunham, The Mathematical Universe, pp. 57-62, J. Wiley, 1994.
  • Leonhard Euler, De partitione numerorum, Novi commentarii academiae scientiarum Petropolitanae 3 (1750/1), 1753, reprinted in: Commentationes Arithmeticae. (Opera Omnia. Series Prima: Opera Mathematica, Volumen Secundum), 1915, Lipsiae et Berolini, 254-294.
  • Ian P. Goulden and David M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.1).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 277, Theorems 344, 346.
  • Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers, Chapman and Hall, 2006, p. 253.
  • Srinivasa Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962. See Table V on page 309.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 288-290.

Crossrefs

Apart from the first term, equals A052839-1. The rows of A053632 converge to this sequence. When reduced modulo 2 equals the absolute values of A010815. The positions of odd terms given by A001318.
a(n) = Sum_{n=1..m} A097306(n, m), row sums of triangle of number of partitions of n into m odd parts.
Cf. A001318, A000041, A000700, A003724, A004111, A007837, A010815, A035294, A068049, A078408, A081360, A088670, A109950, A109968, A132312, A146061, A035363, A010054, A057077, A089806, A091602, A237515, A118457 (the partitions), A118459 (partition lengths), A015723 (total number of parts), A230957 (boustrophedon transform).
Cf. A167377 (complement).
Cf. A067659 (odd number of parts), A067661 (even number of parts).
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Haskell
    import Data.MemoCombinators (memo2, integral)
    a000009 n = a000009_list !! n
    a000009_list = map (pM 1) [0..] where
       pM = memo2 integral integral p
       p _ 0 = 1
       p k m | m < k     = 0
             | otherwise = pM (k + 1) (m - k) + pM (k + 1) m
    -- Reinhard Zumkeller, Sep 09 2015, Nov 05 2013
    
  • Julia
    # uses A010815
    using Memoize
    @memoize function A000009(n)
        n == 0 && return 1
        s = sum((-1)^k*A000009(n - k^2) for k in 1:isqrt(n))
        A010815(n) - 2*s
    end # Peter Luschny, Sep 09 2021
  • Magma
    Coefficients(&*[1+x^m:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    N := 100; t1 := series(mul(1+x^k,k=1..N),x,N); A000009 := proc(n) coeff(t1,x,n); end;
    spec := [ P, {P=PowerSet(N), N=Sequence(Z,card>=1)} ]: [ seq(combstruct[count](spec, size=n), n=0..58) ];
    spec := [ P, {P=PowerSet(N), N=Sequence(Z,card>=1)} ]: combstruct[allstructs](spec, size=10); # to get the actual partitions for n=10
    A000009 := proc(n)
        local x,m;
        product(1+x^m,m=1..n+1) ;
        expand(%) ;
        coeff(%,x,n) ;
    end proc: # R. J. Mathar, Jun 18 2016
    lim := 99; # Enlarge if more terms are needed.
    simplify(expand(QDifferenceEquations:-QPochhammer(-1, x, lim)/2, x)):
    seq(coeff(%, x, n), n=0..55); # Peter Luschny, Nov 17 2016
    # Alternative:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..55);  # Alois P. Heinz, Jun 24 2025
  • Mathematica
    PartitionsQ[Range[0, 60]] (* Harvey Dale, Jul 27 2009 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Jul 06 2011 *)
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^k, {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Jul 06 2011 *)
    a[ n_] := With[ {t = Log[q] / (2 Pi I)}, SeriesCoefficient[ q^(-1/24) DedekindEta[2 t] / DedekindEta[ t], {q, 0, n}]]; (* Michael Somos, Jul 06 2011 *)
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ x, x^2], {x, 0, n}]; (* Michael Somos, May 24 2013 *)
    a[ n_] := SeriesCoefficient[ Series[ QHypergeometricPFQ[ {q}, {q x}, q, - q x], {q, 0, n}] /. x -> 1, {q, 0, n}]; (* Michael Somos, Mar 04 2014 *)
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[{}, {}, q, -1] / 2, {q, 0, n}]; (* Michael Somos, Mar 04 2014 *)
    nmax = 60; CoefficientList[Series[Exp[Sum[(-1)^(k+1)/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 14 2017 *)
  • Maxima
    num_distinct_partitions(60,list); /* Emanuele Munarini, Feb 24 2014 */
    
  • Maxima
    h(n):=if oddp(n)=true then 1 else 0;
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Nov 17 1999 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A), n))};
    
  • PARI
    {a(n) = my(c); forpart(p=n, if( n<1 || p[1]<2, c++; for(i=1, #p-1, if( p[i+1] > p[i]+1, c--; break)))); c}; /* Michael Somos, Aug 13 2017 */
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q^2)/eta(q))} \\ Altug Alkan, Mar 20 2018
    
  • Python
    # uses A010815
    from functools import lru_cache
    from math import isqrt
    @lru_cache(maxsize=None)
    def A000009(n): return 1 if n == 0 else A010815(n)+2*sum((-1)**(k+1)*A000009(n-k**2) for k in range(1,isqrt(n)+1)) # Chai Wah Wu, Sep 08 2021
    
  • Python
    import numpy as np
    n = 1000
    arr = np.zeros(n,dtype=object)
    arr[0] = 1
    for i in range(1,n):
        arr[i:] += arr[:n-i]
    print(arr) # Yigit Oktar, Jul 12 2025
    
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(0, 1)
    b = EulerTransform(a)
    print([b(n) for n in range(56)]) # Peter Luschny, Nov 11 2020
    

Formula

G.f.: Product_{m>=1} (1 + x^m) = 1/Product_{m>=0} (1-x^(2m+1)) = Sum_{k>=0} Product_{i=1..k} x^i/(1-x^i) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1-x^k).
G.f.: Sum_{n>=0} x^n*Product_{k=1..n-1} (1+x^k) = 1 + Sum_{n>=1} x^n*Product_{k>=n+1} (1+x^k). - Joerg Arndt, Jan 29 2011
Product_{k>=1} (1+x^(2k)) = Sum_{k>=0} x^(k*(k+1))/Product_{i=1..k} (1-x^(2i)) - Euler (Hardy and Wright, Theorem 346).
Asymptotics: a(n) ~ exp(Pi l_n / sqrt(3)) / ( 4 3^(1/4) l_n^(3/2) ) where l_n = (n-1/24)^(1/2) (Ayoub).
For n > 1, a(n) = (1/n)*Sum_{k=1..n} b(k)*a(n-k), with a(0)=1, b(n) = A000593(n) = sum of odd divisors of n; cf. A000700. - Vladeta Jovovic, Jan 21 2002
a(n) = t(n, 0), t as defined in A079211.
a(n) = Sum_{k=0..n-1} A117195(n,k) = A117192(n) + A117193(n) for n>0. - Reinhard Zumkeller, Mar 03 2006
a(n) = A026837(n) + A026838(n) = A118301(n) + A118302(n); a(A001318(n)) = A051044(n); a(A090864(n)) = A118303(n). - Reinhard Zumkeller, Apr 22 2006
Expansion of 1 / chi(-x) = chi(x) / chi(-x^2) = f(-x) / phi(x) = f(x) / phi(-x^2) = psi(x) / f(-x^2) = f(-x^2) / f(-x) = f(-x^4) / psi(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Mar 12 2011
G.f. is a period 1 Fourier series which satisfies f(-1 / (1152 t)) = 2^(-1/2) / f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 16 2007
Expansion of q^(-1/24) * eta(q^2) / eta(q) in powers of q.
Expansion of q^(-1/24) 2^(-1/2) f2(t) in powers of q = exp(2 Pi i t) where f2() is a Weber function. - Michael Somos, Oct 18 2007
Given g.f. A(x), then B(x) = x * A(x^3)^8 satisfies 0 = f(B(x), B(x^2)) where f(u, v) = v - u^2 + 16*u*v^2 . - Michael Somos, May 31 2005
Given g.f. A(x), then B(x) = x * A(x^8)^3 satisfies 0 = f(B(x), B(x^3)) where f(u, v) = (u^3 - v) * (u + v^3) - 9 * u^3 * v^3. - Michael Somos, Mar 25 2008
From Evangelos Georgiadis, Andrew V. Sutherland, Kiran S. Kedlaya (egeorg(AT)mit.edu), Mar 03 2009: (Start)
a(0)=1; a(n) = 2*(Sum_{k=1..floor(sqrt(n))} (-1)^(k+1) a(n-k^2)) + sigma(n) where sigma(n) = (-1)^j if (n=(j*(3*j+1))/2 OR n=(j*(3*j-1))/2) otherwise sigma(n)=0 (simpler: sigma = A010815). (End)
From Gary W. Adamson, Jun 13 2009: (Start)
The product g.f. = (1/(1-x))*(1/(1-x^3))*(1/(1-x^5))*...; = (1,1,1,...)*
(1,0,0,1,0,0,1,0,0,1,...)*(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,...) * ...; =
a*b*c*... where a, a*b, a*b*c, ... converge to A000009:
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, ... = a*b
1, 1, 1, 2, 2, 3, 4, 4, 5, 6, ... = a*b*c
1, 1, 1, 2, 2, 3, 4, 5, 6, 7, ... = a*b*c*d
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, ... = a*b*c*d*e
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, ... = a*b*c*d*e*f
... (cf. analogous example in A000041). (End)
a(A004526(n)) = A172033(n). - Reinhard Zumkeller, Jan 23 2010
a(n) = P(n) - P(n-2) - P(n-4) + P(n-10) + P(n-14) + ... + (-1)^m P(n-2p_m) + ..., where P(n) is the partition function (A000041) and p_m = m(3m-1)/2 is the m-th generalized pentagonal number (A001318). - Jerome Malenfant, Feb 16 2011
a(n) = A054242(n,0) = A201377(n,0). - Reinhard Zumkeller, Dec 02 2011
More precise asymptotics: a(n) ~ exp(Pi*sqrt((n-1/24)/3)) / (4*3^(1/4)*(n-1/24)^(3/4)) * (1 + (Pi^2-27)/(24*Pi*sqrt(3*(n-1/24))) + (Pi^4-270*Pi^2-1215)/(3456*Pi^2*(n-1/24))). - Vaclav Kotesovec, Nov 30 2015
a(n) = A067661(n) + A067659(n). Wolfdieter Lang, Jan 18 2016
From Vaclav Kotesovec, May 29 2016: (Start)
a(n) ~ exp(Pi*sqrt(n/3))/(4*3^(1/4)*n^(3/4)) * (1 + (Pi/(48*sqrt(3)) - (3*sqrt(3))/(8*Pi))/sqrt(n) + (Pi^2/13824 - 5/128 - 45/(128*Pi^2))/n).
a(n) ~ exp(Pi*sqrt(n/3) + (Pi/(48*sqrt(3)) - 3*sqrt(3)/(8*Pi))/sqrt(n) - (1/32 + 9/(16*Pi^2))/n) / (4*3^(1/4)*n^(3/4)).
(End)
a(n) = A089806(n)*A010815(floor(n/2)) + a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + ... + A057077(m-1)*a(n-A001318(m)) + ..., where n > A001318(m). - Gevorg Hmayakyan, Jul 07 2016
a(n) ~ Pi*BesselI(1, Pi*sqrt((n+1/24)/3)) / sqrt(24*n+1). - Vaclav Kotesovec, Nov 08 2016
a(n) = A000041(n) - A047967(n). - R. J. Mathar, Nov 20 2017
Sum_{n>=1} 1/a(n) = A237515. - Amiram Eldar, Nov 15 2020
From Peter Bala, Jan 15 2021: (Start)
G.f.: (1 + x)*Sum_{n >= 0} x^(n*(n+3)/2)/Product_{k = 1..n} (1 - x^k) =
(1 + x)*(1 + x^2)*Sum_{n >= 0} x^(n*(n+5)/2)/Product_{k = 1..n} (1 - x^k) = (1 + x)*(1 + x^2)*(1 + x^3)*Sum_{n >= 0} x^(n*(n+7)/2)/Product_{k = 1..n} (1 - x^k) = ....
G.f.: (1/2)*Sum_{n >= 0} x^(n*(n-1)/2)/Product_{k = 1..n} (1 - x^k) =
(1/2)*(1/(1 + x))*Sum_{n >= 0} x^((n-1)*(n-2)/2)/Product_{k = 1..n} (1 - x^k) = (1/2)*(1/((1 + x)*(1 + x^2)))*Sum_{n >= 0} x^((n-2)*(n-3)/2)/Product_{k = 1..n} (1 - x^k) = ....
G.f.: Sum_{n >= 0} x^n/Product_{k = 1..n} (1 - x^(2*k)) = (1/(1 - x)) * Sum_{n >= 0} x^(3*n)/Product_{k = 1..n} (1 - x^(2*k)) = (1/((1 - x)*(1 - x^3))) * Sum_{n >= 0} x^(5*n)/Product_{k = 1..n} (1 - x^(2*k)) = (1/((1 - x)*(1 - x^3)*(1 - x^5))) * Sum_{n >= 0} x^(7*n)/Product_{k = 1..n} (1 - x^(2*k)) = .... (End)
From Peter Bala, Feb 02 2021: (Start)
G.f.: A(x) = Sum_{n >= 0} x^(n*(2*n-1))/Product_{k = 1..2*n} (1 - x^k). (Set z = x and q = x^2 in Mc Laughlin et al. (2019 ArXiv version), Section 1.3, Identity 7.)
Similarly, A(x) = Sum_{n >= 0} x^(n*(2*n+1))/Product_{k = 1..2*n+1} (1 - x^k). (End)
a(n) = A001227(n) + A238005(n) + A238006(n). - R. J. Mathar, Sep 08 2021
G.f.: A(x) = exp ( Sum_{n >= 1} x^n/(n*(1 - x^(2*n))) ) = exp ( Sum_{n >= 1} (-1)^(n+1)*x^n/(n*(1 - x^n)) ). - Peter Bala, Dec 23 2021
Sum_{n>=0} a(n)/exp(Pi*n) = exp(Pi/24)/2^(1/8) = A292820. - Simon Plouffe, May 12 2023 [Proof: Sum_{n>=0} a(n)/exp(Pi*n) = phi(exp(-2*Pi)) / phi(exp(-Pi)), where phi(q) is the Euler modular function. We have phi(exp(-2*Pi)) = exp(Pi/12) * Gamma(1/4) / (2 * Pi^(3/4)) and phi(exp(-Pi)) = exp(Pi/24) * Gamma(1/4) / (2^(7/8) * Pi^(3/4)), see formulas (14) and (13) in I. Mező, 2013. - Vaclav Kotesovec, May 12 2023]
a(2*n) = Sum_{j=1..n} p(n+j, 2*j) and a(2*n+1) = Sum_{j=1..n+1} p(n+j,2*j-1), where p(n, s) is the number of partitions of n having exactly s parts. - Gregory L. Simay, Aug 30 2023

A005408 The odd numbers: a(n) = 2*n + 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
Offset: 0

Views

Author

Keywords

Comments

Leibniz's series: Pi/4 = Sum_{n>=0} (-1)^n/(2n+1) (cf. A072172).
Beginning of the ordering of the natural numbers used in Sharkovski's theorem - see the Cielsielski-Pogoda paper.
The Sharkovski ordering begins with the odd numbers >= 3, then twice these numbers, then 4 times them, then 8 times them, etc., ending with the powers of 2 in decreasing order, ending with 2^0 = 1.
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(6).
Also continued fraction for coth(1) (A073747 is decimal expansion). - Rick L. Shepherd, Aug 07 2002
a(1) = 1; a(n) is the smallest number such that a(n) + a(i) is composite for all i = 1 to n-1. - Amarnath Murthy, Jul 14 2003
Smallest number greater than n, not a multiple of n, but containing it in binary representation. - Reinhard Zumkeller, Oct 06 2003
Numbers n such that phi(2n) = phi(n), where phi is Euler's totient (A000010). - Lekraj Beedassy, Aug 27 2004
Pi*sqrt(2)/4 = Sum_{n>=0} (-1)^floor(n/2)/(2n+1) = 1 + 1/3 - 1/5 - 1/7 + 1/9 + 1/11 ... [since periodic f(x)=x over -Pi < x < Pi = 2(sin(x)/1 - sin(2x)/2 + sin(3x)/3 - ...) using x = Pi/4 (Maor)]. - Gerald McGarvey, Feb 04 2005
For n > 1, numbers having 2 as an anti-divisor. - Alexandre Wajnberg, Oct 02 2005
a(n) = shortest side a of all integer-sided triangles with sides a <= b <= c and inradius n >= 1.
First differences of squares (A000290). - Lekraj Beedassy, Jul 15 2006
The odd numbers are the solution to the simplest recursion arising when assuming that the algorithm "merge sort" could merge in constant unit time, i.e., T(1):= 1, T(n):= T(floor(n/2)) + T(ceiling(n/2)) + 1. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 14 2006
2n-5 counts the permutations in S_n which have zero occurrences of the pattern 312 and one occurrence of the pattern 123. - David Hoek (david.hok(AT)telia.com), Feb 28 2007
For n > 0: number of divisors of (n-1)th power of any squarefree semiprime: a(n) = A000005(A001248(k)^(n-1)); a(n) = A000005(A000302(n-1)) = A000005(A001019(n-1)) = A000005(A009969(n-1)) = A000005(A087752(n-1)). - Reinhard Zumkeller, Mar 04 2007
For n > 2, a(n-1) is the least integer not the sum of < n n-gonal numbers (0 allowed). - Jonathan Sondow, Jul 01 2007
A134451(a(n)) = abs(A134452(a(n))) = 1; union of A134453 and A134454. - Reinhard Zumkeller, Oct 27 2007
Numbers n such that sigma(2n) = 3*sigma(n). - Farideh Firoozbakht, Feb 26 2008
a(n) = A139391(A016825(n)) = A006370(A016825(n)). - Reinhard Zumkeller, Apr 17 2008
Number of divisors of 4^(n-1) for n > 0. - J. Lowell, Aug 30 2008
Equals INVERT transform of A078050 (signed - cf. comments); and row sums of triangle A144106. - Gary W. Adamson, Sep 11 2008
Odd numbers(n) = 2*n+1 = square pyramidal number(3*n+1) / triangular number(3*n+1). - Pierre CAMI, Sep 27 2008
A000035(a(n))=1, A059841(a(n))=0. - Reinhard Zumkeller, Sep 29 2008
Multiplicative closure of A065091. - Reinhard Zumkeller, Oct 14 2008
a(n) is also the maximum number of triangles that n+2 points in the same plane can determine. 3 points determine max 1 triangle; 4 points can give 3 triangles; 5 points can give 5; 6 points can give 7 etc. - Carmine Suriano, Jun 08 2009
Binomial transform of A130706, inverse binomial transform of A001787(without the initial 0). - Philippe Deléham, Sep 17 2009
Also the 3-rough numbers: positive integers that have no prime factors less than 3. - Michael B. Porter, Oct 08 2009
Or n without 2 as prime factor. - Juri-Stepan Gerasimov, Nov 19 2009
Given an L(2,1) labeling l of a graph G, let k be the maximum label assigned by l. The minimum k possible over all L(2,1) labelings of G is denoted by lambda(G). For n > 0, this sequence gives lambda(K_{n+1}) where K_{n+1} is the complete graph on n+1 vertices. - K.V.Iyer, Dec 19 2009
A176271 = odd numbers seen as a triangle read by rows: a(n) = A176271(A002024(n+1), A002260(n+1)). - Reinhard Zumkeller, Apr 13 2010
For n >= 1, a(n-1) = numbers k such that arithmetic mean of the first k positive integers is an integer. A040001(a(n-1)) = 1. See A145051 and A040001. - Jaroslav Krizek, May 28 2010
Union of A179084 and A179085. - Reinhard Zumkeller, Jun 28 2010
For n>0, continued fraction [1,1,n] = (n+1)/a(n); e.g., [1,1,7] = 8/15. - Gary W. Adamson, Jul 15 2010
Numbers that are the sum of two sequential integers. - Dominick Cancilla, Aug 09 2010
Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n - h)/4 (h and n in A000027), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 4). Also a(n)^2 - 1 == 0 (mod 8). - Bruno Berselli, Nov 17 2010
A004767 = a(a(n)). - Reinhard Zumkeller, Jun 27 2011
A001227(a(n)) = A000005(a(n)); A048272(a(n)) < 0. - Reinhard Zumkeller, Jan 21 2012
a(n) is the minimum number of tosses of a fair coin needed so that the probability of more than n heads is at least 1/2. In fact, Sum_{k=n+1..2n+1} Pr(k heads|2n+1 tosses) = 1/2. - Dennis P. Walsh, Apr 04 2012
A007814(a(n)) = 0; A037227(a(n)) = 1. - Reinhard Zumkeller, Jun 30 2012
1/N (i.e., 1/1, 1/2, 1/3, ...) = Sum_{j=1,3,5,...,infinity} k^j, where k is the infinite set of constants 1/exp.ArcSinh(N/2) = convergents to barover(N). The convergent to barover(1) or [1,1,1,...] = 1/phi = 0.6180339..., whereas c.f. barover(2) converges to 0.414213..., and so on. Thus, with k = 1/phi we obtain 1 = k^1 + k^3 + k^5 + ..., and with k = 0.414213... = (sqrt(2) - 1) we get 1/2 = k^1 + k^3 + k^5 + .... Likewise, with the convergent to barover(3) = 0.302775... = k, we get 1/3 = k^1 + k^3 + k^5 + ..., etc. - Gary W. Adamson, Jul 01 2012
Conjecture on primes with one coach (A216371) relating to the odd integers: iff an integer is in A216371 (primes with one coach either of the form 4q-1 or 4q+1, (q > 0)); the top row of its coach is composed of a permutation of the first q odd integers. Example: prime 19 (q = 5), has 5 terms in each row of its coach: 19: [1, 9, 5, 7, 3] ... [1, 1, 1, 2, 4]. This is interpreted: (19 - 1) = (2^1 * 9), (19 - 9) = (2^1 * 5), (19 - 5) = (2^1 - 7), (19 - 7) = (2^2 * 3), (19 - 3) = (2^4 * 1). - Gary W. Adamson, Sep 09 2012
A005408 is the numerator 2n-1 of the term (1/m^2 - 1/n^2) = (2n-1)/(mn)^2, n = m+1, m > 0 in the Rydberg formula, while A035287 is the denominator (mn)^2. So the quotient a(A005408)/a(A035287) simulates the Hydrogen spectral series of all hydrogen-like elements. - Freimut Marschner, Aug 10 2013
This sequence has unique factorization. The primitive elements are the odd primes (A065091). (Each term of the sequence can be expressed as a product of terms of the sequence. Primitive elements have only the trivial factorization. If the products of terms of the sequence are always in the sequence, and there is a unique factorization of each element into primitive elements, we say that the sequence has unique factorization. So, e.g., the composite numbers do not have unique factorization, because for example 36 = 4*9 = 6*6 has two distinct factorizations.) - Franklin T. Adams-Watters, Sep 28 2013
These are also numbers k such that (k^k+1)/(k+1) is an integer. - Derek Orr, May 22 2014
a(n-1) gives the number of distinct sums in the direct sum {1,2,3,..,n} + {1,2,3,..,n}. For example, {1} + {1} has only one possible sum so a(0) = 1. {1,2} + {1,2} has three distinct possible sums {2,3,4} so a(1) = 3. {1,2,3} + {1,2,3} has 5 distinct possible sums {2,3,4,5,6} so a(2) = 5. - Derek Orr, Nov 22 2014
The number of partitions of 4*n into at most 2 parts. - Colin Barker, Mar 31 2015
a(n) is representable as a sum of two but no fewer consecutive nonnegative integers, e.g., 1 = 0 + 1, 3 = 1 + 2, 5 = 2 + 3, etc. (see A138591). - Martin Renner, Mar 14 2016
Unique solution a( ) of the complementary equation a(n) = a(n-1)^2 - a(n-2)*b(n-1), where a(0) = 1, a(1) = 3, and a( ) and b( ) are increasing complementary sequences. - Clark Kimberling, Nov 21 2017
Also the number of maximal and maximum cliques in the n-centipede graph. - Eric W. Weisstein, Dec 01 2017
Lexicographically earliest sequence of distinct positive integers such that the average of any number of consecutive terms is always an integer. (For opposite property see A042963.) - Ivan Neretin, Dec 21 2017
Maximum number of non-intersecting line segments between vertices of a convex (n+2)-gon. - Christoph B. Kassir, Oct 21 2022
a(n) is the number of parking functions of size n+1 avoiding the patterns 123, 132, and 231. - Lara Pudwell, Apr 10 2023

Examples

			G.f. = q + 3*q^3 + 5*q^5 + 7*q^7 + 9*q^9 + 11*q^11 + 13*q^13 + 15*q^15 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 28.
  • T. Dantzig, The Language of Science, 4th Edition (1954) page 276.
  • H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 73.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology, p. 264.
  • D. Hök, Parvisa mönster i permutationer [Swedish], (2007).
  • E. Maor, Trigonometric Delights, Princeton University Press, NJ, 1998, pp. 203-205.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A001651 (n=1 or 2 mod 3), A047209 (n=1 or 4 mod 5).
Cf. A003558, A216371, A179480 (relating to the Coach theorem).
Cf. A000754 (boustrophedon transform).

Programs

Formula

a(n) = 2*n + 1. a(-1 - n) = -a(n). a(n+1) = a(n) + 2.
G.f.: (1 + x) / (1 - x)^2.
E.g.f.: (1 + 2*x) * exp(x).
G.f. with interpolated zeros: (x^3+x)/((1-x)^2 * (1+x)^2); e.g.f. with interpolated zeros: x*(exp(x)+exp(-x))/2. - Geoffrey Critzer, Aug 25 2012
a(n) = L(n,-2)*(-1)^n, where L is defined as in A108299. - Reinhard Zumkeller, Jun 01 2005
Euler transform of length 2 sequence [3, -1]. - Michael Somos, Mar 30 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (1 + 2*u) * (1 - 2*u + 16*v) - (u - 4*v)^2 * (1 + 2*u + 2*u^2). - Michael Somos, Mar 30 2007
a(n) = b(2*n + 1) where b(n) = n if n is odd is multiplicative. [This seems to say that A000027 is multiplicative? - R. J. Mathar, Sep 23 2011]
From Hieronymus Fischer, May 25 2007: (Start)
a(n) = (n+1)^2 - n^2.
G.f. g(x) = Sum_{k>=0} x^floor(sqrt(k)) = Sum_{k>=0} x^A000196(k). (End)
a(0) = 1, a(1) = 3, a(n) = 2*a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
a(n) = A000330(A016777(n))/A000217(A016777(n)). - Pierre CAMI, Sep 27 2008
a(n) = A034856(n+1) - A000217(n) = A005843(n) + A000124(n) - A000217(n) = A005843(n) + 1. - Jaroslav Krizek, Sep 05 2009
a(n) = (n - 1) + n (sum of two sequential integers). - Dominick Cancilla, Aug 09 2010
a(n) = 4*A000217(n)+1 - 2*Sum_{i=1..n-1} a(i) for n > 1. - Bruno Berselli, Nov 17 2010
n*a(2n+1)^2+1 = (n+1)*a(2n)^2; e.g., 3*15^2+1 = 4*13^2. - Charlie Marion, Dec 31 2010
arctanh(x) = Sum_{n>=0} x^(2n+1)/a(n). - R. J. Mathar, Sep 23 2011
a(n) = det(f(i-j+1))A113311(n);%20for%20n%20%3C%200%20we%20have%20f(n)=0.%20-%20_Mircea%20Merca">{1<=i,j<=n}, where f(n) = A113311(n); for n < 0 we have f(n)=0. - _Mircea Merca, Jun 23 2012
G.f.: Q(0), where Q(k) = 1 + 2*(k+1)*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013
a(n) = floor(sqrt(2*A000384(n+1))). - Ivan N. Ianakiev, Jun 17 2013
a(n) = 3*A000330(n)/A000217(n), n > 0. - Ivan N. Ianakiev, Jul 12 2013
a(n) = Product_{k=1..2*n} 2*sin(Pi*k/(2*n+1)) = Product_{k=1..n} (2*sin(Pi*k/(2*n+1)))^2, n >= 0 (undefined product = 1). See an Oct 09 2013 formula contribution in A000027 with a reference. - Wolfdieter Lang, Oct 10 2013
Noting that as n -> infinity, sqrt(n^2 + n) -> n + 1/2, let f(n) = n + 1/2 - sqrt(n^2 + n). Then for n > 0, a(n) = round(1/f(n))/4. - Richard R. Forberg, Feb 16 2014
a(n) = Sum_{k=0..n+1} binomial(2*n+1,2*k)*4^(k)*bernoulli(2*k). - Vladimir Kruchinin, Feb 24 2015
a(n) = Sum_{k=0..n} binomial(6*n+3, 6*k)*Bernoulli(6*k). - Michel Marcus, Jan 11 2016
a(n) = A000225(n+1) - A005803(n+1). - Miquel Cerda, Nov 25 2016
O.g.f.: Sum_{n >= 1} phi(2*n-1)*x^(n-1)/(1 - x^(2*n-1)), where phi(n) is the Euler totient function A000010. - Peter Bala, Mar 22 2019
Sum_{n>=0} 1/a(n)^2 = Pi^2/8 = A111003. - Bernard Schott, Dec 10 2020
Sum_{n >= 1} (-1)^n/(a(n)*a(n+1)) = Pi/4 - 1/2 = 1/(3 + (1*3)/(4 + (3*5)/(4 + ... + (4*n^2 - 1)/(4 + ... )))). Cf. A016754. - Peter Bala, Mar 28 2024
a(n) = A055112(n)/oblong(n) = A193218(n+1)/Hex number(n). Compare to the Sep 27 2008 comment by Pierre CAMI. - Klaus Purath, Apr 23 2024
a(k*m) = k*a(m) - (k-1). - Ya-Ping Lu, Jun 25 2024
a(n) = A000217(a(n))/n for n > 0. - Stefano Spezia, Feb 15 2025

Extensions

Incorrect comment and example removed by Joerg Arndt, Mar 11 2010
Peripheral comments deleted by N. J. A. Sloane, May 09 2022

A007814 Exponent of highest power of 2 dividing n, a.k.a. the binary carry sequence, the ruler sequence, or the 2-adic valuation of n.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
Offset: 1

Views

Author

John Tromp, Dec 11 1996

Keywords

Comments

This sequence is an exception to my usual rule that when every other term of a sequence is 0 then those 0's should be omitted. In this case we would get A001511. - N. J. A. Sloane
To construct the sequence: start with 0,1, concatenate to get 0,1,0,1. Add + 1 to last term gives 0,1,0,2. Concatenate those 4 terms to get 0,1,0,2,0,1,0,2. Add + 1 to last term etc. - Benoit Cloitre, Mar 06 2003
The sequence is invariant under the following two transformations: increment every element by one (1, 2, 1, 3, 1, 2, 1, 4, ...), put a zero in front and between adjacent elements (0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, ...). The intermediate result is A001511. - Ralf Hinze (ralf(AT)informatik.uni-bonn.de), Aug 26 2003
Fixed point of the morphism 0->01, 1->02, 2->03, 3->04, ..., n->0(n+1), ..., starting from a(1) = 0. - Philippe Deléham, Mar 15 2004
Fixed point of the morphism 0->010, 1->2, 2->3, ..., n->(n+1), .... - Joerg Arndt, Apr 29 2014
a(n) is also the number of times to repeat a step on an even number in the hailstone sequence referenced in the Collatz conjecture. - Alex T. Flood (whiteangelsgrace(AT)gmail.com), Sep 22 2006
Let F(n) be the n-th Fermat number (A000215). Then F(a(r-1)) divides F(n)+2^k for r = k mod 2^n and r != 1. - T. D. Noe, Jul 12 2007
The following relation holds: 2^A007814(n)*(2*A025480(n-1)+1) = A001477(n) = n. (See functions hd, tl and cons in [Paul Tarau 2009].)
a(n) is the number of 0's at the end of n when n is written in base 2.
a(n+1) is the number of 1's at the end of n when n is written in base 2. - M. F. Hasler, Aug 25 2012
Shows which bit to flip when creating the binary reflected Gray code (bits are numbered from the right, offset is 0). That is, A003188(n) XOR A003188(n+1) == 2^A007814(n). - Russ Cox, Dec 04 2010
The sequence is squarefree (in the sense of not containing any subsequence of the form XX) [Allouche and Shallit]. Of course it contains individual terms that are squares (such as 4). - Comment expanded by N. J. A. Sloane, Jan 28 2019
a(n) is the number of zero coefficients in the n-th Stern polynomial, A125184. - T. D. Noe, Mar 01 2011
Lemma: For n < m with r = a(n) = a(m) there exists n < k < m with a(k) > r. Proof: We have n=b2^r and m=c2^r with b < c both odd; choose an even i between them; now a(i2^r) > r and n < i2^r < m. QED. Corollary: Every finite run of consecutive integers has a unique maximum 2-adic valuation. - Jason Kimberley, Sep 09 2011
a(n-2) is the 2-adic valuation of A000166(n) for n >= 2. - Joerg Arndt, Sep 06 2014
a(n) = number of 1's in the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} p_j-th prime (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(24)=3; indeed, the partition having Heinz number 24 = 2*2*2*3 is [1,1,1,2]. - Emeric Deutsch, Jun 04 2015
a(n+1) is the difference between the two largest parts in the integer partition having viabin number n (0 is assumed to be a part). Example: a(20) = 2. Indeed, we have 19 = 10011_2, leading to the Ferrers board of the partition [3,1,1]. For the definition of viabin number see the comment in A290253. - Emeric Deutsch, Aug 24 2017
Apart from being squarefree, as noted above, the sequence has the property that every consecutive subsequence contains at least one number an odd number of times. - Jon Richfield, Dec 20 2018
a(n+1) is the 2-adic valuation of Sum_{e=0..n} u^e = (1 + u + u^2 + ... + u^n), for any u of the form 4k+1 (A016813). - Antti Karttunen, Aug 15 2020
{a(n)} represents the "first black hat" strategy for the game of countably infinitely many hats, with a probability of success of 1/3; cf. the Numberphile link below. - Frederic Ruget, Jun 14 2021
a(n) is the least nonnegative integer k for which there does not exist i+j=n and a(i)=a(j)=k (cf. A322523). - Rémy Sigrist and Jianing Song, Aug 23 2022

Examples

			2^3 divides 24, so a(24)=3.
From _Omar E. Pol_, Jun 12 2009: (Start)
Triangle begins:
  0;
  1,0;
  2,0,1,0;
  3,0,1,0,2,0,1,0;
  4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0;
  5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0;
  6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,...
(End)
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 27.
  • K. Atanassov, On the 37th and the 38th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 2, 83-85.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Cf. A011371 (partial sums), A094267 (first differences), A001511 (bisection), A346070 (mod 4).
Bisection of A050605 and |A088705|. Pairwise sums are A050603 and A136480. Difference of A285406 and A281264.
This is Guy Steele's sequence GS(1, 4) (see A135416). Cf. A053398(1,n). Column/row 1 of table A050602.
Cf. A007949 (3-adic), A235127 (4-adic), A112765 (5-adic), A122841 (6-adic), A214411 (7-adic), A244413 (8-adic), A122840 (10-adic).
Cf. A086463 (Dgf at s=2).

Programs

  • Haskell
    a007814 n = if m == 0 then 1 + a007814 n' else 0
                where (n', m) = divMod n 2
    -- Reinhard Zumkeller, Jul 05 2013, May 14 2011, Apr 08 2011
    
  • Haskell
    a007814 n | odd n = 0 | otherwise = 1 + a007814 (n `div` 2)
    --  Walt Rorie-Baety, Mar 22 2013
    
  • Magma
    [Valuation(n, 2): n in [1..120]]; // Bruno Berselli, Aug 05 2013
    
  • Maple
    ord := proc(n) local i,j; if n=0 then return 0; fi; i:=0; j:=n; while j mod 2 <> 1 do i:=i+1; j:=j/2; od: i; end proc: seq(ord(n), n=1..111);
    A007814 := n -> padic[ordp](n,2): seq(A007814(n), n=1..111); # Peter Luschny, Nov 26 2010
  • Mathematica
    Table[IntegerExponent[n, 2], {n, 64}] (* Eric W. Weisstein *)
    IntegerExponent[Range[64], 2] (* Eric W. Weisstein, Feb 01 2024 *)
    p=2; Array[ If[ Mod[ #, p ]==0, Select[ FactorInteger[ # ], Function[ q, q[ [ 1 ] ]==p ], 1 ][ [ 1, 2 ] ], 0 ]&, 96 ]
    DigitCount[BitXor[x, x - 1], 2, 1] - 1; a different version based on the same concept: Floor[Log[2, BitXor[x, x - 1]]] (* Jaume Simon Gispert (jaume(AT)nuem.com), Aug 29 2004 *)
    Nest[Join[ #, ReplacePart[ #, Length[ # ] -> Last[ # ] + 1]] &, {0, 1}, 5] (* N. J. Gunther, May 23 2009 *)
    Nest[ Flatten[# /. a_Integer -> {0, a + 1}] &, {0}, 7] (* Robert G. Wilson v, Jan 17 2011 *)
  • PARI
    A007814(n)=valuation(n,2);
    
  • Python
    import math
    def a(n): return int(math.log(n - (n & n - 1), 2)) # Indranil Ghosh, Apr 18 2017
    
  • Python
    def A007814(n): return (~n & n-1).bit_length() # Chai Wah Wu, Jul 01 2022
    
  • R
    sapply(1:100,function(x) sum(gmp::factorize(x)==2)) # Christian N. K. Anderson, Jun 20 2013
    
  • Scheme
    (define (A007814 n) (let loop ((n n) (e 0)) (if (odd? n) e (loop (/ n 2) (+ 1 e))))) ;; Antti Karttunen, Oct 06 2017

Formula

a(n) = A001511(n) - 1.
a(2*n) = A050603(2*n) = A001511(n).
a(n) = A091090(n-1) + A036987(n-1) - 1.
a(n) = 0 if n is odd, otherwise 1 + a(n/2). - Reinhard Zumkeller, Aug 11 2001
Sum_{k=1..n} a(k) = n - A000120(n). - Benoit Cloitre, Oct 19 2002
G.f.: A(x) = Sum_{k>=1} x^(2^k)/(1-x^(2^k)). - Ralf Stephan, Apr 10 2002
G.f. A(x) satisfies A(x) = A(x^2) + x^2/(1-x^2). A(x) = B(x^2) = B(x) - x/(1-x), where B(x) is the g.f. for A001151. - Franklin T. Adams-Watters, Feb 09 2006
Totally additive with a(p) = 1 if p = 2, 0 otherwise.
Dirichlet g.f.: zeta(s)/(2^s-1). - Ralf Stephan, Jun 17 2007
Define 0 <= k <= 2^n - 1; binary: k = b(0) + 2*b(1) + 4*b(2) + ... + 2^(n-1)*b(n-1); where b(x) are 0 or 1 for 0 <= x <= n - 1; define c(x) = 1 - b(x) for 0 <= x <= n - 1; Then: a(k) = c(0) + c(0)*c(1) + c(0)*c(1)*c(2) + ... + c(0)*c(1)...c(n-1); a(k+1) = b(0) + b(0)*b(1) + b(0)*b(1)*b(2) + ... + b(0)*b(1)...b(n-1). - Arie Werksma (werksma(AT)tiscali.nl), May 10 2008
a(n) = floor(A002487(n - 1) / A002487(n)). - Reikku Kulon, Oct 05 2008
Sum_{k=1..n} (-1)^A000120(n-k)*a(k) = (-1)^(A000120(n)-1)*(A000120(n) - A000035(n)). - Vladimir Shevelev, Mar 17 2009
a(A001147(n) + A057077(n-1)) = a(2*n). - Vladimir Shevelev, Mar 21 2009
For n>=1, a(A004760(n+1)) = a(n). - Vladimir Shevelev, Apr 15 2009
2^(a(n)) = A006519(n). - Philippe Deléham, Apr 22 2009
a(n) = A063787(n) - A000120(n). - Gary W. Adamson, Jun 04 2009
a(C(n,k)) = A000120(k) + A000120(n-k) - A000120(n). - Vladimir Shevelev, Jul 19 2009
a(n!) = n - A000120(n). - Vladimir Shevelev, Jul 20 2009
v_{2}(n) = Sum_{r>=1} (r / 2^(r+1)) Sum_{k=0..2^(r+1)-1} e^(2(k*Pi*i(n+2^r))/(2^(r+1))). - A. Neves, Sep 28 2010, corrected Oct 04 2010
a(n) mod 2 = A096268(n-1). - Robert G. Wilson v, Jan 18 2012
a(A005408(n)) = 1; a(A016825(n)) = 3; A017113(a(n)) = 5; A051062(a(n)) = 7; a(n) = (A037227(n)-1)/2. - Reinhard Zumkeller, Jun 30 2012
a((2*n-1)*2^p) = p, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 04 2013
a(n) = A067255(n,1). - Reinhard Zumkeller, Jun 11 2013
a(n) = log_2(n - (n AND n-1)). - Gary Detlefs, Jun 13 2014
a(n) = 1 + A000120(n-1) - A000120(n), where A000120 is the Hamming weight function. - Stanislav Sykora, Jul 14 2014
A053398(n,k) = a(A003986(n-1,k-1)+1); a(n) = A053398(n,1) = A053398(n,n) = A053398(2*n-1,n) = Min_{k=1..n} A053398(n,k). - Reinhard Zumkeller, Aug 04 2014
a((2*x-1)*2^n) = a((2*y-1)*2^n) for positive n, x and y. - Juri-Stepan Gerasimov, Aug 04 2016
a(n) = A285406(n) - A281264(n). - Ralf Steiner, Apr 18 2017
a(n) = A000005(n)/(A000005(2*n) - A000005(n)) - 1. - conjectured by Velin Yanev, Jun 30 2017, proved by Nicholas Stearns, Sep 11 2017
Equivalently to above formula, a(n) = A183063(n) / A001227(n), i.e., a(n) is the number of even divisors of n divided by number of odd divisors of n. - Franklin T. Adams-Watters, Oct 31 2018
a(n)*(n mod 4) = 2*floor(((n+1) mod 4)/3). - Gary Detlefs, Feb 16 2019
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - Amiram Eldar, Jul 11 2020
a(n) = 2*Sum_{j=1..floor(log_2(n))} frac(binomial(n, 2^j)*2^(j-1)/n). - Dario T. de Castro, Jul 08 2022
a(n) = A070939(n) - A070939(A030101(n)). - Andrew T. Porter, Dec 16 2022
a(n) = floor((gcd(n, 2^n)^(n+1) mod (2^(n+1)-1)^2)/(2^(n+1)-1)) (see Lemma 3.4 from Mazzanti's 2002 article). - Lorenzo Sauras Altuzarra, Mar 10 2024
a(n) = 1 - A088705(n). - Chai Wah Wu, Sep 18 2024

Extensions

Formula index adapted to the offset of A025480 by R. J. Mathar, Jul 20 2010
Edited by Ralf Stephan, Feb 08 2014

A000265 Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77
Offset: 1

Views

Author

Keywords

Comments

When n > 0 is written as k*2^j with k odd then k = A000265(n) and j = A007814(n), so: when n is written as k*2^j - 1 with k odd then k = A000265(n+1) and j = A007814(n+1), when n > 1 is written as k*2^j + 1 with k odd then k = A000265(n-1) and j = A007814(n-1).
Also denominator of 2^n/n (numerator is A075101(n)). - Reinhard Zumkeller, Sep 01 2002
Slope of line connecting (o, a(o)) where o = (2^k)(n-1) + 1 is 2^k and (by design) starts at (1, 1). - Josh Locker (joshlocker(AT)macfora.com), Apr 17 2004
Numerator of n/2^(n-1). - Alexander Adamchuk, Feb 11 2005
From Marco Matosic, Jun 29 2005: (Start)
"The sequence can be arranged in a table:
1
1 3 1
1 5 3 7 1
1 9 5 11 3 13 7 15 1
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31 1
Every new row is the previous row interspaced with the continuation of the odd numbers.
Except for the ones; the terms (t) in each column are t+t+/-s = t_+1. Starting from the center column of threes and working to the left the values of s are given by A000265 and working to the right by A000265." (End)
This is a fractal sequence. The odd-numbered elements give the odd natural numbers. If these elements are removed, the original sequence is recovered. - Kerry Mitchell, Dec 07 2005
2k + 1 is the k-th and largest of the subsequence of k terms separating two successive equal entries in a(n). - Lekraj Beedassy, Dec 30 2005
It's not difficult to show that the sum of the first 2^n terms is (4^n + 2)/3. - Nick Hobson, Jan 14 2005
In the table, for each row, (sum of terms between 3 and 1) - (sum of terms between 1 and 3) = A020988. - Eric Desbiaux, May 27 2009
This sequence appears in the analysis of A160469 and A156769, which resemble the numerator and denominator of the Taylor series for tan(x). - Johannes W. Meijer, May 24 2009
Indices n such that a(n) divides 2^n - 1 are listed in A068563. - Max Alekseyev, Aug 25 2013
From Alexander R. Povolotsky, Dec 17 2014: (Start)
With regard to the tabular presentation described in the comment by Marco Matosic: in his drawing, starting with the 3rd row, the first term in the row, which is equal to 1 (or, alternatively the last term in the row, which is also equal to 1), is not in the actual sequence and is added to the drawing as a fictitious term (for the sake of symmetry); an actual A000265(n) could be considered to be a(j,k) (where j >= 1 is the row number and k>=1 is the column subscript), such that a(j,1) = 1:
1
1 3
1 5 3 7
1 9 5 11 3 13 7 15
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31
and so on ... .
The relationship between k and j for each row is 1 <= k <= 2^(j-1). In this corrected tabular representation, Marco's notion that "every new row is the previous row interspaced with the continuation of the odd numbers" remains true. (End)
Partitions natural numbers to the same equivalence classes as A064989. That is, for all i, j: a(i) = a(j) <=> A064989(i) = A064989(j). There are dozens of other such sequences (like A003602) for which this also holds: In general, all sequences for which a(2n) = a(n) and the odd bisection is injective. - Antti Karttunen, Apr 15 2017
From Paul Curtz, Feb 19 2019: (Start)
This sequence is the truncated triangle:
1, 1;
3, 1, 5;
3, 7, 1, 9;
5, 11, 3, 13, 7;
15, 1, 17, 9, 19, 5;
21, 11, 23, 3, 25, 13, 27;
7, 29, 15, 31, 1, 33, 17, 35;
...
The first column is A069834. The second column is A213671. The main diagonal is A236999. The first upper diagonal is A125650 without 0.
c(n) = ((n*(n+1)/2))/A069834 = 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 8, 8, 1, 1, ... for n > 0. n*(n+1)/2 is the rank of A069834. (End)
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019
a(n) is also the map n -> A026741(n) applied at least A007814(n) times. - Federico Provvedi, Dec 14 2021

Examples

			G.f. = x + x^2 + 3*x^3 + x^4 + 5*x^5 + 3*x^6 + 7*x^7 + x^8 + 9*x^9 + 5*x^10 + 11*x^11 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A049606 (partial products), A135013 (partial sums), A099545 (mod 4), A326937 (Dirichlet inverse).
Cf. A026741 (map), A001511 (converging steps), A038550 (prime index).
Cf. A195056 (Dgf at s=3).

Programs

  • Haskell
    a000265 = until odd (`div` 2)
    -- Reinhard Zumkeller, Jan 08 2013, Apr 08 2011, Oct 14 2010
    
  • Java
    int A000265(n){
        while(n%2==0) n>>=1;
        return n;
    }
    /* Aidan Simmons, Feb 24 2019 */
    
  • Julia
    using IntegerSequences
    [OddPart(n) for n in 1:77] |> println  # Peter Luschny, Sep 25 2021
    
  • Magma
    A000265:= func< n | n/2^Valuation(n,2) >;
    [A000265(n): n in [1..120]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    A000265:=proc(n) local t1,d; t1:=1; for d from 1 by 2 to n do if n mod d = 0 then t1:=d; fi; od; t1; end: seq(A000265(n), n=1..77);
    A000265 := n -> n/2^padic[ordp](n,2): seq(A000265(n), n=1..77); # Peter Luschny, Nov 26 2010
  • Mathematica
    a[n_Integer /; n > 0] := n/2^IntegerExponent[n, 2]; Array[a, 77] (* Josh Locker *)
    a[ n_] := If[ n == 0, 0, n / 2^IntegerExponent[ n, 2]]; (* Michael Somos, Dec 17 2014 *)
  • PARI
    {a(n) = n >> valuation(n, 2)}; /* Michael Somos, Aug 09 2006, edited by M. F. Hasler, Dec 18 2014 */
    
  • Python
    from _future_ import division
    def A000265(n):
        while not n % 2:
            n //= 2
        return n # Chai Wah Wu, Mar 25 2018
    
  • Python
    def a(n):
        while not n&1: n >>= 1
        return n
    print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Jun 26 2025
    
  • SageMath
    def A000265(n): return n//2^valuation(n,2)
    [A000265(n) for n in (1..121)] # G. C. Greubel, Jul 31 2024
  • Scheme
    (define (A000265 n) (let loop ((n n)) (if (odd? n) n (loop (/ n 2))))) ;; Antti Karttunen, Apr 15 2017
    

Formula

a(n) = if n is odd then n, otherwise a(n/2). - Reinhard Zumkeller, Sep 01 2002
a(n) = n/A006519(n) = 2*A025480(n-1) + 1.
Multiplicative with a(p^e) = 1 if p = 2, p^e if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n and d is odd} phi(d). - Vladeta Jovovic, Dec 04 2002
G.f.: -x/(1 - x) + Sum_{k>=0} (2*x^(2^k)/(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))). - Ralf Stephan, Sep 05 2003
(a(k), a(2k), a(3k), ...) = a(k)*(a(1), a(2), a(3), ...) In general, a(n*m) = a(n)*a(m). - Josh Locker (jlocker(AT)mail.rochester.edu), Oct 04 2005
a(n) = Sum_{k=0..n} A127793(n,k)*floor((k+2)/2) (conjecture). - Paul Barry, Jan 29 2007
Dirichlet g.f.: zeta(s-1)*(2^s - 2)/(2^s - 1). - Ralf Stephan, Jun 18 2007
a(A132739(n)) = A132739(a(n)) = A132740(n). - Reinhard Zumkeller, Aug 27 2007
a(n) = 2*A003602(n) - 1. - Franklin T. Adams-Watters, Jul 02 2009
a(n) = n/gcd(2^n,n). (This also shows that the true offset is 0 and a(0) = 0.) - Peter Luschny, Nov 14 2009
a(-n) = -a(n) for all n in Z. - Michael Somos, Sep 19 2011
From Reinhard Zumkeller, May 01 2012: (Start)
A182469(n, k) = A027750(a(n), k), k = 1..A001227(n).
a(n) = A182469(n, A001227(n)). (End)
a((2*n-1)*2^p) = 2*n - 1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 05 2013
G.f.: G(0)/(1 - 2*x^2 + x^4) - 1/(1 - x), where G(k) = 1 + 1/(1 - x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))/(x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2))) + (1 - 2*x^(2^(k+2)) + x^(2^(k+3)))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
a(n) = A003961(A064989(n)). - Antti Karttunen, Apr 15 2017
Completely multiplicative with a(2) = 1 and a(p) = p for prime p > 2, i.e., the sequence b(n) = a(n) * A008683(n) for n > 0 is the Dirichlet inverse of a(n). - Werner Schulte, Jul 08 2018
From Peter Bala, Feb 27 2019: (Start)
O.g.f.: F(x) - F(x^2) - F(x^4) - F(x^8) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8) + ..., where L(x) = log(1/(1 - x)).
Sum_{n >= 1} x^n/a(n) = 1/2*log(G(x)), where G(x) = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + ... is the o.g.f. of A000123. (End)
O.g.f.: Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(2*n-1)), where phi(n) is the Euler totient function A000010. - Peter Bala, Mar 22 2019
a(n) = A049606(n) / A049606(n-1). - Flávio V. Fernandes, Dec 08 2020
a(n) = numerator of n/2^(floor(n/2)). - Federico Provvedi, Dec 14 2021
a(n) = Sum_{d divides n} (-1)^(d+1)*phi(2*n/d). - Peter Bala, Jan 14 2024
a(n) = A030101(A030101(n)). - Darío Clavijo, Sep 19 2024

Extensions

Additional comments from Henry Bottomley, Mar 02 2000
More terms from Larry Reeves (larryr(AT)acm.org), Mar 14 2000
Name clarified by David A. Corneth, Apr 15 2017

A237593 Triangle read by rows in which row n lists the elements of the n-th row of A237591 followed by the same elements in reverse order.

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 7, 2, 2, 1, 1, 2, 2, 7, 7, 3, 2, 1, 1, 2, 3, 7, 8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8
Offset: 1

Views

Author

Omar E. Pol, Feb 22 2014

Keywords

Comments

Row n is a palindromic composition of 2*n.
T(n,k) is also the length of the k-th segment in a Dyck path on the first quadrant of the square grid, connecting the x-axis with the y-axis, from (n, 0) to (0, n), starting with a segment in vertical direction, see example.
Conjecture 1: the area under the n-th Dyck path equals A024916(n), the sum of all divisors of all positive integers <= n.
If the conjecture is true then the n-th Dyck path represents the boundary segments after the alternating sum of the elements of the n-th row of A236104.
Conjecture 2: two adjacent Dyck paths never cross (checked by hand up to n = 128), hence the total area between the n-th Dyck path and the (n-1)-st Dyck path is equal to sigma(n) = A000203(n), the sum of divisors of n.
The connection between A196020 and A237271 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> this sequence --> A239660 --> A237270 --> A237271.
PARI scripts area(n) and chkcross(n) have been written to check the 2 properties and have been run up to n=10000. - Michel Marcus, Mar 27 2014
Mathematica functions have been written that verified the 2 properties through n=30000. - Hartmut F. W. Hoft, Apr 07 2014
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014: (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
The symmetric representation of sigma, so defined, is row n of A237270. - Peter Munn, Jan 06 2025
It appears that, for the n-th set, the number of cells lying on the first diagonal is equal to A067742(n), the number of middle divisors of n. - Michel Marcus, Jun 21 2014
Checked Michel Marcus's conjecture with two Mathematica functions up to n=100000, for more information see A240542. - Hartmut F. W. Hoft, Jul 17 2014
A003056(n) is also the number of peaks of the Dyck path related to the n-th row of triangle. - Omar E. Pol, Nov 03 2015
The number of peaks of the Dyck path associated to the row A000396(n) of this triangle equals the n-th Mersenne prime A000668(n), hence Mersenne primes are visible in two ways at the pyramid described in A245092. - Omar E. Pol, Dec 19 2016
The limit as n approaches infinity (area under the Dyck path described in the n-th row of triangle divided by n^2) equals Pi^2/12 = zeta(2)/2. (Cf. A072691.) - Omar E. Pol, Dec 18 2021
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - Omar E. Pol, Nov 09 2022

Examples

			Triangle begins:
   n
   1 |  1, 1;
   2 |  2, 2;
   3 |  2, 1, 1, 2;
   4 |  3, 1, 1, 3;
   5 |  3, 2, 2, 3;
   6 |  4, 1, 1, 1, 1, 4;
   7 |  4, 2, 1, 1, 2, 4;
   8 |  5, 2, 1, 1, 2, 5;
   9 |  5, 2, 2, 2, 2, 5;
  10 |  6, 2, 1, 1, 1, 1, 2, 6;
  11 |  6, 3, 1, 1, 1, 1, 3, 6;
  12 |  7, 2, 2, 1, 1, 2, 2, 7;
  13 |  7, 3, 2, 1, 1, 2, 3, 7;
  14 |  8, 3, 1, 2, 2, 1, 3, 8;
  15 |  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  16 |  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  17 |  9, 4, 2, 1, 1, 1, 1, 2, 4, 9;
  18 | 10, 3, 2, 2, 1, 1, 2, 2, 3, 10;
  19 | 10, 4, 2, 2, 1, 1, 2, 2, 4, 10;
  20 | 11, 4, 2, 1, 2, 2, 1, 2, 4, 11;
  21 | 11, 4, 3, 1, 1, 1, 1, 1, 1, 3, 4, 11;
  22 | 12, 4, 2, 2, 1, 1, 1, 1, 2, 2, 4, 12;
  23 | 12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12;
  24 | 13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13;
  ...
Illustration of rows 8 and 9 interpreted as Dyck paths in the first quadrant and the illustration of the symmetric representation of sigma(9) = 5 + 3 + 5 = 13, see below:
.
y                       y
.                       .
.                       ._ _ _ _ _                _ _ _ _ _ 5
._ _ _ _ _              .         |              |_ _ _ _ _|
.         |             .         |_ _                     |_ _ 3
.         |_            .             |                    |_  |
.           |_ _        .             |_ _                   |_|_ _ 5
.               |       .                 |                      | |
.   Area = 56   |       .    Area = 69    |          Area = 13   | |
.               |       .                 |                      | |
.               |       .                 |                      | |
. . . . . . . . | . x   . . . . . . . . . | . x                  |_|
.
.    Fig. 1                    Fig. 2                  Fig. 3
.
Figure 1. For n = 8 the 8th row of triangle is [5, 2, 1, 1, 2, 5] and the area under the symmetric Dyck path is equal to A024916(8) = 56.
Figure 2. For n = 9 the 9th row of triangle is [5, 2, 2, 2, 2, 5] and the area under the symmetric Dyck path is equal to A024916(9) = 69.
Figure 3. The symmetric representation of sigma(9): between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the difference between the areas under the Dyck paths equals the sum of the parts of the symmetric representation of sigma(9) = 69 - 56 = 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
.
Illustration of initial terms as Dyck paths in the first quadrant:
(row n = 1..28)
.  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  |_ _ _ _ _ _ _ _ _ _ _ _ _  | |
  |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
  |_ _ _ _ _ _ _ _ _ _ _ _  | | |_ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _  | | |_ _  | |_
  |_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_  |_
  |_ _ _ _ _ _ _ _ _ _  | |       |_ _|   |_
  |_ _ _ _ _ _ _ _ _ _| | |_ _    |_  |_ _  |_ _
  |_ _ _ _ _ _ _ _ _  | |_ _ _|     |_  | |_ _  |
  |_ _ _ _ _ _ _ _ _| | |_ _  |_      |_|_ _  | |
  |_ _ _ _ _ _ _ _  | |_ _  |_ _|_        | | | |_ _ _ _ _
  |_ _ _ _ _ _ _ _| |     |     | |_ _    | |_|_ _ _ _ _  |
  |_ _ _ _ _ _ _  | |_ _  |_    |_  | |   |_ _ _ _ _  | | |
  |_ _ _ _ _ _ _| |_ _  |_  |_ _  | | |_ _ _ _ _  | | | | |
  |_ _ _ _ _ _  | |_  |_  |_    | |_|_ _ _ _  | | | | | | |
  |_ _ _ _ _ _| |_ _|   |_  |   |_ _ _ _  | | | | | | | | |
  |_ _ _ _ _  |     |_ _  | |_ _ _ _  | | | | | | | | | | |
  |_ _ _ _ _| |_      | |_|_ _ _  | | | | | | | | | | | | |
  |_ _ _ _  |_ _|_    |_ _ _  | | | | | | | | | | | | | | |
  |_ _ _ _| |_  | |_ _ _  | | | | | | | | | | | | | | | | |
  |_ _ _  |_  |_|_ _  | | | | | | | | | | | | | | | | | | |
  |_ _ _|   |_ _  | | | | | | | | | | | | | | | | | | | | |
  |_ _  |_ _  | | | | | | | | | | | | | | | | | | | | | | |
  |_ _|_  | | | | | | | | | | | | | | | | | | | | | | | | |
  |_  | | | | | | | | | | | | | | | | | | | | | | | | | | |
  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
n: 1 2 3 4 5 6 7 8 9 10..12..14..16..18..20..22..24..26..28
.
It appears that the total area (also the total number of cells) in the first n set of symmetric regions of the diagram is equal to A024916(n), the sum of all divisors of all positive integers <= n.
It appears that the total area (also the total number of cells) in the n-th set of symmetric regions of the diagram is equal to sigma(n) = A000203(n) (checked by hand up n = 128).
From _Omar E. Pol_, Aug 18 2015: (Start)
The above diagram is also the top view of the stepped pyramid described in A245092 and it is also the top view of the staircase described in A244580, in both cases the figure represents the first 28 levels of the structure. Note that the diagram contains (and arises from) a hidden pattern which is shown below.
.
Illustration of initial terms as an isosceles triangle:
Row                                 _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
This diagram is the simpler representation of the sequence.
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
Note that this symmetric pattern also emerges from the front view of the stepped pyramid described in A245092, which is related to sigma A000203, the sum-of-divisors function, and other related sequences. The diagram represents the first 16 levels of the pyramid. (End)
		

Crossrefs

Row n has length 2*A003056(n).
Row sums give A005843, n >= 1.
Column k starts in row A008805(k-1).
Column 1 = right border = A008619, n >= 1.
Bisections are in A259176, A259177.
For further information see A262626.

Programs

  • Mathematica
    row[n_]:=Floor[(Sqrt[8n+1]-1)/2]
    s[n_,k_]:=Ceiling[(n+1)/k-(k+1)/2]-Ceiling[(n+1)/(k+1)-(k+2)/2]
    f[n_,k_]:=If[k<=row[n],s[n,k],s[n,2 row[n]+1-k]]
    TableForm[Table[f[n,k],{n,1,50},{k,1,2 row[n]}]] (* Hartmut F. W. Hoft, Apr 08 2014 *)
  • PARI
    row(n) = {my(orow = row237591(n)); vector(2*#orow, i, if (i <= #orow, orow[i], orow[2*#orow-i+1]));}
    area(n) = {my(rown = row(n)); surf = 0; h = n; odd = 1; for (i=1, #row, if (odd, surf += h*rown[i], h -= rown[i];); odd = !odd;); surf;}
    heights(v, n) = {vh = vector(n); ivh = 1; h = n; odd = 1; for (i=1, #v, if (odd, for (j=1, v[i], vh[ivh] = h; ivh++), h -= v[i];); odd = !odd;); vh;}
    isabove(hb, ha) = {for (i=1, #hb, if (hb[i] < ha[i], return (0));); return (1);}
    chkcross(nn) = {hga = concat(heights(row(1), 1), 0); for (n=2, nn, hgb = heights(row(n), n); if (! isabove(hgb, hga), print("pb cross at n=", n)); hga = concat(hgb, 0););} \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    for n in range(1, 11): print([T(n, k) for k in range(1, 2*row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Formula

Let j(n)= floor((sqrt(8n+1)-1)/2) then T(n,k) = A237591(n,k), if k <= j(n); otherwise T(n,k) = A237591(n,2*j(n)+1-k). - Hartmut F. W. Hoft, Apr 07 2014 (corrected by Omar E. Pol, May 31 2015)

Extensions

A minor edit to the definition. - N. J. A. Sloane, Jul 31 2025

A049310 Triangle of coefficients of Chebyshev's S(n,x) := U(n,x/2) polynomials (exponents in increasing order).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 1, 0, -3, 0, 1, 0, 3, 0, -4, 0, 1, -1, 0, 6, 0, -5, 0, 1, 0, -4, 0, 10, 0, -6, 0, 1, 1, 0, -10, 0, 15, 0, -7, 0, 1, 0, 5, 0, -20, 0, 21, 0, -8, 0, 1, -1, 0, 15, 0, -35, 0, 28, 0, -9, 0, 1, 0, -6, 0, 35, 0, -56, 0, 36, 0, -10, 0, 1, 1, 0, -21, 0, 70, 0, -84, 0
Offset: 0

Views

Author

Keywords

Comments

G.f. for row polynomials S(n,x) (signed triangle): 1/(1-x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,x) as row polynomials with g.f. 1/(1-x*z-z^2). |a(n,m)| triangle has rows of Pascal's triangle A007318 in the even-numbered diagonals (odd-numbered ones have only 0's).
Row sums (unsigned triangle) A000045(n+1) (Fibonacci). Row sums (signed triangle) S(n,1) sequence = periodic(1,1,0,-1,-1,0) = A010892.
Alternating row sums A049347(n) = S(n,-1) = periodic(1,-1,0). - Wolfdieter Lang, Nov 04 2011
S(n,x) is the characteristic polynomial of the adjacency matrix of the n-path. - Michael Somos, Jun 24 2002
S(n,x) is also the matching polynomial of the n-path. - Eric W. Weisstein, Apr 10 2017
|T(n,k)| = number of compositions of n+1 into k+1 odd parts. Example: |T(7,3)| = 10 because we have (1,1,3,3), (1,3,1,3), (1,3,3,1), (3,1,1,3), (3,1,3,1), (3,3,1,1), (1,1,1,5), (1,1,5,1), (1,5,1,1) and (5,1,1,1). - Emeric Deutsch, Apr 09 2005
S(n,x)= R(n,x) + S(n-2,x), n >= 2, S(-1,x)=0, S(0,x)=1, R(n,x):=2*T(n,x/2) = Sum_{m=0..n} A127672(n,m)*x^m (monic integer Chebyshev T-Polynomials). This is the rewritten so-called trace of the transfer matrix formula for the T-polynomials. - Wolfdieter Lang, Dec 02 2010
In a regular N-gon inscribed in a unit circle, the side length is d(N,1) = 2*sin(Pi/N). The length ratio R(N,k):=d(N,k)/d(N,1) for the (k-1)-th diagonal, with k from {2,3,...,floor(N/2)}, N >= 4, equals S(k-1,x) = sin(k*Pi/N)/sin(Pi/N) with x=rho(N):=R(N,2) = 2*cos(Pi/N). Example: N=7 (heptagon), rho=R(7,2), sigma:=R(N,3) = S(2,rho) = rho^2 - 1. Motivated by the quoted paper by P. Steinbach. - Wolfdieter Lang, Dec 02 2010
From Wolfdieter Lang, Jul 12 2011: (Start)
In q- or basic analysis, q-numbers are [n]_q := S(n-1,q+1/q) = (q^n-(1/q)^n)/(q-1/q), with the row polynomials S(n,x), n >= 0.
The zeros of the row polynomials S(n-1,x) are (from those of Chebyshev U-polynomials):
x(n-1;k) = +- t(k,rho(n)), k = 1..ceiling((n-1)/2), n >= 2, with t(n,x) the row polynomials of A127672 and rho(n):= 2*cos(Pi/n). The simple vanishing zero for even n appears here as +0 and -0.
Factorization of the row polynomials S(n-1,x), x >= 1, in terms of the minimal polynomials of cos(2 Pi/2), called Psi(n,x), with coefficients given by A181875/A181876:
S(n-1,x) = (2^(n-1))*Product_{n>=1}(Psi(d,x/2), 2 < d | 2n).
(From the rewritten eq. (3) of the Watkins and Zeitlin reference, given under A181872.) [See the W. Lang ArXiv link, Proposition 9, eq. (62). - Wolfdieter Lang, Apr 14 2018]
(End)
The discriminants of the S(n,x) polynomials are found in A127670. - Wolfdieter Lang, Aug 03 2011
This is an example for a subclass of Riordan convolution arrays (lower triangular matrices) called Bell arrays. See the L. W. Shapiro et al. reference under A007318. If a Riordan array is named (G(z),F(z)) with F(z)=z*Fhat(z), the o.g.f. for the row polynomials is G(z)/(1-x*z*Fhat(z)), and it becomes a Bell array if G(z)=Fhat(z). For the present Bell type triangle G(z)=1/(1+z^2) (see the o.g.f. comment above). This leads to the o.g.f. for the column no. k, k >= 0, x^k/(1+x^2)^(k+1) (see the formula section), the one for the row sums and for the alternating row sums (see comments above). The Riordan (Bell) A- and Z-sequences (defined in a W. Lang link under A006232, with references) have o.g.f.s 1-x*c(x^2) and -x*c(x^2), with the o.g.f. of the Catalan numbers A000108. Together they lead to a recurrence given in the formula section. - Wolfdieter Lang, Nov 04 2011
The determinant of the N x N matrix S(N,[x[1], ..., x[N]]) with elements S(m-1,x[n]), for n, m = 1, 2, ..., N, and for any x[n], is identical with the determinant of V(N,[x[1], ..., x[N]]) with elements x[n]^(m-1) (a Vandermondian, which equals Product_{1 <= i < j<= N} (x[j] - x[i])). This is a special instance of a theorem valid for any N >= 1 and any monic polynomial system p(m,x), m>=0, with p(0,x) = 1. For this theorem see the Vein-Dale reference, p. 59. Thanks to L. Edson Jeffery for an email asking for a proof of the non-singularity of the matrix S(N,[x[1], ...., x[N]]) if and only if the x[j], j = 1..N, are pairwise distinct. - Wolfdieter Lang, Aug 26 2013
These S polynomials also appear in the context of modular forms. The rescaled Hecke operator T*n = n^((1-k)/2)*T_n acting on modular forms of weight k satisfies T*(p^n) = S(n, T*p), for each prime p and positive integer n. See the Koecher-Krieg reference, p. 223. - _Wolfdieter Lang, Jan 22 2016
For a shifted o.g.f. (mod signs), its compositional inverse, and connections to Motzkin and Fibonacci polynomials, non-crossing partitions and other combinatorial structures, see A097610. - Tom Copeland, Jan 23 2016
From M. Sinan Kul, Jan 30 2016; edited by Wolfdieter Lang, Jan 31 2016 and Feb 01 2016: (Start)
Solutions of the Diophantine equation u^2 + v^2 - k*u*v = 1 for integer k given by (u(k,n), v(k,n)) = (S(n,k), S(n-1,k)) because of the Cassini-Simson identity: S(n,x)^2 - S(n+1,x)*S(n-1, x) = 1, after use of the S-recurrence. Note that S(-n, x) = -S(-n-2, x), n >= 1, and the periodicity of some S(n, k) sequences.
Hence another way to obtain the row polynomials would be to take powers of the matrix [x, -1; 1,0]: S(n, x) = (([x, -1; 1, 0])^n)[1,1], n >= 0.
See also a Feb 01 2016 comment on A115139 for a well-known S(n, x) sum formula.
Then we have with the present T triangle
A039834(n) = -i^(n+1)*T(n-1, k) where i is the imaginary unit and n >= 0.
A051286(n) = Sum_{i=0..n} T(n,i)^2 (see the Philippe Deléham, Nov 21 2005 formula),
A181545(n) = Sum_{i=0..n+1} abs(T(n,i)^3),
A181546(n) = Sum_{i=0..n+1} T(n,i)^4,
A181547(n) = Sum_{i=0..n+1} abs(T(n,i)^5).
S(n, 0) = A056594(n), and for k = 1..10 the sequences S(n-1, k) with offset n = 0 are A128834, A001477, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189.
(End)
For more on the Diophantine equation presented by Kul, see the Ismail paper. - Tom Copeland, Jan 31 2016
The o.g.f. for the Legendre polynomials L(n,x) is 1 / sqrt(1- 2x*z + z^2), and squaring it gives the o.g.f. of U(n,x), A053117, so Sum_{k=0..n} L(k,x/2) L(n-k,x/2) = S(n,x). This gives S(n,x) = L(n/2,x/2)^2 + 2*Sum_{k=0..n/2-1} L(k,x/2) L(n-k,x/2) for n even and S(n,x) = 2*Sum_{k=0..(n-1)/2} L(k,x/2) L(n-k,x/2) for odd n. For a connection to elliptic curves and modular forms, see A053117. For the normalized Legendre polynomials, see A100258. For other properties and relations to other polynomials, see Allouche et al. - Tom Copeland, Feb 04 2016
LG(x,h1,h2) = -log(1 - h1*x + h2*x^2) = Sum_{n>0} F(n,-h1,h2,0,..,0) x^n/n is a log series generator of the bivariate row polynomials of A127672 with A127672(0,0) = 0 and where F(n,b1,b2,..,bn) are the Faber polynomials of A263916. Exp(LG(x,h1,h2)) = 1 / (1 - h1*x + h2*x^2 ) is the o.g.f. of the bivariate row polynomials of this entry. - Tom Copeland, Feb 15 2016 (Instances of the bivariate o.g.f. for this entry are on pp. 5 and 18 of Sunada. - Tom Copeland, Jan 18 2021)
For distinct odd primes p and q the Legendre symbol can be written as Legendre(q,p) = Product_{k=1..P} S(q-1, 2*cos(2*Pi*k/p)), with P = (p-1)/2. See the Lemmermeyer reference, eq. (8.1) on p. 236. Using the zeros of S(q-1, x) (see above) one has S(q-1, x) = Product_{l=1..Q} (x^2 - (2*cos(Pi*l/q))^2), with Q = (q-1)/2. Thus S(q-1, 2*cos(2*Pi*k/p)) = ((-4)^Q)*Product_{l=1..Q} (sin^2(2*Pi*k/p) - sin^2(Pi*l/q)) = ((-4)^Q)*Product_{m=1..Q} (sin^2(2*Pi*k/p) - sin^2(2*Pi*m/q)). For the proof of the last equality see a W. Lang comment on the triangle A057059 for n = Q and an obvious function f. This leads to Eisenstein's proof of the quadratic reciprocity law Legendre(q,p) = ((-1)^(P*Q)) * Legendre(p,q), See the Lemmermeyer reference, pp. 236-237. - Wolfdieter Lang, Aug 28 2016
For connections to generalized Fibonacci polynomials, compare their generating function on p. 5 of the Amdeberhan et al. link with the o.g.f. given above for the bivariate row polynomials of this entry. - Tom Copeland, Jan 08 2017
The formula for Ramanujan's tau function (see A000594) for prime powers is tau(p^k) = p^(11*k/2)*S(k, p^(-11/2)*tau(p)) for k >= 1, and p = A000040(n), n >= 1. See the Hardy reference, p. 164, eqs. (10.3.4) and (10.3.6) rewritten in terms of S. - Wolfdieter Lang, Jan 27 2017
From Wolfdieter Lang, May 08 2017: (Start)
The number of zeros Z(n) of the S(n, x) polynomials in the open interval (-1,+1) is 2*b(n) for even n >= 0 and 1 + 2*b(n) for odd n >= 1, where b(n) = floor(n/2) - floor((n+1)/3). This b(n) is the number of integers k in the interval (n+1)/3 < k <= floor(n/2). See a comment on the zeros of S(n, x) above, and b(n) = A008615(n-2), n >= 0. The numbers Z(n) have been proposed (with a conjecture related to A008611) by Michel Lagneau, as the number of zeros of Fibonacci polynomials on the imaginary axis (-I,+I), with I=sqrt(-1). They are Z(n) = A008611(n-1), n >= 0, with A008611(-1) = 0. Also Z(n) = A194960(n-4), n >= 0. Proof using the A008611 version. A194960 follows from this.
In general the number of zeros Z(a;n) of S(n, x) for n >= 0 in the open interval (-a,+a) for a from the interval (0,2) (x >= 2 never has zeros, and a=0 is trivial: Z(0;n) = 0) is with b(a;n) = floor(n//2) - floor((n+1)*arccos(a/2)/Pi), as above Z(a;n) = 2*b(a;n) for even n >= 0 and 1 + 2*b(a;n) for odd n >= 1. For the closed interval [-a,+a] Z(0;n) = 1 and for a from (0,1) one uses for Z(a;n) the values b(a;n) = floor(n/2) - ceiling((n+1)*arccos(a/2)/Pi) + 1. (End)
The Riordan row polynomials S(n, x) (Chebyshev S) belong to the Boas-Buck class (see a comment and references in A046521), hence they satisfy the Boas-Buck identity: (E_x - n*1)*S(n, x) = (E_x + 1)*Sum_{p=0..n-1} (1 - (-1)^p)*(-1)^((p+1)/2)*S(n-1-p, x), for n >= 0, where E_x = x*d/dx (Euler operator). For the triangle T(n, k) this entails a recurrence for the sequence of column k, given in the formula section. - Wolfdieter Lang, Aug 11 2017
The e.g.f. E(x,t) := Sum_{n>=0} (t^n/n!)*S(n,x) for the row polynomials is obtained via inverse Laplace transformation from the above given o.g.f. as E(x,t) = ((1/xm)*exp(t/xm) - (1/xp)*exp(t/xp) )/(xp - xm) with xp = (x + sqrt(x^2-4))/2 and xm = (x - sqrt(x^2-4))/2. - Wolfdieter Lang, Nov 08 2017
From Wolfdieter Lang, Apr 12 2018: (Start)
Factorization of row polynomials S(n, x), for n >= 1, in terms of C polynomials (not Chebyshev C) with coefficients given in A187360. This is obtained from the factorization into Psi polynomials (see the Jul 12 2011 comment above) but written in terms of minimal polynomials of 2*cos(2*Pi/n) with coefficients in A232624:
S(2*k, x) = Product_{2 <= d | (2*k+1)} C(d, x)*(-1)^deg(d)*C(d, -x), with deg(d) = A055034(d) the degree of C(d, x).
S(2*k+1, x) = Product_{2 <= d | 2*(k+1)} C(d, x) * Product_{3 <= 2*d + 1 | (k+1)} (-1)^(deg(2*d+1))*C(2*d+1, -x).
Note that (-1)^(deg(2*d+1))*C(2*d+1, -x)*C(2*d+1, x) pairs always appear.
The number of C factors of S(2*k, x), for k >= 0, is 2*(tau(2*k+1) - 1) = 2*(A099774(k+1) - 1) = 2*A095374(k), and for S(2*k+1, x), for k >= 0, it is tau(2*(k+1)) + tau_{odd}(k+1) - 2 = A302707(k), with tau(2*k+1) = A099774(k+1), tau(n) = A000005 and tau(2*(k+1)) = A099777(k+1).
For the reverse problem, the factorization of C polynomials into S polynomials, see A255237. (End)
The S polynomials with general initial conditions S(a,b;n,x) = x*S(a,b;n-1,x) - S(a,b;n-2,x), for n >= 1, with S(a,b;-1,x) = a and S(a,b;0,x) = b are S(a,b;n,x) = b*S(n, x) - a*S(n-1, x), for n >= -1. Recall that S(-2, x) = -1 and S(-1, x) = 0. The o.g.f. is G(a,b;z,x) = (b - a*z)/(1 - x*z + z^2). - Wolfdieter Lang, Oct 18 2019
Also the convolution triangle of A101455. - Peter Luschny, Oct 06 2022
From Wolfdieter Lang, Apr 26 2023: (Start)
Multi-section of S-polynomials: S(m*n+k, x) = S(m+k, x)*S(n-1, R(m, x)) - S(k, x)*S(n-2, R(m, x)), with R(n, x) = S(n, x) - S(n-2, x) (see A127672), S(-2, x) = -1, and S(-1, x) = 0, for n >= 0, m >= 1, and k = 0, 1, ..., m-1.
O.g.f. of {S(m*n+k, y)}_{n>=0}: G(m,k,y,x) = (S(k, y) - (S(k, y)*R(m, y) - S(m+k, y))*x)/(1 - R(m,y)*x + x^2).
See eqs. (40) and (49), with r = x or y and s =-1, of the G. Detlefs and W. Lang link at A034807. (End)
S(n, x) for complex n and complex x: S(n, x) = ((-i/2)/sqrt(1 - (x/2)^2))*(q(x/2)*exp(+n*log(q(x/2))) - (1/q(x/2))*exp(-n*log(q(x/2)))), with q(x) = x + sqrt(1 - x^2)*i. Here log(z) = |z| + Arg(z)*i, with Arg(z) from [-Pi,+Pi) (principal branch). This satisfies the recurrence relation for S because it is derived from the Binet - de Moivre formula for S. Examples: S(n/m, 0) = cos((n/m)*Pi/4), for n >= 0 and m >= 1. S(n*i, 0) = (1/2)*(1 + exp(n*Pi))*exp(-(n/2)*Pi), for n >= 0. S(1+i, 2+i) = 0.6397424847... + 1.0355669490...*i. Thanks to Roberto Alfano for asking a question leading to this formula. - Wolfdieter Lang, Jun 05 2023
Lim_{n->oo} S(n, x)/S(n-1, x) = r(x) = (x - sqrt(x^2 -4))/2, for |x| >= 2. For x = +-2, this limit is +-1. - Wolfdieter Lang, Nov 15 2023

Examples

			The triangle T(n, k) begins:
  n\k  0  1   2   3   4   5   6    7   8   9  10  11
  0:   1
  1:   0  1
  2:  -1  0   1
  3:   0 -2   0   1
  4:   1  0  -3   0   1
  5:   0  3   0  -4   0   1
  6:  -1  0   6   0  -5   0   1
  7:   0 -4   0  10   0  -6   0    1
  8:   1  0 -10   0  15   0  -7    0   1
  9:   0  5   0 -20   0  21   0   -8   0   1
  10: -1  0  15   0 -35   0  28    0  -9   0   1
  11:  0 -6   0  35   0 -56   0   36   0 -10   0   1
  ... Reformatted and extended by _Wolfdieter Lang_, Oct 24 2012
For more rows see the link.
E.g., fourth row {0,-2,0,1} corresponds to polynomial S(3,x)= -2*x + x^3.
From _Wolfdieter Lang_, Jul 12 2011: (Start)
Zeros of S(3,x) with rho(4)= 2*cos(Pi/4) = sqrt(2):
  +- t(1,sqrt(2)) = +- sqrt(2) and
  +- t(2,sqrt(2)) = +- 0.
Factorization of S(3,x) in terms of Psi polynomials:
S(3,x) = (2^3)*Psi(4,x/2)*Psi(8,x/2) = x*(x^2-2).
(End)
From _Wolfdieter Lang_, Nov 04 2011: (Start)
A- and Z- sequence recurrence:
T(4,0) = - (C(0)*T(3,1) + C(1)*T(3,3)) = -(-2 + 1) = +1,
T(5,3) = -3 - 1*1 = -4.
(End)
Boas-Buck recurrence for column k = 2, n = 6: S(6, 2) = (3/4)*(0 - 2* S(4 ,2) + 0 + 2*S(2, 2)) = (3/4)*(-2*(-3) + 2) = 6. - _Wolfdieter Lang_, Aug 11 2017
From _Wolfdieter Lang_, Apr 12 2018: (Start)
Factorization into C polynomials (see the Apr 12 2018 comment):
S(4, x) = 1 - 3*x^2 + x^4 = (-1 + x + x^2)*(-1 - x + x^2) = (-C(5, -x)) * C(5, x); the number of factors is 2 = 2*A095374(2).
S(5, x) = 3*x - 4*x^3 + x^5 = x*(-1 + x)*(1 + x)*(-3 + x^2) = C(2, x)*C(3, x)*(-C(3, -x))*C(6, x); the number of factors is 4 = A302707(2). (End)
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 164.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, p. 223.
  • Franz Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer, 2000.
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990, pp. 60 - 61.
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Cf. A000005, A000217, A000292, A000332, A000389, A001227, A007318, A008611, A008615, A101455, A010892, A011973, A053112 (without zeros), A053117, A053119 (reflection), A053121 (inverse triangle), A055034, A097610, A099774, A099777, A100258, A112552 (first column clipped), A127672, A168561 (absolute values), A187360. A194960, A232624, A255237.
Triangles of coefficients of Chebyshev's S(n,x+k) for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967.

Programs

  • Magma
    A049310:= func< n,k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >;
    [A049310(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
  • Maple
    A049310 := proc(n,k): binomial((n+k)/2,(n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2 end: seq(seq(A049310(n,k), k=0..n),n=0..11); # Johannes W. Meijer, Aug 08 2011
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 06 2022
  • Mathematica
    t[n_, k_] /; EvenQ[n+k] = ((-1)^((n+k)/2+k))*Binomial[(n+k)/2, k]; t[n_, k_] /; OddQ[n+k] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]][[;; 86]] (* Jean-François Alcover, Jul 05 2011 *)
    Table[Coefficient[(-I)^n Fibonacci[n + 1, - I x], x, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Clark Kimberling, Aug 02 2011; corrected by Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[ChebyshevU[Range[0, 10], -x/2], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[Table[(-I)^n Fibonacci[n + 1, -I x], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
  • PARI
    {T(n, k) = if( k<0 || k>n || (n + k)%2, 0, (-1)^((n + k)/2 + k) * binomial((n + k)/2, k))} /* Michael Somos, Jun 24 2002 */
    
  • SageMath
    @CachedFunction
    def A049310(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A049310(n-1,k-1) - A049310(n-2,k)
    for n in (0..9): [A049310(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    

Formula

T(n,k) := 0 if n < k or n+k odd, otherwise ((-1)^((n+k)/2+k))*binomial((n+k)/2, k); T(n, k) = -T(n-2, k)+T(n-1, k-1), T(n, -1) := 0 =: T(-1, k), T(0, 0)=1, T(n, k)= 0 if n < k or n+k odd; g.f. k-th column: (1 / (1 + x^2)^(k + 1)) * x^k. - Michael Somos, Jun 24 2002
T(n,k) = binomial((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Aug 28 2005
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Nov 21 2005
Recurrence for the (unsigned) Fibonacci polynomials: F(1)=1, F(2)=x; for n > 2, F(n) = x*F(n-1) + F(n-2).
From Wolfdieter Lang, Nov 04 2011: (Start)
The Riordan A- and Z-sequences, given in a comment above, lead together to the recurrence:
T(n,k) = 0 if n < k, if k=0 then T(0,0)=1 and
T(n,0)= -Sum_{i=0..floor((n-1)/2)} C(i)*T(n-1,2*i+1), otherwise T(n,k) = T(n-1,k-1) - Sum_{i=1..floor((n-k)/2)} C(i)*T(n-1,k-1+2*i), with the Catalan numbers C(n)=A000108(n).
(End)
The row polynomials satisfy also S(n,x) = 2*(T(n+2, x/2) - T(n, x/2))/(x^2-4) with the Chebyshev T-polynomials. Proof: Use the trace formula 2*T(n, x/2) = S(n, x) - S(n-2, x) (see the Dec 02 2010 comment above) and the S-recurrence several times. This is a formula which expresses the S- in terms of the T-polynomials. - Wolfdieter Lang, Aug 07 2014
From Tom Copeland, Dec 06 2015: (Start)
The non-vanishing, unsigned subdiagonals Diag_(2n) contain the elements D(n,k) = Sum_{j=0..k} D(n-1,j) = (k+1) (k+2) ... (k+n) / n! = binomial(n+k,n), so the o.g.f. for the subdiagonal is (1-x)^(-(n+1)). E.g., Diag_4 contains D(2,3) = D(1,0) + D(1,1) + D(1,2) + D(1,3) = 1 + 2 + 3 + 4 = 10 = binomial(5,2). Diag_4 is shifted A000217; Diag_6, shifted A000292: Diag_8, shifted A000332; and Diag_10, A000389.
The non-vanishing antidiagonals are signed rows of the Pascal triangle A007318.
For a reversed, unsigned version with the zeros removed, see A011973. (End)
The Boas-Buck recurrence (see a comment above) for the sequence of column k is: S(n, k) = ((k+1)/(n-k))*Sum_{p=0..n-1-k} (1 - (-1)^p)*(-1)^((p+1)/2) * S(n-1-p, k), for n > k >= 0 and input S(k, k) = 1. - Wolfdieter Lang, Aug 11 2017
The m-th row consecutive nonzero entries in order are (-1)^c*(c+b)!/c!b! with c = m/2, m/2-1, ..., 0 and b = m-2c if m is even and with c = (m-1)/2, (m-1)/2-1, ..., 0 with b = m-2c if m is odd. For the 8th row starting at a(36) the 5 consecutive nonzero entries in order are 1,-10,15,-7,1 given by c = 4,3,2,1,0 and b = 0,2,4,6,8. - Richard Turk, Aug 20 2017
O.g.f.: exp( Sum_{n >= 0} 2*T(n,x/2)*t^n/n ) = 1 + x*t + (-1 + x^2)*t^2 + (-2*x + x^3)*t^3 + (1 - 3*x^2 + x^4)*t^4 + ..., where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Aug 15 2022

A001511 The ruler function: exponent of the highest power of 2 dividing 2n. Equivalently, the 2-adic valuation of 2n.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1
Offset: 1

Views

Author

Keywords

Comments

Number of 2's dividing 2*n.
a(n) is equivalently the exponent of the smallest power of 2 which does not divide n. - David James Sycamore, Oct 02 2023
a(n) - 1 is the number of trailing zeros in the binary expansion of n.
If you are counting in binary and the least significant bit is numbered 1, the next bit is 2, etc., a(n) is the bit that is incremented when increasing from n-1 to n. - Jud McCranie, Apr 26 2004
Number of steps to reach an integer starting with (n+1)/2 and using the map x -> x*ceiling(x) (cf. A073524).
a(n) is the number of the disk to be moved at the n-th step of the optimal solution to Towers of Hanoi problem (comment from Andreas M. Hinz).
Shows which bit to flip when creating the binary reflected Gray code (bits are numbered from the right, offset is 1). This is essentially equivalent to Hinz's comment. - Adam Kertesz, Jul 28 2001
a(n) is the Hamming distance between n and n-1 (in binary). This is equivalent to Kertesz's comments above. - Tak-Shing Chan (chan12(AT)alumni.usc.edu), Feb 25 2003
Let S(0) = {1}, S(n) = {S(n-1), S(n-1)-{x}, x+1} where x = last term of S(n-1); sequence gives S(infinity). - Benoit Cloitre, Jun 14 2003
The sum of all terms up to and including the first occurrence of m is 2^m-1. - Donald Sampson (marsquo(AT)hotmail.com), Dec 01 2003
m appears every 2^m terms starting with the 2^(m-1)th term. - Donald Sampson (marsquo(AT)hotmail.com), Dec 08 2003
Sequence read mod 4 gives A092412. - Philippe Deléham, Mar 28 2004
If q = 2n/2^A001511(n) and if b(m) is defined by b(0)=q-1 and b(m)=2*b(m-1)+1, then 2n = b(A001511(n)) + 1. - Gerald McGarvey, Dec 18 2004
Repeating pattern ABACABADABACABAE ... - Jeremy Gardiner, Jan 16 2005
Relation to C(n) = Collatz function iteration using only odd steps: a(n) is the number of right bits set in binary representation of A004767(n) (numbers of the form 4*m+3). So for m=A004767(n) it follows that there are exactly a(n) recursive steps where m
Between every two instances of any positive integer m there are exactly m distinct values (1 through m-1 and one value greater than m). - Franklin T. Adams-Watters, Sep 18 2006
Number of divisors of n of the form 2^k. - Giovanni Teofilatto, Jul 25 2007
Every prefix up to (but not including) the first occurrence of some k >= 2 is a palindrome. - Gary W. Adamson, Sep 24 2008
1 interleaved with (2 interleaved with (3 interleaved with ( ... ))). - Eric D. Burgess (ericdb(AT)gmail.com), Oct 17 2009
A054525 (Möbius transform) * A001511 = A036987 = A047999^(-1) * A001511. - Gary W. Adamson, Oct 26 2009
Equals A051731 * A036987, (inverse Möbius transform of the Fredholm-Rueppel sequence) = A047999 * A036987. - Gary W. Adamson, Oct 26 2009
Cf. A173238, showing links between generalized ruler functions and A000041. - Gary W. Adamson, Feb 14 2010
Given A000041, P(x) = A(x)/A(x^2) with P(x) = (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...), A(x) = (1 + x + 3x^2 + 4x^3 + 10x^4 + 13x^5 + ...), A(x^2) = (1 + x^2 + 3x^4 + 4x^6 + 10x^8 + ...), where A092119 = (1, 1, 3, 4, 10, ...) = Euler transform of the ruler sequence, A001511. - Gary W. Adamson, Feb 11 2010
Subtracting 1 from every term and deleting any 0's yields the same sequence, A001511. - Ben Branman, Dec 28 2011
In the listing of the compositions of n as lists in lexicographic order, a(k) is the last part of composition(k) for all k <= 2^(n-1) and all n, see example. - Joerg Arndt, Nov 12 2012
According to Hinz, et al. (see links), this sequence was studied by Louis Gros in his 1872 pamphlet "Théorie du Baguenodier" and has therefore been called the Gros sequence.
First n terms comprise least squarefree word of length n using positive integers, where "squarefree" means that the word contains no consecutive identical subwords; e.g., 1 contains no square; 11 contains a square but 12 does not; 121 contains no square; both 1211 and 1212 have squares but 1213 does not; etc. - Clark Kimberling, Sep 05 2013
Length of 0-run starting from 2 (10, 100, 110, 1000, 1010, ...), or length of 1-run starting from 1 (1, 11, 101, 111, 1001, 1011, ...) of every second number, from right to left in binary representation. - Armands Strazds, Apr 13 2017
a(n) is also the frequency of the largest part in the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2,2,2,1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 24 2017
As A000005(n) equals the number of even divisors of 2n and A001227(n) = A001227(2n), the formula A001511(n) = A000005(n)/A001227(n) might be read as "The number of even divisors of 2n is always divisible by the number of odd divisors of 2n" (where number of divisors means sum of zeroth powers of divisors). Conjecture: For any nonnegative integer k, the sum of the k-th powers of even divisors of n is always divisible by the sum of the k-th powers of odd divisors of n. - Ivan N. Ianakiev, Jul 06 2019
From Benoit Cloitre, Jul 14 2022: (Start)
To construct the sequence, start from 1's separated by a place 1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,...
Then put the 2's in every other remaining place
1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,...
Then the 3's in every other remaining place
1,2,1,3,1,2,1,,1,2,1,3,1,2,1,,1,2,1,3,1,2,1,,1,2,1,...
Then the 4's in every other remaining place
1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,,1,2,1,3,1,2,1,4,1,2,1,...
By iterating this process, we get the ruler function 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,... (End)
a(n) is the least positive integer k for which there does not exist i+j=n and a(i)=a(j)=k (cf. A322523). - Rémy Sigrist and Jianing Song, Aug 23 2022
a(n) is the smallest positive integer that does not occur in the coincidences of the sequence so far a(1..n-1) and its reverse. - Neal Gersh Tolunsky, Jan 18 2023
The geometric mean of this sequence approaches the Somos constant (A112302). - Jwalin Bhatt, Jan 31 2025

Examples

			For example, 2^1|2, 2^2|4, 2^1|6, 2^3|8, 2^1|10, 2^2|12, ... giving the initial terms 1, 2, 1, 3, 1, 2, ...
From _Omar E. Pol_, Jun 12 2009: (Start)
Triangle begins:
1;
2,1;
3,1,2,1;
4,1,2,1,3,1,2,1;
5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1;
6,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1;
7,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6,1,2,1,3,...
(End)
S(0) = {} S(1) = 1 S(2) = 1, 2, 1 S(3) = 1, 2, 1, 3, 1, 2, 1 S(4) = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1. - Yann David (yann_david(AT)hotmail.com), Mar 21 2010
From _Joerg Arndt_, Nov 12 2012: (Start)
The 16 compositions of 5 as lists in lexicographic order:
[ n]  a(n)  composition
[ 1]  [ 1]  [ 1 1 1 1 1 ]
[ 2]  [ 2]  [ 1 1 1 2 ]
[ 3]  [ 1]  [ 1 1 2 1 ]
[ 4]  [ 3]  [ 1 1 3 ]
[ 5]  [ 1]  [ 1 2 1 1 ]
[ 6]  [ 2]  [ 1 2 2 ]
[ 7]  [ 1]  [ 1 3 1 ]
[ 8]  [ 4]  [ 1 4 ]
[ 9]  [ 1]  [ 2 1 1 1 ]
[10]  [ 2]  [ 2 1 2 ]
[11]  [ 1]  [ 2 2 1 ]
[12]  [ 3]  [ 2 3 ]
[13]  [ 1]  [ 3 1 1 ]
[14]  [ 2]  [ 3 2 ]
[15]  [ 1]  [ 4 1 ]
[16]  [ 5]  [ 5 ]
a(n) is the last part in each list.
(End)
From _Omar E. Pol_, Aug 20 2013: (Start)
Also written as a triangle in which the right border gives A000027 and row lengths give A011782 and row sums give A000079 the sequence begins:
1;
2;
1,3;
1,2,1,4;
1,2,1,3,1,2,1,5;
1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6;
1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,7;
(End)
G.f. = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 2*x^6 + x^7 + 4*x^8 + x^9 + 2*x^10 + ...
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.
  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 2nd ed., 2001-2003; see Dim- and Dim+ on p. 98; Dividing Rulers, on pp. 436-437; The Ruler Game, pp. 469-470; Ruler Fours, Fives, ... Fifteens on p. 470.
  • L. Gros, Théorie du Baguenodier, Aimé Vingtrinier, Lyon, 1872.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E22.
  • A. M. Hinz, The Tower of Hanoi, in Algebras and combinatorics (Hong Kong, 1997), 277-289, Springer, Singapore, 1999.
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.1.3, Problem 41, p. 589.
  • Andrew Schloss, "Towers of Hanoi" composition, in The Digital Domain. Elektra/Asylum Records 9 60303-2, 1983. Works by Jaffe (Finale to "Silicon Valley Breakdown"), McNabb ("Love in the Asylum"), Schloss ("Towers of Hanoi"), Mattox ("Shaman"), Rush, Moorer ("Lions are Growing") and others.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 1 of table A050600.
Sequence read mod 2 gives A035263.
Sequence is bisection of A007814, A050603, A050604, A067029, A089309.
This is Guy Steele's sequence GS(4, 2) (see A135416).
Cf. A005187 (partial sums), A085058 (bisection), A112302 (geometric mean), A171977 (2^a(n)).
Cf. A287896, A002487, A209229 (Mobius trans.), A092673 (Dirichlet inv.).
Cf. generalized ruler functions for k=3,4,5: A051064, A115362, A055457.

Programs

  • Haskell
    a001511 n = length $ takeWhile ((== 0) . (mod n)) a000079_list
    -- Reinhard Zumkeller, Sep 27 2011
    
  • Haskell
    a001511 n | odd n = 1 | otherwise = 1 + a001511 (n `div` 2)
    -- Walt Rorie-Baety, Mar 22 2013
    
  • MATLAB
    nmax=5;r=1;for n=2:nmax;r=[r n r];end % Adriano Caroli, Feb 26 2016
    
  • Magma
    [Valuation(2*n,2): n in [1..105]]; // Bruno Berselli, Nov 23 2015
    
  • Maple
    A001511 := n->2-wt(n)+wt(n-1); # where wt is defined in A000120
    # This is the binary logarithm of the denominator of (256^n-1)B_{8n}/n, in Maple parlance a := n -> log[2](denom((256^n-1)*bernoulli(8*n)/n)). - Peter Luschny, May 31 2009
    A001511 := n -> padic[ordp](2*n,2): seq(A001511(n), n=1..105);  # Peter Luschny, Nov 26 2010
    a:= n-> ilog2((Bits[Xor](2*n, 2*n-1)+1)/2): seq(a(n), n=1..50);  # Gary Detlefs, Dec 13 2018
  • Mathematica
    Array[ If[ Mod[ #, 2] == 0, FactorInteger[ # ][[1, 2]], 0] &, 105] + 1 (* or *)
    Nest[ Flatten[ # /. a_Integer -> {1, a + 1}] &, {1}, 7] (* Robert G. Wilson v, Mar 04 2005 *)
    IntegerExponent[2*n, 2] (* Alexander R. Povolotsky, Aug 19 2011 *)
    myHammingDistance[n_, m_] := Module[{g = Max[m, n], h = Min[m, n]}, b1 = IntegerDigits[g, 2]; b2 = IntegerDigits[h, 2, Length[b1]]; HammingDistance[b1, b2]] (* Vladimir Shevelev A206853 *) Table[ myHammingDistance[n, n - 1], {n, 111}] (* Robert G. Wilson v, Apr 05 2012 *)
    Table[Position[Reverse[IntegerDigits[n,2]],1,1,1],{n,110}]//Flatten (* Harvey P. Dale, Aug 18 2017 *)
  • PARI
    a(n) = sum(k=0,floor(log(n)/log(2)),floor(n/2^k)-floor((n-1)/2^k)) /* Ralf Stephan */
    
  • PARI
    a(n)=if(n%2,1,factor(n)[1,2]+1) /* Jon Perry, Jun 06 2004 */
    
  • PARI
    {a(n) = if( n, valuation(n, 2) + 1, 0)}; /* Michael Somos, Sep 30 2006 */
    
  • PARI
    {a(n)=if(n==1,1,polcoeff(x-sum(k=1, n-1, a(k)*x^k*(1-x^k)*(1-x+x*O(x^n))), n))} /* Paul D. Hanna, Jun 22 2007 */
    
  • Python
    def a(n): return bin(n)[2:][::-1].index("1") + 1 # Indranil Ghosh, May 11 2017
    
  • Python
    A001511 = lambda n: (n&-n).bit_length() # M. F. Hasler, Apr 09 2020
    
  • Python
    def A001511(n): return (~n & n-1).bit_length()+1 # Chai Wah Wu, Jul 01 2022
    
  • Sage
    [valuation(2*n,2) for n in (1..105)]  # Bruno Berselli, Nov 23 2015
    
  • Scheme
    (define (A001511 n) (let loop ((n n) (e 1)) (if (odd? n) e (loop (/ n 2) (+ 1 e))))) ;; Antti Karttunen, Oct 06 2017

Formula

a(n) = A007814(n) + 1 = A007814(2*n).
a(2*n+1) = 1; a(2*n) = 1 + a(n). - Philippe Deléham, Dec 08 2003
a(n) = 2 - A000120(n) + A000120(n-1), n >= 1. - Daniele Parisse
a(n) = 1 + log_2(abs(A003188(n) - A003188(n-1))).
Multiplicative with a(p^e) = e+1 if p = 2; 1 if p > 2. - David W. Wilson, Aug 01 2001
For any real x > 1/2: lim_{N->infinity} (1/N)*Sum_{n=1..N} x^(-a(n)) = 1/(2*x-1); also lim_{N->infinity} (1/N)*Sum_{n=1..N} 1/a(n) = log(2). - Benoit Cloitre, Nov 16 2001
s(n) = Sum_{k=1..n} a(k) is asymptotic to 2*n since s(n) = 2*n - A000120(n). - Benoit Cloitre, Aug 31 2002
For any n >= 0, for any m >= 1, a(2^m*n + 2^(m-1)) = m. - Benoit Cloitre, Nov 24 2002
a(n) = Sum_{d divides n and d is odd} mu(d)*tau(n/d). - Vladeta Jovovic, Dec 04 2002
G.f.: A(x) = Sum_{k>=0} x^(2^k)/(1-x^(2^k)). - Ralf Stephan, Dec 24 2002
a(1) = 1; for n > 1, a(n) = a(n-1) + (-1)^n*a(floor(n/2)). - Vladeta Jovovic, Apr 25 2003
A fixed point of the mapping 1->12; 2->13; 3->14; 4->15; 5->16; ... . - Philippe Deléham, Dec 13 2003
Product_{k>0} (1+x^k)^a(k) is g.f. for A000041(). - Vladeta Jovovic, Mar 26 2004
G.f. A(x) satisfies A(x) = A(x^2) + x/(1-x). - Franklin T. Adams-Watters, Feb 09 2006
a(A118413(n,k)) = A002260(n,k); = a(A118416(n,k)) = A002024(n,k); a(A014480(n)) = A003602(A014480(n)). - Reinhard Zumkeller, Apr 27 2006
Ordinal transform of A003602. - Franklin T. Adams-Watters, Aug 28 2006 (The ordinal transform of a sequence b_0, b_1, b_2, ... is the sequence a_0, a_1, a_2, ... where a_n is the number of times b_n has occurred in {b_0 ... b_n}.)
Could be extended to n <= 0 using a(-n) = a(n), a(0) = 0, a(2*n) = a(n)+1 unless n=0. - Michael Somos, Sep 30 2006
A094267(2*n) = A050603(2*n) = A050603(2*n + 1) = a(n). - Michael Somos, Sep 30 2006
Sequence = A129360 * A000005 = M*V, where M = an infinite lower triangular matrix and V = d(n) as a vector: [1, 2, 2, 3, 2, 4, ...]. - Gary W. Adamson, Apr 15 2007
Row sums of triangle A130093. - Gary W. Adamson, May 13 2007
Dirichlet g.f.: zeta(s)*2^s/(2^s-1). - Ralf Stephan, Jun 17 2007
a(n) = -Sum_{d divides n} mu(2*d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
G.f.: x/(1-x) = Sum_{n>=1} a(n)*x^n*( 1 - x^n ). - Paul D. Hanna, Jun 22 2007
2*n = 2^a(n)* A000265(n). - Eric Desbiaux, May 14 2009 [corrected by Alejandro Erickson, Apr 17 2012]
Multiplicative with a(2^k) = k + 1, a(p^k) = 1 for any odd prime p. - Franklin T. Adams-Watters, Jun 09 2009
With S(n): 2^n - 1 first elements of the sequence then S(0) = {} (empty list) and if n > 0, S(n) = S(n-1), n, S(n-1). - Yann David (yann_david(AT)hotmail.com), Mar 21 2010
a(n) = log_2(A046161(n)/A046161(n-1)). - Johannes W. Meijer, Nov 04 2012
a((2*n-1)*2^p) = p+1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 05 2013
a(n+1) = 1 + Sum_{j=0..ceiling(log_2(n+1))} (j * (1 - abs(sign((n mod 2^(j + 1)) - 2^j + 1)))). - Enrico Borba, Oct 01 2015
Conjecture: a(n) = A181988(n)/A003602(n). - L. Edson Jeffery, Nov 21 2015
a(n) = log_2(A006519(n)) + 1. - Doug Bell, Jun 02 2017
Inverse Moebius transform of A209229. - Andrew Howroyd, Aug 04 2018
a(n) = 1 + (A183063(n)/A001227(n)). - Omar E. Pol, Nov 06 2018 (after Franklin T. Adams-Watters)
a(n) = log_2((Xor(2*n,2*n-1)+1)/2). - Gary Detlefs, Dec 13 2018
(2^(a(n)-1)-1)*(n mod 4) = 2*floor(((n+1) mod 4)/3). - Gary Detlefs, Dec 14 2018
a(n) = A000005(n)/A001227(n). - Ivan N. Ianakiev, Jul 05 2019
a(n) = Sum_{j=1..r} (j/2^j)*(Product_{k=1..j} (1 - (-1)^floor( (n+2^(j-1))/2^(k-1) ))), for n < a predefined 2^r. - Adriano Caroli, Sep 30 2019

Extensions

Name edited following suggestion by David James Sycamore, Oct 05 2023

A003056 n appears n+1 times. Also the array A(n,k) = n+k (n >= 0, k >= 0) read by antidiagonals. Also inverse of triangular numbers.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
Offset: 0

Keywords

Comments

Also triangle read by rows: T(n,k), n>=0, k>=0, in which n appears n+1 times in row n. - Omar E. Pol, Jul 15 2012
The PARI functions t1, t2 can be used to read a triangular array T(n,k) (n >= 0, 0 <= k <= n-1) by rows from left to right: n -> T(t1(n), t2(n)). - Michael Somos, Aug 23 2002
Number of terms in partition of n with greatest number of distinct terms. - Amarnath Murthy, May 20 2001
Summation table for (x+y) = (0+0),(0+1),(1+0),(0+2),(1+1),(2+0), ...
Also the number of triangular numbers less than or equal to n, not counting 0 as triangular. - Robert G. Wilson v, Oct 21 2005
Permutation of A116939: a(n) = A116939(A116941(n)), a(A116942(n)) = A116939(n). - Reinhard Zumkeller, Feb 27 2006
Maximal size of partitions of n into distinct parts, see A000009. - Reinhard Zumkeller, Jun 13 2009
Also number of digits of A000462(n). - Reinhard Zumkeller, Mar 27 2011
Also the maximum number of 1's contained in the list of hook-lengths of a partition of n. E.g., a(4)=2 because hooks of partitions of n=4 comprise {4,3,2,1}, {4,2,1,1}, {3,2,2,1}, {4,1,2,1}, {4,3,2,1} where the number of 1's in each is 1,2,1,2,1. Hence the maximum is 2. - T. Amdeberhan, Jun 03 2012
Fan, Yang, and Yu (2012) prove a conjecture of Amdeberhan on the generating function of a(n). - Jonathan Sondow, Dec 17 2012
Also the number of partitions of n into distinct parts p such that max(p) - min(p) <= length(p). - Clark Kimberling, Apr 18 2014
Also the maximum number of occurrences of any single value among the previous terms. - Ivan Neretin, Sep 20 2015
Where records occur gives A000217. - Omar E. Pol, Nov 05 2015
Also number of peaks in the largest Dyck path of the symmetric representation of sigma(n), n >= 1. Cf. A237593. - Omar E. Pol, Dec 19 2016

Examples

			G.f. = x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ...
As triangle, the sequence starts
  0;
  1, 1;
  2, 2, 2;
  3, 3, 3, 3;
  4, 4, 4, 4, 4;
  5, 5, 5, 5, 5, 5;
  6, 6, 6, 6, 6, 6, 6;
  7, 7, 7, 7, 7, 7, 7, 7;
  8, 8, 8, 8, 8, 8, 8, 8, 8;
  ...
		

Crossrefs

a(n) = A002024(n+1)-1.
Cf. A000196, A000217, A000462, A001227, A001462, A001614, A004247 (multiplication table), A006463 (partial sums), A016655, A050600, A050602, A048645, A122797, A131507, A238005.
Partial sums of A073424.

Programs

  • Haskell
    a003056 = floor . (/ 2) . (subtract 1) .
                      sqrt . (+ 1) . (* 8) . fromIntegral
    a003056_row n = replicate (n + 1) n
    a003056_tabl = map a003056_row [0..]
    a003056_list = concat $ a003056_tabl
    -- Reinhard Zumkeller, Aug 02 2014, Oct 17 2010
    
  • Magma
    [Floor((Sqrt(1+8*n)-1)/2): n in [0..80]]; // Vincenzo Librandi, Oct 23 2011
    
  • Maple
    A003056 := (n,k) -> n: # Peter Luschny, Oct 29 2011
    a := [ 0 ]: for i from 1 to 15 do for j from 1 to i+1 do a := [ op(a),i ]; od: od: a;
    A003056 := proc(n)
        floor((sqrt(1+8*n)-1)/2) ;
    end proc: # R. J. Mathar, Jul 10 2015
  • Mathematica
    f[n_] := Floor[(Sqrt[1 + 8n] - 1)/2]; Table[ f[n], {n, 0, 87}] (* Robert G. Wilson v, Oct 21 2005 *)
    Table[x, {x, 0, 13}, {y, 0, x}] // Flatten
    T[ n_, k_] := If[ n >= k >= 0, n, 0]; (* Michael Somos, Dec 22 2016 *)
    Flatten[Table[PadRight[{},n+1,n],{n,0,12}]] (* Harvey P. Dale, Jul 03 2021 *)
  • PARI
    A003056(n)=(sqrtint(8*n+1)-1)\2  \\ M. F. Hasler, Oct 08 2011
    
  • PARI
    t1(n)=floor(-1/2+sqrt(2+2*n)) /* A003056 */
    
  • PARI
    t2(n)=n-binomial(floor(1/2+sqrt(2+2*n)),2) /* A002262 */
    
  • Python
    from math import isqrt
    def A003056(n): return (k:=isqrt(m:=n+1<<1))+int((m<<2)>(k<<2)*(k+1)+1)-1 # Chai Wah Wu, Jul 26 2022

Formula

a(n) = floor((sqrt(1+8*n)-1)/2). - Antti Karttunen
a(n) = floor(-1/2 + sqrt(2*n+b)) with 1/4 <= b < 9/4 or a(n) = floor((sqrt(8*n+b)-1)/2) with 1 <= b < 9. - Michael A. Childers (childers_moof(AT)yahoo.com), Nov 11 2001
a(n) = f(n,0) with f(n,k) = k if n <= k, otherwise f(n-k-1, k+1). - Reinhard Zumkeller, May 23 2009
a(n) = 2*n + 1 - A001614(n+1) = n + 1 - A122797(n+1). - Reinhard Zumkeller, Feb 12 2012
a(n) = k if k*(k+1)/2 <= n < (k+1)*(k+2)/2. - Jonathan Sondow, Dec 17 2012
G.f.: (1-x)^(-1)*Sum_{n>=1} x^(n*(n+1)/2) = (Theta_2(0,x^(1/2)) - 2*x^(1/8))/(2*x^(1/8)*(1-x)) where Theta_2 is a Jacobi Theta function. - Robert Israel, May 21 2015
a(n) = floor((A000196(1+8*n)-1)/2). - Pontus von Brömssen, Dec 10 2018
a(n+1) = a(n-a(n)) + 1, a(0) = 0. - Rok Cestnik, Dec 29 2020
a(n) = A001227(n) + A238005(n), n >= 1. - Omar E. Pol, Sep 30 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2 (cf. A016655). - Amiram Eldar, Sep 24 2023
G.f. as array: (x + y - 2*x*y)/((1 - x)^2*(1 - y)^2). - Stefano Spezia, Dec 20 2023 [corrected by Stefano Spezia, Apr 22 2024]

Extensions

Definition clarified by N. J. A. Sloane, Dec 08 2020

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014
Previous Showing 21-30 of 457 results. Next